Balázs András Lukács

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3910211/publications.pdf

Version: 2024-02-01

52 papers

2,225 citations

20 h-index 243625 44 g-index

54 all docs

54 docs citations

54 times ranked

4502 citing authors

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 2017, 44, 1758-1769.	3.0	127
3	Does isolation influence the relative role of environmental and dispersalâ€related processes in stream networks? An empirical test of the network position hypothesis using multiple taxa. Freshwater Biology, 2018, 63, 74-85.	2.4	96
4	World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany, 2019, 158, 103127.	1.6	93
5	Lucerneâ€dominated fields recover native grass diversity without intensive management actions. Journal of Applied Ecology, 2011, 48, 257-264.	4.0	65
6	Environmental factors driving seed bank diversity in alkali grasslands. Agriculture, Ecosystems and Environment, 2014, 182, 80-87.	5.3	59
7	Plant diversity and conservation value of continental temporary pools. Biological Conservation, 2013, 158, 393-400.	4.1	57
8	Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia, 2012, 698, 251-262.	2.0	56
9	Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia, 2018, 188, 1167-1182.	2.0	55
10	Which factors affect phytoplankton biomass in shallow eutrophic lakes?. Hydrobiologia, 2013, 714, 93-104.	2.0	40
11	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	5.8	40
12	Experimental evidence of dispersal of invasive cyprinid eggs inside migratory waterfowl. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15397-15399.	7.1	38
13	Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Science of the Total Environment, 2020, 723, 138021.	8.0	38
14	Growthâ€form and spatiality driving the functional difference of native and alien aquatic plants in Europe. Ecology and Evolution, 2017, 7, 950-963.	1.9	35
15	Alien aquatic vascular plants in Hungary (Pannonian ecoregion): Historical aspects, data set and trends. Plant Biosystems, 2016, 150, 388-395.	1.6	32
16	Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica, 2015, 53, 74-83.	1.5	29
17	Phytoplankton of rhithral rivers: Its origin, diversity and possible use for quality-assessment. Ecological Indicators, 2017, 81, 587-596.	6.3	27
18	Estimating nutrient thresholds for eutrophication management: Novel insights from understudied lake types. Science of the Total Environment, 2022, 827, 154242.	8.0	27

#	Article	IF	Citations
19	Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along the Upper-Tisza river (in Hungary). Phytocoenologia, 2009, 39, 287-293.	0.5	26
20	Phenotypic plasticity as a clue for invasion success of the submerged aquatic plant <i>Elodea nuttallii</i> . Plant Biology, 2019, 21, 54-63.	3.8	23
21	Flood induced phenotypic plasticity in amphibious genus <i>Elatine</i> (Elatinaceae). PeerJ, 2015, 3, e1473.	2.0	19
22	Elements of lake macrophyte metacommunity structure: Global variation and communityâ€environment relationships. Limnology and Oceanography, 2020, 65, 2883-2895.	3.1	16
23	The occurrence of Spiraea crenata and other rare steppe plants in Pannonian graveyards. Biologia (Poland), 2017, 72, 500-509.	1.5	15
24	Trait convergence and trait divergence in lake phytoplankton reflect community assembly rules. Scientific Reports, 2020, 10, 19599.	3.3	15
25	<i>Elatine gussonei</i> (Sommier) Brullo et al. (Elatinaceae) in Sicily. Plant Biosystems, 2014, 148, 27-30.	1.6	13
26	Phytoplankton-based shallow lake types in the Carpathian basin: steps towards a bottom-up typology. Fundamental and Applied Limnology, 2014, 184, 23-34.	0.7	13
27	Leaf trait records of vascular plant species in the Pannonian flora with special focus on endemics and rarities. Folia Geobotanica, 2020, 55, 73-79.	0.9	11
28	Carbon forms, nutrients and water velocity filter hydrophyte and riverbank species differently: A traitâ€based study. Journal of Vegetation Science, 2019, 30, 471-484.	2.2	10
29	Molecular phylogenetics, seed morphometrics, chromosome number evolution and systematics of European <i>Elatine</i> L. (Elatinaceae) species. Peerl, 2016, 4, e2800.	2.0	10
30	Functional Traits Drive Dispersal Interactions Between European Waterfowl and Seeds. Frontiers in Plant Science, 2021, 12, 795288.	3.6	10
31	The Ecophysiological Response of Two Invasive Submerged Plants to Light and Nitrogen. Frontiers in Plant Science, 2019, 10, 1747.	3.6	9
32	Changes in sediment seedâ€bank composition of invaded macrophyte communities in a thermal river. Freshwater Biology, 2017, 62, 1024-1035.	2.4	8
33	From European priority species to characteristic apophyte: Epipactis tallosii (Orchidaceae). Willdenowia, 2019, 49, 401.	0.8	8
34	Small scale macrophyte-environment relationship in an oxbow-lake of the Upper-Tisza valley (Hungary). Community Ecology, 2011, 12, 259-263.	0.9	7
35	Biological flora of Central Europe Himantoglossum adriaticum H. Baumann. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125461.	2.7	7
36	The protected flora of longâ€established cemeteries in Hungary: Using historical maps in biodiversity conservation. Ecology and Evolution, 2020, 10, 7497-7508.	1.9	7

