Oleg Pokrovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3906592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12. Geochimica Et Cosmochimica Acta, 2000, 64, 3313-3325.	3.9	370
2	Dissolution kinetics of calcite, dolomite and magnesite at 25 ŰC and 0 to 50 atm pCO2. Chemical Geology, 2005, 217, 239-255.	3.3	345
3	Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chemical Geology, 2002, 190, 141-179.	3.3	339
4	Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55Âatm pCO2: New constraints on CO2 sequestration in sedimentary basins. Chemical Geology, 2009, 265, 20-32.	3.3	299
5	Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30µM Cu. Planta, 2015, 241, 847-860.	3.2	295
6	The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Reviews in Mineralogy and Geochemistry, 2009, 70, 207-258.	4.8	291
7	Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology, 2009, 258, 197-206.	3.3	283
8	Surface Chemistry and Dissolution Kinetics of Divalent Metal Carbonates. Environmental Science & Technology, 2002, 36, 426-432.	10.0	266
9	Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochimica Et Cosmochimica Acta, 2004, 68, 31-45.	3.9	253
10	Evidence of the Existence of Three Types of Species at the Quartzâ^'Aqueous Solution Interface at pH 0â^'10: XPS Surface Group Quantification and Surface Complexation Modeling. Journal of Physical Chemistry B, 2002, 106, 2937-2945.	2.6	230
11	Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research, 2016, 23, 1414-1427.	5.3	224
12	Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia. Geochimica Et Cosmochimica Acta, 2006, 70, 3239-3260.	3.9	218
13	Modern Views on Desilicification: Biosilica and Abiotic Silica Dissolution in Natural and Artificial Environments. Chemical Reviews, 2010, 110, 4656-4689.	47.7	215
14	Dolomite surface speciation and reactivity in aquatic systems. Geochimica Et Cosmochimica Acta, 1999, 63, 3133-3143.	3.9	199
15	Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochimica Et Cosmochimica Acta, 2006, 70, 1939-1951.	3.9	199
16	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5.2	199
17	Surface Speciation Models of Calcite and Dolomite/Aqueous Solution Interfaces and Their Spectroscopic Evaluation. Langmuir, 2000, 16, 2677-2688.	3.5	188
18	Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control. Geochimica Et Cosmochimica Acta, 2008, 72, 1742-1757.	3.9	187

#	Article	IF	CITATIONS
19	Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. Journal of Colloid and Interface Science, 2005, 291, 192-200.	9.4	183
20	Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chemical Geology, 2010, 273, 136-149.	3.3	180
21	Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 ŰC. Chemical Geology, 2005, 217, 227-238.	3.3	167
22	Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation. Geochimica Et Cosmochimica Acta, 2006, 70, 839-857.	3.9	167
23	Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach. Geochimica Et Cosmochimica Acta, 2000, 64, 3299-3312.	3.9	151
24	Kinetics and mechanisms of dolomite dissolution in neutral to alkaline solutions revisited. Numerische Mathematik, 2001, 301, 597-626.	1.4	135
25	Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C. Geochimica Et Cosmochimica Acta, 2006, 70, 4436-4451.	3.9	132
26	Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochimica Et Cosmochimica Acta, 2011, 75, 3335-3357.	3.9	128
27	Fe–Al–organic Colloids Control of Trace Elements in Peat Soil Solutions: Results of Ultrafiltration and Dialysis. Aquatic Geochemistry, 2005, 11, 241-278.	1.3	127
28	Processes at the magnesium-bearing carbonates/solution interface. II. kinetics and mechanism of magnesite dissolution Geochimica Et Cosmochimica Acta, 1999, 63, 881-897.	3.9	125
29	Basalt weathering in Central Siberia under permafrost conditions. Geochimica Et Cosmochimica Acta, 2005, 69, 5659-5680.	3.9	125
30	Trace elements in organic- and iron-rich surficial fluids of the boreal zone: Assessing colloidal forms via dialysis and ultrafiltration. Geochimica Et Cosmochimica Acta, 2010, 74, 449-468.	3.9	121
31	Metal adsorption on mosses: Toward a universal adsorption model. Journal of Colloid and Interface Science, 2014, 415, 169-178.	9.4	119
