Xi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3908955/publications.pdf

Version: 2024-02-01

43601 28736 12,476 254 57 95 citations h-index g-index papers 287 287 287 9729 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Substrate and Process Engineering for Biocatalytic Synthesis and Facile Purification of Human Milk Oligosaccharides. ChemSusChem, 2022, 15, .	3.6	8
2	Insight into the molecular basis of substrate recognition by the wall teichoic acid glycosyltransferase TagA. Journal of Biological Chemistry, 2022, 298, 101464.	1.6	3
3	The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration. Nature Medicine, 2022, 28, 283-294.	15.2	40
4	Sialoglycan-binding patterns of bacterial AB5 toxin B subunits correlate with host range and toxicity, indicating evolution independent of A subunits. Journal of Biological Chemistry, 2022, 298, 101900.	1.6	6
5	Origins of glycan selectivity in streptococcal Siglec-like adhesins suggest mechanisms of receptor adaptation. Nature Communications, 2022, 13, 2753.	5 . 8	4
6	Systematic synthesis of bisected $\langle i \rangle N \langle i \rangle$ -glycans and unique recognitions by glycan-binding proteins. Chemical Science, 2022, 13, 7644-7656.	3.7	7
7	Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Current Opinion in Chemical Biology, 2021, 61, 81-95.	2.8	39
8	Chemoenzymatic Synthesis and Facile Purification of Gangliosides. Current Protocols, 2021, 1, e91.	1.3	3
9	Reversible <i>O</i> -Acetyl Migration within the Sialic Acid Side Chain and Its Influence on Protein Recognition. ACS Chemical Biology, 2021, 16, 1951-1960.	1.6	19
10	Sialoglycan recognition is a common connection linking acidosis, zinc, and HMGB1 in sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
11	Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis. Journal of Clinical Investigation, 2021, 131, .	3.9	14
12	Therapeutic antibodies, targeting the SARS-CoV-2 spike N-terminal domain, protect lethally infected K18-hACE2 mice. IScience, 2021, 24, 102479.	1.9	29
13	Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Nature Communications, 2021, 12, 3573.	5 . 8	28
14	Chemoenzymatic Total Synthesis of GM3 Gangliosides Containing Different Sialic Acid Forms and Various Fatty Acyl Chains. Journal of Organic Chemistry, 2021, 86, 8672-8682.	1.7	15
15	A GH89 human \hat{l} ±-N-acetylglucosaminidase (hNAGLU) homologue from gut microbe Bacteroides thetaiotaomicron capable of hydrolyzing heparosan oligosaccharides. AMB Express, 2021, 11, 94.	1.4	O
16	Are sialic acids involved in COVID-19 pathogenesis?. Glycobiology, 2021, 31, 1068-1071.	1.3	22
17	Microbial production of human milk oligosaccharide lactodifucotetraose. Metabolic Engineering, 2021, 66, 12-20.	3.6	14
18	Biomolecular Recognition of the Glycan Neoantigen CA19-9 by Distinct Antibodies. Journal of Molecular Biology, 2021, 433, 167099.	2.0	5

#	Article	IF	CITATIONS
19	Serum Antibodies to N-Glycolylneuraminic Acid Are Elevated in Duchenne Muscular Dystrophy and Correlate with Increased Disease Pathology in Cmahmdx Mice. American Journal of Pathology, 2021, 191, 1474-1486.	1.9	4
20	Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. MBio, 2021, 12, .	1.8	12
21	General Tolerance of Galactosyltransferases toward UDPâ€galactosamine Expands Their Synthetic Capability. Angewandte Chemie - International Edition, 2021, 60, 26555-26560.	7.2	2
22	Chemoenzymatic Synthesis of Sialosides Containing 7- $\langle i \rangle N \langle i \rangle$ - or 7,9-Di- $\langle i \rangle N \langle i \rangle$ -acetyl Sialic Acid as Stable $\langle i \rangle O \langle i \rangle$ -Acetyl Analogues for Probing Sialic Acid-Binding Proteins. Journal of Organic Chemistry, 2021, 86, 14381-14397.	1.7	9
23	A Neoglycoprotein-Immobilized Fluorescent Magnetic Bead Suspension Multiplex Array for Galectin-Binding Studies. Molecules, 2021, 26, 6194.	1.7	1
24	Chemoenzymatic synthesis of fucosylated oligosaccharides using Thermosynechococcus $\hat{l}\pm 1\hat{a}\in "2$ -fucosyltransferase and their application in the regulation of intestinal microbiota. Food Chemistry: X, 2021, 12, 100152.	1.8	7
25	Catalytic Cycle of <i>Neisseria meningitidis</i> CMP-Sialic Acid Synthetase Illustrated by High-Resolution Protein Crystallography. Biochemistry, 2020, 59, 3157-3168.	1.2	5
26	<i>EnterococcusÂfaecalis</i> α1–2â€mannosidase (EfManâ€I): an efficient catalyst for glycoprotein Nâ€glycar modification. FEBS Letters, 2020, 594, 439-451.	1.3	9
27	<i>L. pneumophila</i> CMP-5,7-di- <i>N</i> -acetyllegionaminic acid synthetase (LpCLS)-involved chemoenzymatic synthesis of sialosides and analogues. Organic and Biomolecular Chemistry, 2020, 18, 738-744.	1.5	7
28	Microarray analyses of closely related glycoforms reveal different accessibilities of glycan determinants on N-glycan branches. Glycobiology, 2020, 30, 334-345.	1.3	23
29	Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. International Dairy Journal, 2020, 102, 104583.	1.5	18
30	Directed Evolution of Therapeutic Antibodies Targeting Glycosylation in Cancer. Cancers, 2020, 12, 2824.	1.7	14
31	Recent progress in chemical synthesis of bacterial surface glycans. Current Opinion in Chemical Biology, 2020, 58, 121-136.	2.8	21
32	Structural characterization of a nonhydrolyzing UDP-GlcNAc 2-epimerase from <i>Neisseria meningitidis </i> serogroup A. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 557-567.	0.4	4
33	Tandem sialoglycan-binding modules in a Streptococcus sanguinis serine-rich repeat adhesin create target dependent avidity effects. Journal of Biological Chemistry, 2020, 295, 14737-14749.	1.6	2
34	Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-SantA© study. BMC Medicine, 2020, 18, 262.	2.3	28
35	A Chemoenzymatic Synthon Strategy for Synthesizing <i>N</i> -Acetyl Analogues of <i>O</i> -Acetylated <i>N. meningitidis</i> W Capsular Polysaccharide Oligosaccharides. Journal of Organic Chemistry, 2020, 85, 16157-16165.	1.7	11
36	Engineer <i>P. multocida</i> Heparosan Synthase 2 (PmHS2) for Size-Controlled Synthesis of Longer Heparosan Oligosaccharides. ACS Catalysis, 2020, 10, 6113-6118.	5.5	14