#	Article	IF	CITATIONS
37	Diatom composition of the rheoplankton in a rhithral river system. Acta Botanica Croatica, 2015, 74, 303-316.	0.7	6
38	New data of plant leaf traits from Central Europe. Data in Brief, 2022, 42, 108286.	1.0	6
39	Factors affecting reproductive success in three entomophilous orchid species in Hungary. Acta Biologica Hungarica, 2015, 66, 231-241.	0.7	4
40	Distribution, morphology and habitats of <i>Elatine triandra</i> (Elatinaceae) in Europe, with particular reference to the central part of the continent. Acta Botanica Gallica, 2015, 162, 325-337.	0.9	4
41	The rare aquatic angiosperm Elatine gussonei (Elatinaceae) is more widely distributed than previously thought. Aquatic Botany, 2017, 141, 47-50.	1.6	4
42	Is Nymphaea lotus var. thermalis a Tertiary relict in Europe?. Aquatic Botany, 2019, 155, 1-4.	1.6	4
43	Taxonomical and chorological notes 10 (98–110). Studia Botanica Hungarica, 2019, 50, 391-407.	0.2	3
44	Dynamics in the effects of the species–area relationship versus local environmental factors in bomb crater ponds. Hydrobiologia, 2018, 823, 27-38.	2.0	2
45	Optimal pooling of data for the reliable estimation of trait probability distributions. Global Ecology and Biogeography, 2021, 30, 1344-1352.	5.8	2
46	TheÂdecline and recovery of populations of Potamogeton coloratus in Hungary. Preslia, 2020, 92, 73-86.	2.8	2
47	Pótlások a Magyarország edényes növényfajainak elterjedési atlaszához I Kitaibelia, 2021, 21, .	0.1	1
48	Resurrection and typification of Elatine campylosperma (Elatinaceae), a long-forgotten waterwort species. PeerJ, 2018, 6, e4913.	2.0	1
49	Characterizing surrogacy performance in the systematic conservation planning of riverine networks. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 246-259.	2.0	O
50	Növényi jellegek és alkalmazÃ;suk növényökológiai kutatÃįsokban I.: Történeti Ãįttekintés, je módszertan és adatbÃįzisok. Kitaibelia, 2021, 20, 286-299.	leg tÃpus	ok, o
51	Adatok a szÃnes békaszÅʻlÅʻ (Potamogeton coloratus) hazai elÅʻfordulásához. Kitaibelia, 2021, 22, .	0.1	0
52	Florisztikai adatok a Tiszántúl középső részéről. Kitaibelia, 2021, 22, .	0.1	0