32	Processes at the magnesium-bearing carbonates/solution interface. I. a surface speciation model for magnesite. Geochimica Et Cosmochimica Acta, 1999, 63, 863-880.	3.9	118
33	Mercury Stable Isotope Signatures of World Coal Deposits and Historical Coal Combustion Emissions. Environmental Science & Technology, 2014, 48, 7660-7668.	10.0	118
34	Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry, 2013, 113, 573-593.	3.5	116
35	Formation, growth and transformation of leached layers during silicate minerals dissolution: The example of wollastonite. Geochimica Et Cosmochimica Acta, 2012, 98, 259-281.	3.9	114
36	The surface chemistry of multi-oxide silicates. Geochimica Et Cosmochimica Acta, 2009, 73, 4617-4634.	3.9	110

#	Article	lF	CITATIONS
37	An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200°C as a function of pH, aqueous solution composition and chemical affinity. Geochimica Et Cosmochimica Acta, 2012, 83, 93-109.	3.9	105
38	Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia. Biogeosciences, 2011, 8, 565-583.	3.3	103
39	Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals. Geochimica Et Cosmochimica Acta, 2005, 69, 905-918.	3.9	102
40	Adsorption of copper on Pseudomonas aureofaciens: Protective role of surface exopolysaccharides. Journal of Colloid and Interface Science, 2010, 350, 305-314.	9.4	99
41	Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters. Geochimica Et Cosmochimica Acta, 2013, 101, 96-111.	3.9	99
42	High carbon emissions from thermokarst lakes of Western Siberia. Nature Communications, 2019, 10, 1552.	12.8	98
43	Principles of demineralization: Modern strategies for the isolation of organic frameworks. Micron, 2009, 40, 169-193.	2.2	97
44	Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species. Geochimica Et Cosmochimica Acta, 2004, 68, 4039-4058.	3.9	95
45	Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chemical Geology, 2012, 291, 116-131.	3.3	95
46	Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochimica Et Cosmochimica Acta, 2012, 76, 161-174.	3.9	93
47	Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach. Applied Geochemistry, 2008, 23, 2574-2588.	3.0	91
48	Surface charge and zeta-potential of metabolically active and dead cyanobacteria. Journal of Colloid and Interface Science, 2008, 323, 317-325.	9.4	87
49	Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquatic Geochemistry, 2013, 19, 1-24.	1.3	85
50	Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochimica Et Cosmochimica Acta, 2010, 74, 70-84.	3.9	82
51	Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization. Geochimica Et Cosmochimica Acta, 2006, 70, 3325-3341.	3.9	80
52	Organic and organo-mineral colloids in discontinuous permafrost zone. Geochimica Et Cosmochimica Acta, 2016, 188, 1-20.	3.9	79
53	Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers. Biogeosciences, 2015, 12, 6301-6320.	3.3	78
54	Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau. Environmental Research Letters, 2011, 6, 045212.	5.2	77

#	Article	IF	CITATIONS
55	Chemical weathering of silicate rocks in Karelia region and Kola peninsula, NW Russia: Assessing the effect of rock composition, wetlands and vegetation. Chemical Geology, 2007, 242, 255-277.	3.3	76
56	Principles of demineralization: Modern strategies for the isolation of organic frameworks. Micron, 2008, 39, 1062-1091.	2.2	76
57	Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences, 2015, 12, 3009-3028.	3.3	75
58	Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime?. Chemical Geology, 2011, 290, 67-74.	3.3	69
59	Trace element transport in western Siberian rivers across a permafrost gradient. Biogeosciences, 2016, 13, 1877-1900.	3.3	69
60	Fate of colloids during estuarine mixing in the Arctic. Ocean Science, 2014, 10, 107-125.	3.4	68
61	Size fractionation and optical properties of dissolved organic matter in the continuum soil solution-bog-river and terminal lake of a boreal watershed. Organic Geochemistry, 2014, 66, 14-24.	1.8	68
62	Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11586-E11594.	7.1	68
63	Experimental study of the effect of organic ligands on diopside dissolution kinetics. Chemical Geology, 2006, 235, 377-389.	3.3	66
64	Thermokarst lake waters across the permafrost zones of western Siberia. Cryosphere, 2014, 8, 1177-1193.	3.9	66