#	Article	IF	CITATIONS
37	A combined NMR, MD and DFT conformational analysis of 9-O-acetyl sialic acid-containing GM3 ganglioside glycan and its 9-N-acetyl mimic. Glycobiology, 2020, 30, 787-801.	1.3	17
38	Size-Controlled Chemoenzymatic Synthesis of Homogeneous Oligosaccharides of <i>Neisseria meningitidis</i> W Capsular Polysaccharide. ACS Catalysis, 2020, 10, 2791-2798.	5.5	14
39	The role of 9-O-acetylated glycan receptor moieties in the typhoid toxin binding and intoxication. PLoS Pathogens, 2020, 16, e1008336.	2.1	28
40	New Means to Control Molecular Assembly. Journal of Physical Chemistry C, 2020, 124, 6405-6412.	1.5	9
41	Influenza D virus diverges from its related influenza C virus in the recognition of 9-0-acetylated N-acetyl- or N-glycolyl-neuraminic acid-containing glycan receptors. Virology, 2020, 545, 16-23.	1.1	25
42	Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions. Journal of Virology, 2020, 94, .	1.5	35
43	Elicited and preâ€existing antiâ€Neu5Gc antibodies differentially affect human endothelial cells transcriptome. Xenotransplantation, 2019, 26, e12535.	1.6	12
44	Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nature Microbiology, 2019, 4, 2393-2404.	5.9	83
45	A Bacterial β1–3-Galactosyltransferase Enables Multigram-Scale Synthesis of Human Milk Lacto- <i>N</i> -tetraose (LNT) and Its Fucosides. ACS Catalysis, 2019, 9, 10721-10726.	5.5	53
46	Synthesis of N-Glycolylneuraminic Acid (Neu5Gc) and Its Glycosides. Frontiers in Immunology, 2019, 10, 2004.	2.2	44
47	A substrate tagging and two-step enzymatic reaction strategy for large-scale synthesis of 2,7-anhydro-sialic acid. Carbohydrate Research, 2019, 479, 41-47.	1.1	6
48	9-Azido-9-deoxy-2,3-difluorosialic Acid as a Subnanomolar Inhibitor against Bacterial Sialidases. Journal of Organic Chemistry, 2019, 84, 6697-6708.	1.7	10
49	Biochemical characterization of Helicobacter pylori $\hat{l}\pm 1\hat{a}\in 3$ -fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydrate Research, 2019, 480, 1-6.	1.1	23
50	Differential Recognition of Diet-Derived Neu5Gc-Neoantigens on Glycan Microarrays by Carbohydrate-Specific Pooled Human IgG and IgA Antibodies. Bioconjugate Chemistry, 2019, 30, 1565-1574.	1.8	12
51	Biomimetic Glyconanoparticle Vaccine for Cancer Immunotherapy. ACS Nano, 2019, 13, 2936-2947.	7.3	42
52	Chemoenzymatic Synthesis of <i>O</i> -Mannose Glycans Containing Sulfated or Nonsulfated HNK-1 Epitope. Journal of the American Chemical Society, 2019, 141, 19351-19359.	6.6	22
53	Facile chemoenzymatic synthesis of Lewis a (Lea) antigen in gram-scale and sialyl Lewis a (sLea) antigens containing diverse sialic acid forms. Carbohydrate Research, 2019, 472, 115-121.	1.1	20
54	Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydrate Research, 2019, 472, 86-97.	1.1	67

