Arne Schaefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/390864/publications.pdf

Version: 2024-02-01

44 papers 9,456 citations

172457 29 h-index 254184 43 g-index

46 all docs

46 docs citations

46 times ranked

16123 citing authors

#	Article	IF	CITATIONS
1	Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, The, 2012, 380, 572-580.	13.7	1,937
2	Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics, 2011, 43, 333-338.	21.4	1,685
3	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	21.4	1,439
4	Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 2010, 42, 436-440.	21.4	581
5	New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nature Genetics, 2009, 41, 280-282.	21.4	440
6	Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nature Genetics, 2009, 41, 283-285.	21.4	427
7	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
8	Toward the blood-borne miRNome of human diseases. Nature Methods, 2011, 8, 841-843.	19.0	339
9	Identification of a Shared Genetic Susceptibility Locus for Coronary Heart Disease and Periodontitis. PLoS Genetics, 2009, 5, e1000378.	3.5	189
10	The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Human Molecular Genetics, 2013, 22, 4516-4527.	2.9	183
11	A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Human Molecular Genetics, 2010, 19, 553-562.	2.9	176
12	Genetic Regulation of Serum Phytosterol Levels and Risk of Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2010, 3, 331-339.	5.1	141
13	Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis, 2010, 208, 183-189.	0.8	141
14	Lifelong Reduction of LDL-Cholesterol Related to a Common Variant in the LDL-Receptor Gene Decreases the Risk of Coronary Artery Disease—A Mendelian Randomisation Study. PLoS ONE, 2008, 3, e2986.	2.5	137
15	A Genome-Wide Association Study Identifies <i>LIPA</i> as a Susceptibility Gene for Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2011, 4, 403-412.	5.1	130
16	Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. European Heart Journal, 2011, 32, 158-168.	2.2	124
17	Genome-wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. Human Molecular Genetics, 2016, 25, 2113-2129.	2.9	108
18	A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Human Molecular Genetics, 2017, 26, 2577-2588.	2.9	87

#	Article	IF	CITATIONS
19	Validation of reported genetic risk factors for periodontitis in a largeâ€scale replication study. Journal of Clinical Periodontology, 2013, 40, 563-572.	4.9	74
20	Genetic Evidence for <i>PLASMINOGEN</i> as a Shared Genetic Risk Factor of Coronary Artery Disease and Periodontitis. Circulation: Cardiovascular Genetics, 2015, 8, 159-167.	5.1	74
21	GWAS for Interleukin- $\hat{\Pi}^2$ levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. Nature Communications, 2018, 9, 3686.	12.8	63
22	CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection. Journal of Medical Genetics, 2011, 48, 38-47.	3.2	61
23	Association Between the Chromosome 9p21 Locus and Angiographic Coronary Artery Disease Burden. Journal of the American College of Cardiology, 2013, 61, 957-970.	2.8	58
24	Meta-analysis of genome-wide association studies of aggressive and chronic periodontitis identifies two novel risk loci. European Journal of Human Genetics, 2019, 27, 102-113.	2.8	58
25	Periodontal genetics: a decade of genetic association studies mandates better study designs. Journal of Clinical Periodontology, 2011, 38, 103-107.	4.9	57
26	Genomeâ€wide exploration identifies sexâ€specific genetic effects of alleles upstream <i><scp>NPY</scp></i> to increase the risk of severe periodontitis in men. Journal of Clinical Periodontology, 2014, 41, 1115-1121.	4.9	44
27	Genetics of periodontitis: Discovery, biology, and clinical impact. Periodontology 2000, 2018, 78, 162-173.	13.4	40
28	Genome-wide association meta-analysis of coronary artery disease and periodontitis reveals a novel shared risk locus. Scientific Reports, 2018, 8, 13678.	3.3	35
29	Linear isoforms of the long noncoding RNA CDKN2B-AS1 regulate the c-myc-enhancer binding factor RBMS1. European Journal of Human Genetics, 2019, 27, 80-89.	2.8	35
30	<i><scp>SLC</scp>23A1</i> polymorphism rs6596473 in the vitamin C transporter <scp>SVCT</scp> 1 is associated with aggressive periodontitis. Journal of Clinical Periodontology, 2014, 41, 531-540.	4.9	25
31	A large candidateâ€gene association study suggests genetic variants at <i><scp>IRF</scp>5</i> and <i><scp>PRDM</scp>1</i> to be associated with aggressive periodontitis. Journal of Clinical Periodontology, 2014, 41, 1122-1131.	4.9	24
32	Qtlizer: comprehensive QTL annotation of GWAS results. Scientific Reports, 2020, 10, 20417.	3.3	23
33	A combined epigenome- and transcriptome-wide association study of the oral masticatory mucosa assigns CYP1B1 a central role for epithelial health in smokers. Clinical Epigenetics, 2019, 11, 105.	4.1	21
34	Genetic Association of a Gainâ€ofâ€Function <i>IFNGR1</i> Polymorphism and the Intergenic Region <i>LNCAROD/DKK1</i> With Behçet's Disease. Arthritis and Rheumatology, 2021, 73, 1244-1252.	5.6	21
35	Roles of the Chr.9p21.3 ANRIL Locus in Regulating Inflammation and Implications for Anti-Inflammatory Drug Target Identification. Frontiers in Cardiovascular Medicine, 2018, 5, 47.	2.4	18
36	A haplotype block downstream of plasminogen is associated with chronic and aggressive periodontitis. Journal of Clinical Periodontology, 2017, 44, 962-970.	4.9	16

#	Article	lF	CITATION
37	Protocols, Methods, and Tools for Genome-Wide Association Studies (GWAS) of Dental Traits. Methods in Molecular Biology, 2019, 1922, 493-509.	0.9	14
38	Sexâ€specific genetic factors affect the risk of earlyâ€onset periodontitis in <scp>Europeans</scp> . Journal of Clinical Periodontology, 2021, 48, 1404-1413.	4.9	13
39	Translation of mouse model to human gives insights into periodontitis etiology. Scientific Reports, 2020, 10, 4892.	3.3	12
40	Common genetic risk variants of <i><scp>TLR</scp></i> >2 are not associated with periodontitis in large <scp>E</scp> uropean caseâ€control populations. Journal of Clinical Periodontology, 2012, 39, 315-322.	4.9	8
41	Secreted frizzledâ€related protein 5 serum levels in human periodontitis—A nested case–control study. Journal of Clinical Periodontology, 2019, 46, 522-528.	4.9	6
42	Epigenetic adaptations of the masticatory mucosa to periodontal inflammation. Clinical Epigenetics, 2021, 13, 203.	4.1	6
43	hsaâ€miRâ€374bâ€5p regulates expression of the gene U2AF homology motif <i>(UHM) kinase 1</i>). Journal of Periodontal Research, 2021, 56, 1028-1036.	2.7	3
44	Detection of suspicious interactions of spiking covariates in methylation data. BMC Bioinformatics, 2020, 21, 36.	2.6	0