65	Aqueous reactivity of phytoliths and plant litter: Physico-chemical constraints on terrestrial biogeochemical cycle of silicon. Journal of Geochemical Exploration, 2006, 88, 202-205.	3.2	64
66	Experimental approach of CO2 biomineralization in deep saline aquifers. Chemical Geology, 2009, 265, 54-62.	3.3	64
67	Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments. Biogeosciences, 2011, 8, 3341-3358.	3.3	64
68	Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective. Comptes Rendus - Geoscience, 2012, 344, 663-677.	1.2	64
69	Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp Chemical Geology, 2014, 374-375, 44-60.	3.3	64
70	High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nature Geoscience, 2018, 11, 825-829.	12.9	64
71	Elemental composition of peat profiles in western Siberia: Effect of the micro-landscape, latitude position and permafrost coverage. Applied Geochemistry, 2015, 53, 53-70.	3.0	63
72	Effect of organic and inorganic ligands on calcite and magnesite dissolution rates at 60°C and 30Âatm pCO2. Chemical Geology, 2009, 265, 33-43.	3.3	62

#	Article	lF	CITATIONS
73	Silicon isotope variations in Central Siberian rivers during basalt weathering in permafrost-dominated larch forests. Chemical Geology, 2013, 355, 103-116.	3.3	61
74	Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia. Geochimica Et Cosmochimica Acta, 2013, 114, 169-187.	3.9	60
75	Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone. Biogeosciences, 2013, 10, 5349-5365.	3.3	60
76	Western Siberia wetlands as indicator and regulator of climate change on the global scale. International Journal of Environmental Studies, 2009, 66, 409-421.	1.6	59
77	Fluxes of high- versus low-temperature water–rock interactions in aerial volcanic areas: Example from the Kamchatka Peninsula, Russia. Geochimica Et Cosmochimica Acta, 2009, 73, 148-169.	3.9	59
78	Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia. Biogeosciences, 2017, 14, 3561-3584.	3.3	58
79	Variability in grain cadmium concentration among durum wheat cultivars: impact of aboveground biomass partitioning. Plant and Soil, 2016, 404, 307-320.	3.7	57
80	Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland. Science of the Total Environment, 2018, 634, 1004-1023.	8.0	57
81	Abrupt permafrost collapse enhances organic carbon, CO 2 , nutrient and metal release into surface waters. Chemical Geology, 2017, 471, 153-165.	3.3	55
82	Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics. Numerische Mathematik, 2009, 309, 731-772.	1.4	53
83	Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom. Water Research, 2013, 47, 922-932.	11.3	53
84	Magnesium isotopes in permafrost-dominated Central Siberian larch forest watersheds. Geochimica Et Cosmochimica Acta, 2014, 147, 76-89.	3.9	53
85	Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges. Science Advances, 2019, 5, eaax2805.	10.3	53
86	Chemical weathering of silicate rocks in Aldan Shield and Baikal Uplift: insights from long-term seasonal measurements of solute fluxes in rivers. Chemical Geology, 2005, 214, 223-248.	3.3	52
87	An X-ray absorption fine structure and nuclear magnetic resonance spectroscopy study of gallium–silica complexes in aqueous solution. Geochimica Et Cosmochimica Acta, 2002, 66, 4203-4222.	3.9	51
88	Cadmium and lead interaction with diatom surfaces: A combined thermodynamic and kinetic approach. Geochimica Et Cosmochimica Acta, 2007, 71, 3698-3716.	3.9	50
89	Effect of the heterotrophic bacterium Pseudomonas reactans on olivine dissolution kinetics and implications for CO2 storage in basalts. Geochimica Et Cosmochimica Acta, 2012, 80, 30-50.	3.9	50
90	Carbon emission from Western Siberian inland waters. Nature Communications, 2021, 12, 825.	12.8	50

#	Article	IF	CITATIONS
91	Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison. Remote Sensing of Environment, 2003, 84, 100-119.	11.0	49
92	Size Fractionation of Trace Elements in a Seasonally Stratified Boreal Lake: Control of Organic Matter and Iron Colloids. Aquatic Geochemistry, 2012, 18, 115-139.	1.3	48
93	Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces?. Geochimica Et Cosmochimica Acta, 2010, 74, 1329-1337.	3.9	47