#	Article	IF	CITATIONS
55	Quantitative and qualitative changes in antiâ€Neu5Gc antibody response following rabbit antiâ€thymocyte IgG induction in kidney allograft recipients. European Journal of Clinical Investigation, 2019, 49, e13069.	1.7	9
56	Regioselective One-Pot Multienzyme (OPME) Chemoenzymatic Strategies for Systematic Synthesis of Sialyl Core 2 Glycans. ACS Catalysis, 2019, 9, 211-215.	5. 5	18
57	Presentation Mode of Glycans Affect Recognition of Human Serum anti-Neu5Gc lgG Antibodies. Bioconjugate Chemistry, 2019, 30, 161-168.	1.8	19
58	Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry. ACS Chemical Biology, 2019, 14, 27-36.	1.6	2
59	Synthesis of Glycosphingolipids (GSLs). Chemical Biology, 2019, , 226-253.	0.1	1
60	Enzymatic and Chemoenzymatic Synthesis of Human Milk Oligosaccharides (HMOS). Chemical Biology, 2019, , 254-280.	0.1	7
61	A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Diâ€ <i>N</i> àê€acetyllegionaminic Acid ontaining Glycosides. Angewandte Chemie, 2018, 130, 2979-2983.	1.6	7
62	A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Diâ€ <i>N</i> àêecetyllegionaminic Acidâ€Containing Glycosides. Angewandte Chemie - International Edition, 2018, 57, 2929-2933.	7.2	28
63	Interaction of Neisseria meningitidis Group X N-acetylglucosamine-1-phosphotransferase with its donor substrate. Glycobiology, 2018, 28, 100-107.	1.3	13
64	Serine-Rich Repeat Adhesins Mediate Shear-Enhanced Streptococcal Binding to Platelets. Infection and Immunity, 2018, 86, .	1.0	16
65	α2–6-Neosialidase: A Sialyltransferase Mutant as a Sialyl Linkage-Specific Sialidase. ACS Chemical Biology, 2018, 13, 1228-1234.	1.6	11
66	Poor Patient and Graft Outcome After Induction Treatment by Antithymocyte Globulin in Recipients of a Kidney Graft After Nonrenal Organ Transplantation. Transplantation Direct, 2018, 4, e357.	0.8	12
67	Sialidase-Catalyzed One-Pot Multienzyme (OPME) Synthesis of Sialidase Transition-State Analogue Inhibitors. ACS Catalysis, 2018, 8, 43-47.	5.5	19
68	Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase. Bioorganic and Medicinal Chemistry, 2018, 26, 5751-5757.	1.4	14
69	Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Organic and Biomolecular Chemistry, 2018, 16, 4076-4080.	1.5	41
70	Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma. Marine Drugs, 2018, 16, 80.	2.2	10
71	A combined computational-experimental approach to define the structural origin of antibody recognition of sialyl-Tn, a tumor-associated carbohydrate antigen. Scientific Reports, 2018, 8, 10786.	1.6	15
72	<i>Streptococcus pneumoniae</i> Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors. Journal of Organic Chemistry, 2018, 83, 10798-10804.	1.7	14

#	Article	IF	Citations
73	Polyclonal human antibodies against glycans bearing red meat-derived non-human sialic acid N-glycolylneuraminic acid are stable, reproducible, complex and vary between individuals: Total antibody levels are associated with colorectal cancer risk. PLoS ONE, 2018, 13, e0197464.	1.1	45
74	Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathogens, 2018, 14, e1007133.	2.1	33
75	Production of Glycopeptide Derivatives for Exploring Substrate Specificity of Human OGA Toward Sugar Moiety. Frontiers in Chemistry, 2018, 6, 646.	1.8	8
76	Converting Pasteurella multocida α2–3-sialyltransferase 1 (PmST1) to a regioselective α2–6-sialyltransferase by saturation mutagenesis and regioselective screening. Organic and Biomolecular Chemistry, 2017, 15, 1700-1709.	1.5	27
77	A general strategy for the synthesis of homogeneous hyaluronan conjugates and their biological applications. Chemical Communications, 2017, 53, 3555-3558.	2.2	26
78	A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9-O-Acetyl Sialic Acids. ACS Chemical Biology, 2017, 12, 214-224.	1.6	37
79	Chemoenzymatic synthesis of para-nitrophenol (pNP)-tagged α2–8-sialosides and high-throughput substrate specificity studies of α2–8-sialidases. Organic and Biomolecular Chemistry, 2017, 15, 160-167.	1.5	20
80	Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E. Journal of Biological Chemistry, 2017, 292, 1029-1037.	1.6	22
81	Enzymatic synthesis of human blood group P1 pentasaccharide antigen. Carbohydrate Research, 2017, 438, 39-43.	1.1	9
82	Evolution of host adaptation in the Salmonella typhoid toxin. Nature Microbiology, 2017, 2, 1592-1599.	5.9	40
83	Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives. Carbohydrate Research, 2017, 451, 110-117.	1.1	7
84	Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus. MSphere, 2017, 2, .	1.3	56
85	H. pylori α1–3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chemical Communications, 2017, 53, 11012-11015.	2.2	53
86	Chemoenzymatic synthesis of Neu5Ac9NAc-containing $\hat{l}\pm2\hat{a}\in$ 3- and $\hat{l}\pm2\hat{a}\in$ 6-linked sialosides and their use for sialidase substrate specificity studies. Carbohydrate Research, 2017, 451, 51-58.	1.1	26
87	Profiling Anti-Neu5Gc IgG in Human Sera with a Sialoglycan Microarray Assay. Journal of Visualized Experiments, 2017, , .	0.2	23
88	Enzymatic and Chemoenzymatic Syntheses of Disialyl Glycans and Their Necrotizing Enterocolitis Preventing Effects. Journal of Organic Chemistry, 2017, 82, 13152-13160.	1.7	36
89	Highly efficient chemoenzymatic synthesis and facile purification of \hat{l}_{\pm} -Gal pentasaccharyl ceramide Gal \hat{l}_{\pm} 3nLc ₄ \hat{l}^{2} Cer. Chemical Communications, 2017, 53, 8280-8283.	2.2	24
90	Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nature Communications, 2017, 8, 2196.	5.8	74

#	Article	IF	CITATIONS
91	Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates. BMC Evolutionary Biology, 2017, 17, 228.	3.2	23
92	Glycan microarray reveal induced IgGs repertoire shift against a dietary carbohydrate in response to rabbit anti-human thymocyte therapy. Oncotarget, 2017, 8, 112236-112244.	0.8	26
93	The Trypomastigote Small Surface Antigen (TSSA) regulates Trypanosoma cruzi infectivity and differentiation. PLoS Neglected Tropical Diseases, 2017, 11, e0005856.	1.3	21
94	Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology. PLoS Pathogens, 2016, 12, e1005559.	2.1	57
95	Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin. Journal of Biological Chemistry, 2016, 291, 7230-7240.	1.6	39
96	Chemoenzymatic synthesis of tumor-associated antigen N3 minor octasaccharide. Journal of Carbohydrate Chemistry, 2016, 35, 412-422.	0.4	1
97	Correction: Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans. Organic and Biomolecular Chemistry, 2016, 14, 4542-4542.	1.5	0
98	Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans. Organic and Biomolecular Chemistry, 2016, 14, 4027-4031.	1.5	58
99	Local Mechanical Perturbation Provides an Effective Means to Regulate the Growth and Assembly of Functional Peptide Fibrils. Small, 2016, 12, 6407-6415.	5.2	6
100	Structures of the <i>Streptococcus sanguinis</i> SrpA Binding Region with Human Sialoglycans Suggest Features of the Physiological Ligand. Biochemistry, 2016, 55, 5927-5937.	1.2	27
101	Systematic chemoenzymatic synthesis of O-sulfated sialyl Lewis x antigens. Chemical Science, 2016, 7, 2827-2831.	3.7	31
102	A General Chemoenzymatic Strategy for the Synthesis of Glycosphingolipids. European Journal of Organic Chemistry, 2016, 2016, 4315-4320.	1.2	12
103	Effective one-pot multienzyme (OPME) synthesis of monotreme milk oligosaccharides and other sialosides containing 4-O-acetyl sialic acid. Organic and Biomolecular Chemistry, 2016, 14, 8586-8597.	1.5	22
104	Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation, 2016, 23, 381-392.	1.6	63
105	Glycosyltransferase engineering for carbohydrate synthesis. Biochemical Society Transactions, 2016, 44, 129-142.	1.6	60
106	A sialic acid aldolase from Peptoclostridium difficile NAPO8 with 4-hydroxy-2-oxo-pentanoate aldolase activity. Enzyme and Microbial Technology, 2016, 92, 99-106.	1.6	6
107	Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. Journal of Organic Chemistry, 2016, 81, 10809-10824.	1.7	54
108	Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Organic and Biomolecular Chemistry, 2016, 14, 11106-11116.	1.5	42

#	Article	IF	CITATIONS
109	Diversity-Oriented Enzymatic Modular Assembly of ABO Histo-blood Group Antigens. ACS Catalysis, 2016, 6, 8140-8144.	5.5	30
110	Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins. Glycobiology, 2016, 26, cww042.	1.3	55
111	Characterizing non-hydrolyzing Neisseria meningitidis serogroup A UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase using UDP-N-acetylmannosamine (UDP-ManNAc) and derivatives. Carbohydrate Research, 2016, 419, 18-28.	1.1	10
112	Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chemical Reviews, 2016, 116, 3086-3240.	23.0	642
113	Donor substrate promiscuity of bacterial β1–3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1–4-galactosyltransferases. Bioorganic and Medicinal Chemistry, 2016, 24, 1696-1705.	1.4	46
114	One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Organic and Biomolecular Chemistry, 2016, 14, 2809-2818.	1.5	126
115	The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus α1–2-fucosyltransferase. Chemical Communications, 2016, 52, 3899-3902.	2.2	58
116	An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism. PLoS Pathogens, 2016, 12, e1005411.	2.1	92
117	Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform. Biomolecules, 2015, 5, 1480-1498.	1.8	44
118	Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chemical Communications, 2015, 51, 7689-7692.	2.2	71
119	Efficient chemoenzymatic synthesis of novel galacto-N-biose derivatives and their sialylated forms. Chemical Communications, 2015, 51, 10310-10313.	2.2	22
120	Human Milk Oligosaccharides (HMOS). Advances in Carbohydrate Chemistry and Biochemistry, 2015, 72, 113-190.	0.4	144
121	Engineering Amyloid Fibrils from \hat{I}^2 -Solenoid Proteins for Biomaterials Applications. ACS Nano, 2015, 9, 449-463.	7.3	60
122	Improved one-pot multienzyme (OPME) systems for synthesizing UDP-uronic acids and glucuronides. Chemical Communications, 2015, 51, 4595-4598.	2.2	39
123	A Photobacterium sp. α2–6-sialyltransferase (Psp2,6ST) mutant with an increased expression level and improved activities in sialylating Tn antigens. Carbohydrate Research, 2015, 408, 127-133.	1.1	21
124	Chemoenzymatic synthesis of \hat{l}_{\pm} -dystroglycan core M1 O-mannose glycans. Chemical Communications, 2015, 51, 11654-11657.	2.2	19
125	Efficient chemoenzymatic synthesis of an N-glycan isomer library. Chemical Science, 2015, 6, 5652-5661.	3.7	114
126	Structures of <i>Bacteroides fragilis</i> vuridine 5′-diphosphate- <i>N</i> -acetylglucosamine (UDP-GlcNAc) acyltransferase (BfLpxA). Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1068-1076.	2.5	3