94	Impact of Permafrost Thaw and Climate Warming on Riverine Export Fluxes of Carbon, Nutrients and Metals in Western Siberia. Water (Switzerland), 2020, 12, 1817.	2.7	47
95	Contribution of remobilization to the loading of cadmium in durum wheat grains: impact of post-anthesis nitrogen supply. Plant and Soil, 2018, 424, 591-606.	3.7	46
96	Speciation of Zn Associated with Diatoms Using X-ray Absorption Spectroscopy. Environmental Science & Technology, 2005, 39, 4490-4498.	10.0	45
97	Speciation, Size Fractionation and Transport of Trace Elements in the Continuum Soil Water–Mire–Humic Lake–River–Large Oligotrophic Lake of a Subarctic Watershed. Aquatic Geochemistry, 2016, 22, 65-95.	1.3	45
98	Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia. Geochimica Et Cosmochimica Acta, 2017, 213, 553-573.	3.9	45
99	Do organic ligands affect calcite dissolution rates?. Geochimica Et Cosmochimica Acta, 2011, 75, 1799-1813.	3.9	43
100	New operational method of testing colloid complexation with metals in natural waters. Applied Geochemistry, 2012, 27, 1226-1237.	3.0	43
101	Zeta potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: Possible implications for cell protection from CaCO3 precipitation in alkaline solutions. Journal of Colloid and Interface Science, 2011, 360, 100-109.	9.4	42
102	West Siberian palsa peatlands: distribution, typology, cyclic development, present day climate-driven changes, seasonal hydrology and impact on CO ₂ cycle. International Journal of Environmental Studies, 2011, 68, 603-623.	1.6	42
103	Size Distribution, Surface Coverage, Water, Carbon, and Metal Storage of Thermokarst Lakes in the Permafrost Zone of the Western Siberia Lowland. Water (Switzerland), 2017, 9, 228.	2.7	42
104	Heterotrophic bacterioâ€plankton in thawed lakes of the northern part of Western Siberia controls the CO ₂ flux to the atmosphere. International Journal of Environmental Studies, 2009, 66, 433-445.	1.6	41
105	The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood. Geochimica Et Cosmochimica Acta, 2016, 191, 32-46.	3.9	41
106	Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland. Environmental Research Letters, 2018, 13, 045002.	5.2	41
107	Organic and inorganic ligand effects on magnesite dissolution at 100°C and pH=5 to 10. Chemical Geology, 2007, 242, 484-496.	3.3	40
108	Unseeded precipitation of calcium and magnesium phosphates from modified seawater solutions. Journal of Crystal Growth, 1999, 205, 354-360.	1.5	39

#	Article	IF	CITATIONS
109	Kinetic evidences of the existence of positively charged species at the quartz-aqueous solution interface. Journal of Colloid and Interface Science, 2006, 296, 189-194.	9.4	39
110	Stable (Cu, Mg) and radiogenic (Sr, Nd) isotope fractionation in colloids of boreal organic-rich waters. Chemical Geology, 2013, 342, 63-75.	3.3	39
111	Iron isotope fractionation during Fe(II) and Fe(III) adsorption on cyanobacteria. Chemical Geology, 2015, 400, 24-33.	3.3	38
112	Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation. Biogeosciences, 2019, 16, 2511-2526.	3.3	38
113	An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200°C as a function of pH, total dissolved carbonate concentration, and chemical affinity. Geochimica Et Cosmochimica Acta, 2010, 74, 6344-6356.	3.9	37
114	Germanium isotope fractionation during Ge adsorption on goethite and its coprecipitation with Fe oxy(hydr)oxides. Geochimica Et Cosmochimica Acta, 2014, 131, 138-149.	3.9	37
115	Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700â€km latitudinal gradient. Hydrology and Earth System Sciences, 2017, 21, 5725-5746.	4.9	37
116	Iron isotope systematics in Arctic rivers. Comptes Rendus - Geoscience, 2015, 347, 377-385.	1.2	36
117	Major and trace elements in suspended matter of western Siberian rivers: First assessment across permafrost zones and landscape parameters of watersheds. Geochimica Et Cosmochimica Acta, 2020, 269, 429-450.	3.9	36
118	On the elemental composition of suspended matter of the Severnaya Dvina River (White Sea region). Doklady Earth Sciences, 2010, 430, 228-234.	0.7	35
119	Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost. Biogeochemistry, 2013, 113, 435-449.	3.5	35
120	Spider Chitin: An Ultrafast Microwave-Assisted Method for Chitin Isolation from Caribena versicolor Spider Molt Cuticle. Molecules, 2019, 24, 3736.	3.8	35