#	Article	IF	CITATIONS
127	Equine and Canine Influenza H3N8 Viruses Show Minimal Biological Differences Despite Phylogenetic Divergence. Journal of Virology, 2015, 89, 6860-6873.	1.5	36
128	Facile chemoenzymatic synthesis of biotinylated heparosan hexasaccharide. Organic and Biomolecular Chemistry, 2015, 13, 5098-5101.	1.5	16
129	Glycoproteins: Chemical Features and Biological Roles. , 2015, , 3-33.		0
130	Complexity and Diversity of the Mammalian Sialome Revealed by Nidovirus Virolectins. Cell Reports, 2015, 11, 1966-1978.	2.9	62
131	Chemoenzymatic synthesis of lacto-N-tetrasaccharide and sialyl lacto-N-tetrasaccharides. Carbohydrate Research, 2015, 401, 5-10.	1.1	45
132	Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. ELife, 2014, 3, e04066.	2.8	117
133	Rapid evolution of binding specificities and expression patterns of inhibitory CD33â€related Siglecs in primates. FASEB Journal, 2014, 28, 1280-1293.	0.2	71
134	Oral Streptococci Utilize a Siglec-Like Domain of Serine-Rich Repeat Adhesins to Preferentially Target Platelet Sialoglycans in Human Blood. PLoS Pathogens, 2014, 10, e1004540.	2.1	75
135	Synthetic Disialyl Hexasaccharides Protect Neonatal Rats from Necrotizing Enterocolitis. Angewandte Chemie - International Edition, 2014, 53, 6687-6691.	7.2	69
136	Crystal structures of sialyltransferase from <i>Photobacterium damselae</i> . FEBS Letters, 2014, 588, 4720-4729.	1.3	21
137	Host Adaptation of a Bacterial Toxin from the Human Pathogen Salmonella Typhi. Cell, 2014, 159, 1290-1299.	13.5	101
138	Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Applied Microbiology and Biotechnology, 2014, 98, 1127-1134.	1.7	20
139	Regioselective Chemoenzymatic Synthesis of Ganglioside Disialyl Tetrasaccharide Epitopes. Journal of the American Chemical Society, 2014, 136, 5205-5208.	6.6	51
140	Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification. Chemical Communications, 2014, 50, 3159-3162.	2.2	23
141	Chemoenzymatic synthesis of sialosides containing C7-modified sialic acids and their application in sialidase substrate specificity studies. Carbohydrate Research, 2014, 389, 100-111.	1.1	26
142	Profiling of Glycan Receptors for Minute Virus of Mice in Permissive Cell Lines Towards Understanding the Mechanism of Cell Recognition. PLoS ONE, 2014, 9, e86909.	1.1	14
143	Exploration of Sialic Acid Diversity and Biology Using Sialoglycan Microarrays. Biopolymers, 2013, 99, 650-665.	1.2	49
144	Quantum Dot Nanometal Surface Energy Transfer Based Biosensing of Sialic Acid Compositions and Linkages in Biological Samples. Analytical Chemistry, 2013, 85, 3864-3870.	3.2	35

#	Article	IF	Citations
145	Chemoenzymatic synthesis of mono- and di-fluorinated Thomsen–Friedenreich (T) antigens and their sialylated derivatives. Organic and Biomolecular Chemistry, 2013, 11, 842-848.	1.5	23
146	One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorganic and Medicinal Chemistry, 2013, 21, 4778-4785.	1.4	45
147	Efficient Enzymatic Synthesis of Guanosine 5′-Diphosphate-Sugars and Derivatives. Organic Letters, 2013, 15, 5528-5530.	2.4	35
148	Structural Basis for Substrate Specificity and Mechanism of <i>N</i> -Acetyl- <scp>d</scp> -neuraminic Acid Lyase from <i>Pasteurella multocida</i> . Biochemistry, 2013, 52, 8570-8579.	1.2	20
149	An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support. Review of Scientific Instruments, 2013, 84, 114102.	0.6	6
150	Long-Term IgG Response to Porcine Neu5Gc Antigens without Transmission of PERV in Burn Patients Treated with Porcine Skin Xenografts. Journal of Immunology, 2013, 191, 2907-2915.	0.4	114
151	Tailored Design and Synthesis of Heparan Sulfate Oligosaccharide Analogues Using Sequential Oneâ€Pot Multienzyme Systems. Angewandte Chemie - International Edition, 2013, 52, 11852-11856.	7.2	72
152	A Simple Method for Assessment of Human Anti-Neu5Gc Antibodies Applied to Kawasaki Disease. PLoS ONE, 2013, 8, e58443.	1.1	57
153	Substrate Specificity Provides Insights into the Sugar Donor Recognition Mechanism of O-GlcNAc Transferase (OGT). PLoS ONE, 2013, 8, e63452.	1.1	27
154	Cross-comparison of Protein Recognition of Sialic Acid Diversity on Two Novel Sialoglycan Microarrays. Journal of Biological Chemistry, 2012, 287, 22593-22608.	1.6	116
155	Oneâ€Pot Multienzyme Synthesis of Lewis x and Sialyl Lewis x Antigens. Current Protocols in Chemical Biology, 2012, 4, 233-247.	1.7	19
156	General Consideration on Sialic Acid Chemistry. Methods in Molecular Biology, 2012, 808, 31-56.	0.4	16
157	Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Organic and Biomolecular Chemistry, 2012, 10, 6112.	1.5	25
158	Probe sialidase substrate specificity using chemoenzymatically synthesized sialosides containing C9-modified sialic acid. Chemical Communications, 2012, 48, 3357.	2.2	40
159	LC–MS Analysis of Polyclonal Human Anti-Neu5Gc Xeno-Autoantibodies Immunoglobulin G Subclass and Partial Sequence Using Multistep Intravenous Immunoglobulin Affinity Purification and Multienzymatic Digestion. Analytical Chemistry, 2012, 84, 2761-2768.	3.2	29
160	A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating Lewis ^x . ACS Chemical Biology, 2012, 7, 1232-1240.	1.6	135
161	Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chemical Communications, 2012, 48, 2728.	2.2	114
162	Structural Features Affecting Trafficking, Processing, and Secretion of Trypanosoma cruzi Mucins. Journal of Biological Chemistry, 2012, 287, 26365-26376.	1.6	25

#	Article	IF	Citations
163	PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2–3-sialyltransferase. Applied Microbiology and Biotechnology, 2012, 94, 977-985.	1.7	37
164	Sialic acid metabolism and sialyltransferases: natural functions and applications. Applied Microbiology and Biotechnology, 2012, 94, 887-905.	1.7	214
165	Pasteurella multocida CMP-sialic acid synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with improved substrate promiscuity. Applied Microbiology and Biotechnology, 2012, 93, 2411-2423.	1.7	37
166	Surface Plasmon Resonance Imaging Analysis of Protein Binding to a Sialoside-Based Carbohydrate Microarray. Methods in Molecular Biology, 2012, 808, 183-194.	0.4	6
167	Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chemical Communications, 2011, 47, 8691.	2.2	43
168	Human Xeno-Autoantibodies against a Non-Human Sialic Acid Serve as Novel Serum Biomarkers and Immunotherapeutics in Cancer. Cancer Research, 2011, 71, 3352-3363.	0.4	136
169	Fluorescent labeling agents change binding profiles of glycan-binding proteins. Molecular BioSystems, 2011, 7, 3343.	2.9	49
170	Decreasing the sialidase activity of multifunctional Pasteurella multocidal±2–3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Molecular BioSystems, 2011, 7, 3021.	2.9	46
171	Fermenting Next Generation Glycosylated Therapeutics. ACS Chemical Biology, 2011, 6, 14-17.	1.6	19
172	Molecular diversity of the <i>Trypanosoma cruzi </i> TcSMUG family of mucin genes and proteins. Biochemical Journal, 2011, 438, 303-313.	1.7	55
173	One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chemical Communications, 2011, 47, 10815.	2.2	97
174	Sequential two-step multienzyme synthesis of tumor-associated sialyl T-antigens and derivatives. Organic and Biomolecular Chemistry, 2011, 9, 2784.	1.5	29
175	Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Molecular BioSystems, 2011, 7, 1060.	2.9	53
176	Substrate Promiscuity of N-Acetylhexosamine 1-Kinases. Molecules, 2011, 16, 6396-6407.	1.7	74
177	High-throughput neuraminidase substrate specificity study of human and avian influenza A viruses. Virology, 2011, 415, 12-19.	1.1	32
178	Chemoenzymatic synthesis of C8-modified sialic acids and related α2–3- and α2–6-linked sialosides. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5037-5040.	1.0	50
179	Chemoenzymatic synthesis of α2–3-sialylated carbohydrate epitopes. Science China Chemistry, 2011, 54, 117-128.	4.2	16
180	Measurement of Enzymatic Activity and Specificity of Human and Avian Influenza Neuraminidases from Whole Virus by Glycoarray and MALDIâ€₹OF Mass Spectrometry. ChemBioChem, 2011, 12, 2071-2080.	1.3	12

#	Article	IF	CITATIONS
181	Analysis of Influenza Virus Hemagglutinin Receptor Binding Mutants with Limited Receptor Recognition Properties and Conditional Replication Characteristics. Journal of Virology, 2011, 85, 12387-12398.	1.5	55
182	PmST2: A novel Pasteurella multocida glycolipid α2-3-sialyltransferase. Glycobiology, 2011, 21, 1206-1216.	1.3	23
183	A Sialylated Glycan Microarray Reveals Novel Interactions of Modified Sialic Acids with Proteins and Viruses. Journal of Biological Chemistry, 2011, 286, 31610-31622.	1.6	125
184	An Infant-associated Bacterial Commensal Utilizes Breast Milk Sialyloligosaccharides. Journal of Biological Chemistry, 2011, 286, 11909-11918.	1.6	164
185	Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nature Biotechnology, 2011, 29, 428-435.	9.4	158
186	Cloning and characterization of a viral α2–3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology, 2011, 21, 387-396.	1.3	30
187	Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid <i>N</i> -glycolylneuraminic acid. Journal of Experimental Medicine, 2010, 207, 1637-1646.	4.2	134
188	Trans-sialidase activity of Photobacterium damsela $\hat{A}2$,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology, 2010, 20, 260-268.	1.3	55
189	Identification of glycoproteins targeted by Trypanosoma cruzi trans-sialidase, a virulence factor that disturbs lymphocyte glycosylation. Glycobiology, 2010, 20, 833-842.	1.3	40
190	Helicobacter hepaticus Hh0072 gene encodes a novel $\hat{l}\pm 1$ -3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology, 2010, 20, 1077-1088.	1.3	38
191	Highly efficient chemoenzymatic synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases. Chemical Communications, 2010, 46, 6066.	2.2	128
192	Advances in the Biology and Chemistry of Sialic Acids. ACS Chemical Biology, 2010, 5, 163-176.	1.6	467
193	Highly efficient chemoenzymatic synthesis of β1–3-linked galactosides. Chemical Communications, 2010, 46, 7507.	2.2	72
194	Sensitive and Specific Detection of the Non-Human Sialic Acid N-Glycolylneuraminic Acid In Human Tissues and Biotherapeutic Products. PLoS ONE, 2009, 4, e4241.	1.1	127
195	Remodeling bacterial polysaccharides by metabolic pathway engineering. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4207-4212.	3.3	107
196	Recent progress in chemical and chemoenzymatic synthesis of carbohydrates. Current Opinion in Chemical Biology, 2009, 13, 573-581.	2.8	124
197	Parallel chemoenzymatic synthesis of sialosides containing a C5-diversified sialic acid. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5869-5871.	1.0	18
198	Chemoenzymatic Synthesis of a New Class of Macrocyclic Oligosaccharides. Journal of Organic Chemistry, 2009, 74, 2928-2936.	1.7	66