121	High resolution multi-annual riverine fluxes of organic carbon, nutrient and trace element from the largest European Arctic river, Severnaya Dvina. Chemical Geology, 2020, 538, 119491.	3.3	35
122	Gallium(III) adsorption on carbonates and oxides: X-ray absorption fine structure spectroscopy study and surface complexation modeling. Journal of Colloid and Interface Science, 2004, 279, 314-325.	9.4	34
123	Mixed-layer illite–smectite reactivity in acidified solutions: Implications for clayey caprock stability in CO2 geological storage. Applied Clay Science, 2011, 53, 402-408.	5.2	34
124	Metal and proton adsorption capacities of natural and cloned Sphagnum mosses. Journal of Colloid and Interface Science, 2016, 461, 326-334.	9.4	34
125	Chemical and structural status of copper associated with oxygenic and anoxygenic phototrophs and heterotrophs: possible evolutionary consequences. Geobiology, 2012, 10, 130-149.	2.4	33
126	Spider Chitin. The biomimetic potential and applications of Caribena versicolor tubular chitin. Carbohydrate Polymers, 2019, 226, 115301.	10.2	33

#	Article	IF	CITATIONS
127	One of the possible mechanisms of thermokarst lakes drainage in Westâ€Siberian North. International Journal of Environmental Studies, 2008, 65, 631-635.	1.6	32
128	Diurnal variations of trace metals and heterotrophic bacterioplankton concentration in a small boreal lake of the White Sea basin. Annales De Limnologie, 2010, 46, 67-75.	0.6	32
129	Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters. Geochimica Et Cosmochimica Acta, 2017, 211, 97-114.	3.9	32
130	Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls. Biogeosciences, 2017, 14, 3715-3742.	3.3	32
131	Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands. Environmental Research Letters, 2018, 13, 034028.	5.2	32
132	Land surface albedo retrieval via kernel-based BRDF modeling: II. An optimal design scheme for the angular sampling. Remote Sensing of Environment, 2003, 84, 120-142.	11.0	31
133	Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). Ecotoxicology, 2012, 21, 1403-1414.	2.4	31
134	Are Cu isotopes a useful tool to trace metal sources and processes in acid mine drainage (AMD) context?. Chemosphere, 2018, 193, 1071-1079.	8.2	31
135	Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals. Geochimica Et Cosmochimica Acta, 2009, 73, 4326-4345.	3.9	30
136	Does the presence of heterotrophic bacterium Pseudomonas reactans affect basaltic glass dissolution rates?. Chemical Geology, 2012, 296-297, 1-18.	3.3	30
137	Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver. Environmental Science and Pollution Research, 2015, 22, 8412-8424.	5.3	30
138	Zn isotope fractionation in a pristine larch forest on permafrost-dominated soils in Central Siberia. Geochemical Transactions, 2015, 16, 3.	0.7	30
139	Homogeneous precipitation of magnesium phosphates from seawater solutions. Journal of Crystal Growth, 2001, 223, 550-556.	1.5	29
140	Thermodynamic modeling of actinide complexation with oxalate at high ionic strength. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248, 467-471.	1.5	29
141	High precision measurement of germanium isotope ratio variations by multiple collector-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18, 115-119.	3.0	29
142	Zn isotope fractionation during interaction with phototrophic biofilm. Chemical Geology, 2014, 390, 46-60.	3.3	29
143	Bacteria primarily metabolize at the active layer/permafrost border in the peat core from a permafrost region in western Siberia. Polar Biology, 2017, 40, 1645-1659.	1.2	29
144	Permafrost Boundary Shift in Western Siberia May Not Modify Dissolved Nutrient Concentrations in Rivers. Water (Switzerland), 2017, 9, 985.	2.7	28

#	Article	IF	CITATIONS
145	Photodegradation of river dissolved organic matter and trace metals in the largest European Arctic estuary. Science of the Total Environment, 2018, 622-623, 1343-1352.	8.0	28
146	Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochimica Et Cosmochimica Acta, 2018, 220, 1-18.	3.9	28
147	Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake. Science of the Total Environment, 2013, 463-464, 78-90.	8.0	27