#	Article	IF	Citations
199	Fabrication and Characterization of a Sialoside-Based Carbohydrate Microarray Biointerface for Protein Binding Analysis with Surface Plasmon Resonance Imaging. ACS Applied Materials & Eamp; Interfaces, 2009, 1, 1755-1762.	4.0	28
200	Chemoenzymatic Synthesis of GD3 Oligosaccharides and Other Disialyl Glycans Containing Natural and Non-natural Sialic Acids. Journal of the American Chemical Society, 2009, 131, 18467-18477.	6.6	105
201	Synthesis of sulfone-based nucleotide isosteres: identification of CMP-sialic acid synthetase inhibitors. Organic and Biomolecular Chemistry, 2009, 7, 27-29.	1.5	8
202	Sialidase substrate specificity studies using chemoenzymatically synthesized sialosides containing C5-modified sialic acids. Organic and Biomolecular Chemistry, 2009, 7, 5137.	1.5	55
203	Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood, 2009, 114, 5225-5235.	0.6	107
204	Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Applied Microbiology and Biotechnology, 2008, 79, 963-70.	1.7	108
205	N-Terminal 112 amino acid residues are not required for the sialyltransferase activity of Photobacterium damsela α2,6-sialyltransferase. Biotechnology Letters, 2008, 30, 671-676.	1.1	39
206	Chemoenzymatic Syntheses of Tumorâ€Associated Carbohydrate Antigen Globoâ€H and Stageâ€Specific Embryonic Antigen 4. Advanced Synthesis and Catalysis, 2008, 350, 1717-1728.	2.1	25
207	Chemical preparation of sialyl Lewis x using an enzymatically synthesized sialoside building block. Carbohydrate Research, 2008, 343, 2863-2869.	1.1	36
208	Surface Plasmon Resonance Study of Proteinâ^'Carbohydrate Interactions Using Biotinylated Sialosides. Analytical Chemistry, 2008, 80, 4007-4013.	3.2	81
209	Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature, 2008, 456, 648-652.	13.7	217
210	Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: Potential implications for disease. Glycobiology, 2008, 18, 818-830.	1.3	297
211	Combinatorial Chemoenzymatic Synthesis and High-Throughput Screening of Sialosides. ACS Chemical Biology, 2008, 3, 567-576.	1.6	79
212	Multifunctionality of Campylobacter jejuni sialyltransferase Cstll: Characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology, 2008, 18, 686-697.	1.3	80
213	Chemoenzymatic Synthesis of Sialosides and Their Applications. ACS Symposium Series, 2008, , 96-122.	0.5	1
214	NeuA Sialic Acid O-Acetylesterase Activity Modulates O-Acetylation of Capsular Polysaccharide in Group B Streptococcus. Journal of Biological Chemistry, 2007, 282, 27562-27571.	1.6	45
215	The Hd0053 gene of Haemophilus ducreyi encodes an $\hat{l}\pm 2,3$ -sialyltransferase. Biochemical and Biophysical Research Communications, 2007, 361, 555-560.	1.0	16
216	Carbohydrate post-glycosylational modifications. Organic and Biomolecular Chemistry, 2007, 5, 865.	1.5	71

#	Article	IF	Citations
217	Efficient chemoenzymatic synthesis of biotinylated human serum albumin–sialoglycoside conjugates containing O-acetylated sialic acids. Organic and Biomolecular Chemistry, 2007, 5, 2458-2463.	1.5	34
218	Enzymatic Synthesis of Fluorinated Mechanistic Probes for Sialidases and Sialyltransferases. Journal of the American Chemical Society, 2007, 129, 10630-10631.	6.6	75
219	Crystal Structures of Pasteurella multocida Sialyltransferase Complexes with Acceptor and Donor Analogues Reveal Substrate Binding Sites and Catalytic Mechanism,. Biochemistry, 2007, 46, 6288-6298.	1.2	97
220	Chemoenzymatic Synthesis of Size-Defined Polysaccharides by Sialyltransferase-Catalyzed Block Transfer of Oligosaccharides. Journal of the American Chemical Society, 2007, 129, 11918-11919.	6.6	33
221	High-Throughput Substrate Specificity Studies of Sialidases by Using Chemoenzymatically Synthesized Sialoside Libraries. ChemBioChem, 2007, 8, 194-201.	1.3	79
222	Disaccharides as Sialic Acid Aldolase Substrates: Synthesis of Disaccharides Containing a Sialic Acid at the Reducing End. Angewandte Chemie - International Edition, 2007, 46, 2249-2253.	7.2	35
223	One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nature Protocols, 2006, 1, 2485-2492.	5.5	138
224	Aldolase-Catalyzed Synthesis of β-d-Galp-(1→9)-d-KDN:  A Novel Acceptor for Sialyltransferases. Organic Letters, 2006, 8, 2393-2396.	2.4	39
225	Cytidine 5â€~-Monophosphate (CMP)-Induced Structural Changes in a Multifunctional Sialyltransferase from Pasteurella multocida,. Biochemistry, 2006, 45, 2139-2148.	1.2	76
226	Characterization of a Bifunctional Cytidine 5′-Monophosphate N-acetylneuraminic acid Synthetase Cloned from Streptococcus Agalactiae. Biotechnology Letters, 2006, 28, 107-113.	1.1	17
227	Highly Efficient Chemoenzymatic Synthesis of Naturally Occurring and Non-Natural α-2,6-Linked Sialosides: AP. damsela α-2,6-Sialyltransferase with Extremely Flexible Donor–Substrate Specificity. Angewandte Chemie - International Edition, 2006, 45, 3938-3944.	7.2	222
228	A Multifunctional Pasteurella multocida Sialyltransferase:  A Powerful Tool for the Synthesis of Sialoside Libraries. Journal of the American Chemical Society, 2005, 127, 17618-17619.	6.6	313
229	Production of N-sulfated polysaccharides using yeast-expressed N-deacetylase/N-sulfotransferase-1 (NDST-1). Glycobiology, 2004, 14, 1217-1228.	1.3	19
230	Chemoenzymatic synthesis of CMP–sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP–sialic acid synthetases. Bioorganic and Medicinal Chemistry, 2004, 12, 6427-6435.	1.4	214
231	Superbeads: Immobilization in "Sweet―Chemistry. ChemInform, 2003, 34, no.	0.1	0
232	Superbeads: Immobilization in "Sweet―Chemistry. Chemistry - A European Journal, 2003, 9, 372-377.	1.7	60
233	Large-scale synthesis of globotriose derivatives through recombinant E. coli. Organic and Biomolecular Chemistry, 2003, 1, 3048-3053.	1.5	36
234	Synthesis of Galactose-Containing Oligosaccharides through Superbeads and Superbug Approaches: Substrate Recognition along Different Biosynthetic Pathways. Methods in Enzymology, 2003, 362, 106-124.	0.4	9

#	Article	IF	CITATIONS
235	Glucuronides in Anti-Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 139-150.	7.0	36
236	Reassembled Biosynthetic Pathway for Large-Scale Carbohydrate Synthesis:α-Gal Epitope Producing "Superbug― ChemBioChem, 2002, 3, 47-53.	1.3	51
237	Combined Biosynthetic Pathway For De Novo Production of UDP-Galactose: Catalysis with Multiple Enzymes Immobilized on Agarose Beads. ChemBioChem, 2002, 3, 348-355.	1.3	87
238	Expeditious syntheses of two carbohydrate-linked cisplatin analogs. Carbohydrate Research, 2002, 337, 1043-1046.	1.1	16
239	αGal-conjugated anti-rhinovirus agents: chemo-enzymatic syntheses and testing of anti-Gal binding. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1716-1722.	1.3	9
240	Sugar Nucleotide Regeneration Beads (Superbeads):  A Versatile Tool for the Practical Synthesis of Oligosaccharides. Journal of the American Chemical Society, 2001, 123, 2081-2082.	6.6	126
241	Transferring a Biosynthetic Cycle into a Productive Escherichia coli Strain:  Large-Scale Synthesis of Galactosides. Journal of the American Chemical Society, 2001, 123, 8866-8867.	6.6	48
242	Large-scale Synthesis of Carbohydrates for Pharmaceutical Development. Current Organic Chemistry, 2001, 5, 1169-1176.	0.9	13
243	Microbial Glycosyltransferases., 2001,, 625-640.		2
244	Synthesis of α-Gal epitope derivatives with a galactosyltransferase–epimerase fusion enzyme. Carbohydrate Research, 2000, 329, 873-878.	1.1	20
245	Production of α-Galactosyl Epitopes via Combined Use of Two Recombinant Whole Cells Harboring UDP-Galactose 4-Epimerase and α-1,3-Galactosyltransferase. Biotechnology Progress, 2000, 16, 595-599.	1.3	22
246	Changing the Donor Cofactor of Bovine $\hat{l}\pm 1,3$ -Galactosyltransferase by Fusion with UDP-galactose 4-Epimerase. Journal of Biological Chemistry, 2000, 275, 31594-31600.	1.6	33
247	Inhibition of Protein Tyrosine Phosphatases by Low-Molecular-Weight S-Nitrosothiols and S-Nitrosylated Human Serum Albumin. Biochemical and Biophysical Research Communications, 2000, 268, 310-314.	1.0	33
248	Carbohydrates in transplantation. Current Opinion in Chemical Biology, 1999, 3, 650-658.	2.8	38
249	Bacteria targeted by human natural antibodies using $\hat{l}\pm$ -gal conjugated receptor-specific glycopolymers. Bioorganic and Medicinal Chemistry, 1999, 7, 1549-1558.	1.4	60
250	Cloning, expression and characterization of a UDP-galactose 4-epimerase from Escherichia coli. Biotechnology Letters, 1999, 21, 1131-1135.	1.1	27
251	Enhanced Inhibition of Human Anti-Gal Antibody Binding to Mammalian Cells by Synthetic α-Gal Epitope Polymers. Journal of the American Chemical Society, 1999, 121, 8174-8181.	6.6	65
252	A Unique Chemoenzymatic Synthesis of α-Galactosyl Epitope Derivatives Containing Free Amino Groups: Efficient Separation and Further Manipulation. Journal of Organic Chemistry, 1999, 64, 4089-4094.	1.7	26

#	Article	IF	CITATIONS
253	Highly Efficient Chemoenzymatic Synthesis of \hat{l}_{\pm} -Galactosyl Epitopes with a Recombinant $\hat{l}_{\pm}(1\hat{a}_{1}^{*}3)$ -Galactosyltransferase. Journal of the American Chemical Society, 1998, 120, 6635-6638.	6.6	127
254	General Tolerance of Galactosyltransferases toward UDPâ€galactosamine Expands Their Synthetic Capability. Angewandte Chemie, 0, , .	1.6	0