148	The continuous re-equilibration of carbon isotope compositions of hydrous Mg carbonates in the presence of cyanobacteria. Chemical Geology, 2015, 404, 41-51.	3.3	27
149	Discovery of a silicate rock-boring organism and macrobioerosion in fresh water. Nature Communications, 2018, 9, 2882.	12.8	27
150	Colloidal transport of carbon and metals by western Siberian rivers during different seasons across a permafrost gradient. Geochimica Et Cosmochimica Acta, 2019, 265, 221-241.	3.9	27
151	Thermodynamic Modeling of Actinide Complexation with Acetate and Lactate at High Ionic Strength. Journal of Solution Chemistry, 1999, 28, 521-531.	1.2	26
152	A Structural Study of Cadmium Interaction with Aquatic Microorganisms. Environmental Science & Technology, 2008, 42, 5527-5533.	10.0	26
153	Cadmium allocation to grains in durum wheat exposed to low Cd concentrations in hydroponics. Ecotoxicology and Environmental Safety, 2019, 184, 109592.	6.0	26
154	AÂrevised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations. Biogeosciences, 2020, 17, 3083-3097.	3.3	26
155	Colloidal organic carbon and trace elements in peat porewaters across a permafrost gradient in Western Siberia. Geoderma, 2021, 390, 114971.	5.1	26
156	Neptunium(V) Complexation by Acetate, Oxalate and Citrate in NaClO ₄ Media at 25°C. Radiochimica Acta, 1997, 79, 167-172.	1.2	25
157	Interaction of Neptunyl(V) and Uranyl(VI) with EDTA in NaCl Media: Experimental Study and Pitzer Modeling. Radiochimica Acta, 1998, 80, 23-30.	1.2	25
158	Permafrost and fire as regulators of stream chemistry in basins of the Central Siberian Plateau. Biogeochemistry, 2013, 116, 55-68.	3.5	25
159	Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environmental Pollution, 2019, 254, 113083.	7.5	25
160	Water and energy transfer modeling in a permafrostâ€dominated, forested catchment of Central Siberia: The key role of rooting depth. Permafrost and Periglacial Processes, 2019, 30, 75-89.	3.4	25
161	Accumulation of heavy metals in phytoliths from reeds growing on mining environments in Southern Europe. Science of the Total Environment, 2020, 712, 135595.	8.0	25
162	Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation. Chemosphere, 2020, 250, 126216.	8.2	25

#	Article	IF	CITATIONS
163	Dispersed ground ice of permafrost peatlands: Potential unaccounted carbon, nutrient and metal sources. Chemosphere, 2021, 266, 128953.	8.2	25
164	Development of an operational procedure to estimate surface albedo from the SEVIRI/MSG observing system by using POLDER BRDF measurements. Remote Sensing of Environment, 2003, 87, 215-242.	11.0	24
165	Freeze-thaw cycles of Arctic thaw ponds remove colloidal metals and generate low-molecular-weight organic matter. Biogeochemistry, 2018, 137, 321-336.	3.5	24
166	Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter–spring 2014, 2015 and 2016. Atmospheric Chemistry and Physics, 2018, 18, 963-977.	4.9	24
167	Experimental modeling of thaw lake water evolution in discontinuous permafrost zone: Role of peat, lichen leaching and ground fire. Science of the Total Environment, 2017, 580, 245-257.	8.0	23
168	Biogeochemistry of dissolved carbon, major, and trace elements during spring flood periods on the <scp>O</scp> b <scp>R</scp> iver. Hydrological Processes, 2019, 33, 1579-1594.	2.6	23
169	Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens. Journal of Colloid and Interface Science, 2014, 435, 59-66.	9.4	22
170	Transformation of organo-ferric peat colloids by a heterotrophic bacterium. Geochimica Et Cosmochimica Acta, 2017, 205, 313-330.	3.9	22
171	Permafrost Regime Affects the Nutritional Status and Productivity of Larches in Central Siberia. Forests, 2018, 9, 314.	2.1	22
172	Insoluble Particles in the Snowpack of the Ob River Basin (Western Siberia) a 2800 km Submeridional Profile. Atmosphere, 2020, 11, 1184.	2.3	22
173	Spatial and Seasonal Variations of C, Nutrient, and Metal Concentration in Thermokarst Lakes of Western Siberia Across a Permafrost Gradient. Water (Switzerland), 2020, 12, 1830.	2.7	22
174	Interaction of metals and protons with anoxygenic phototrophic bacteria Rhodobacter blasticus. Chemical Geology, 2013, 335, 75-86.	3.3	21
175	Microtopography Controls of Carbon and Related Elements Distribution in the West Siberian Frozen Bogs. Geosciences (Switzerland), 2019, 9, 291.	2.2	21
176	Lake Drainage in Permafrost Regions Produces Variable Plant Communities of High Biomass and Productivity. Plants, 2020, 9, 867.	3.5	21
177	Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of permafrost peatlands, western Siberia. Science of the Total Environment, 2021, 763, 144201.	8.0	21
178	Storage and recycling of major and trace element in mangroves. Science of the Total Environment, 2021, 780, 146379.	8.0	21
179	6. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. , 2009, , 207-258.		20
180	Experimental study of cadmium interaction with periphytic biofilms. Applied Geochemistry, 2010, 25, 418-427.	3.0	20

11

#	Article	IF	CITATIONS
181	Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration. Journal of Hazardous Materials, 2012, 199-200, 358-366.	12.4	20
182	Chemical and structural characterization of copper adsorbed on mosses (Bryophyta). Journal of Hazardous Materials, 2016, 308, 343-354.	12.4	20
183	Dissolved Organic Matter Controls Seasonal and Spatial Selenium Concentration Variability in Thaw Lakes across a Permafrost Gradient. Environmental Science & Technology, 2018, 52, 10254-10262.	10.0	20
184	Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands. Science of the Total Environment, 2021, 782, 146737.	8.0	20
185	Low biodegradability of dissolved organic matter and trace metals from subarctic waters. Science of the Total Environment, 2018, 618, 174-187.	8.0	19
186	Fluvial carbon dioxide emission from the Lena River basin during the spring flood. Biogeosciences, 2021, 18, 4919-4936.	3.3	19
187	Development of an operational procedure to estimate surface albedo from the SEVIRI/MSG observing system by using POLDER BRDF measurements. Remote Sensing of Environment, 2003, 87, 198-214.	11.0	18
188	Moss and Peat Leachate Degradability by Heterotrophic Bacteria: The Fate of Organic Carbon and Trace Metals. Geomicrobiology Journal, 2017, 34, 641-655.	2.0	18
189	The role of Eurasian beaver (Castor fiber) in the storage, emission and deposition of carbon in lakes and rivers of the River Ob flood plain, western Siberia. Science of the Total Environment, 2018, 644, 1371-1379.	8.0	18
190	Bioaccumulation of vanadium (V), niobium (Nb) and tantalum (Ta) in diverse mangroves of the Indian Sundarbans. Plant and Soil, 2020, 448, 553-564.	3.7	18
191	Great Vasyugan Mire: How the world's largest peatland helps addressing the world's largest problems. Ambio, 2021, 50, 2038-2049.	5.5	18
192	Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect. Biogeosciences, 2018, 15, 6867-6884.	3.3	17
193	Contribution of forest fire ash and plant litter decay on stream dissolved composition in a sub-humid tropical watershed (Mule Hole, Southern India). Chemical Geology, 2014, 372, 144-161.	3.3	16
194	Aerobic release and biodegradation of dissolved organic matter from frozen peat: Effects of temperature and heterotrophic bacteria. Chemical Geology, 2020, 536, 119448.	3.3	16
195	Carbon emission from thermokarst lakes in <scp>NE</scp> European tundra. Limnology and Oceanography, 2021, 66, S216.	3.1	16
196	Bacterial Number and Genetic Diversity in a Permafrost Peatland (Western Siberia): Testing a Link with Organic Matter Quality and Elementary Composition of a Peat Soil Profile. Diversity, 2021, 13, 328.	1.7	16
197	Weak impact of microorganisms on Ca, Mg-bearing silicate weathering. Npj Materials Degradation, 2021, 5, .	5.8	16
198	Experimental Modeling of Cyanobacterial Bloom in a Thermokarst Lake: Fate of Organic Carbon, Trace Metal, and Carbon Sequestration Potential. Aquatic Geochemistry, 2015, 21, 487-511.	1.3	15

#	Article	IF	CITATIONS
199	Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag+: the diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp Environmental Science and Pollution Research, 2016, 23, 22136-22150.	5.3	15
200	Seasonal dynamics of phytoplankton in acidic and humic environment in thaw ponds of discontinuous permafrost zone. Annales De Limnologie, 2016, 52, 47-60.	0.6	15
201	Biosurface properties and lead adsorption in a clone of Sphagnum palustre (Mosses): Towards a unified protocol of biomonitoring of airborne heavy metal pollution. Chemosphere, 2019, 236, 124375.	8.2	15
202	Iron Isotope Fractionation during Bio- and Photodegradation of Organoferric Colloids in Boreal Humic Waters. Environmental Science & Technology, 2019, 53, 11183-11194.	10.0	15
203	State of rare earth elements in the sediment and their bioaccumulation by mangroves: a case study in pristine islands of Indian Sundarban. Environmental Science and Pollution Research, 2019, 26, 9146-9160.	5.3	15
204	Dissolved organic matter biodegradation along a hydrological continuum in permafrost peatlands. Science of the Total Environment, 2020, 749, 141463.	8.0	15
205	Strong temporal and spatial variation of dissolved Cu isotope composition in acid mine drainage under contrasted hydrological conditions. Environmental Pollution, 2020, 266, 115104.	7.5	15
206	Impact of freeze-thaw cycles on organic carbon and metals in waters of permafrost peatlands. Chemosphere, 2021, 279, 130510.	8.2	15
207	Transformation of dissolved organic matter and related trace elements in the mouth zone of the largest European Arctic river: experimental modeling. Inland Waters, 2017, 7, 272-282.	2.2	14
208	The Ruiga intrusion: A typical example of a shallow-facies paleoproterozoic peridotite-gabbro-komatiite-basaltic association of the Vetreny Belt, Southeastern Fennoscandia. Petrology, 2008, 16, 531-551.	0.9	13
209	Surface complexation of the phototrophic anoxygenic non-sulfur bacterium Rhodopseudomonas palustris. Chemical Geology, 2014, 383, 51-62.	3.3	13
210	Olivine dissolution and hydrous Mg carbonate and silicate precipitation in the presence of microbial consortium of photo-autotrophic and heterotrophic bacteria. Geochimica Et Cosmochimica Acta, 2020, 268, 123-141.	3.9	13
211	Probing the aluminum complexation by Siberian riverine organic matter using solid-state DNP-NMR. Chemical Geology, 2017, 452, 1-8.	3.3	11
212	Impact of Cyanobacterial Associate and Heterotrophic Bacteria on Dissolved Organic Carbon and Metal in Moss and Peat Leachate: Application to Permafrost Thaw in Aquatic Environments. Aquatic Geochemistry, 2017, 23, 331-358.	1.3	11
213	Surface Speciation of Ca and Mg Carbonate Minerals in Aqueous Solutions: A Combined Potentiometric, Electrokinetic, and DRIFT Surface Spectroscopy Approach. Mineralogical Magazine, 1998, 62A, 1196-1197.	1.4	11
214	Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia. Geoderma, 2022, 409, 115601.	5.1	11
215	Sizable carbon emission from the floodplain of Ob River. Ecological Indicators, 2021, 131, 108164.	6.3	10
216	A surface complexation model for cadmium and lead adsorption onto diatom surface. Journal of Geochemical Exploration, 2006, 88, 110-113.	3.2	9

#	Article	IF	CITATIONS
217	Bioadsorption of Heavy Metals. , 2017, , 233-255.		9
218	Weak impact of landscape parameters and rock lithology on Mg isotope composition of the Yenisey River and its tributaries. Chemical Geology, 2020, 540, 119547.	3.3	9
219	Organic carbon, and major and trace elements reside in labile low-molecular form in the ground ice of permafrost peatlands: a case study of colloids in peat ice of Western Siberia. Environmental Sciences: Processes and Impacts, 2022, 24, 1443-1459.	3.5	9
220	Experimental physicochemical modeling of interactions between phototrophic microorganisms (anoxiphotobacteria and cyanobacteria) with trace elements in aqueous solutions. Geochemistry International, 2007, 45, 302-307.	0.7	7
221	Geochemistry of terricolous lichens in the White Sea catchment area. Doklady Earth Sciences, 2013, 450, 514-520.	0.7	7
222	Oxygen isotope and deuterium composition of snow cover on the profile of Western Siberia from Tomsk to the Gulf of Ob. Doklady Earth Sciences, 2016, 471, 1284-1287.	0.7	7
223	Copper isotope fractionation during excretion from a phototrophic biofilm. Chemical Geology, 2019, 513, 88-100.	3.3	7
224	New Data on the Concentrations of Dissolved Trace Elements in Waters of Russian Arctic Rivers. Doklady Earth Sciences, 2020, 491, 257-263.	0.7	7
225	Landscape, Soil, Lithology, Climate and Permafrost Control on Dissolved Carbon, Major and Trace Elements in the Ob River, Western Siberia. Water (Switzerland), 2021, 13, 3189.	2.7	7
226	Dissolved Metal (Fe, Mn, Zn, Ni, Cu, Co, Cd, Pb) and Metalloid (As, Sb) in Snow Water across a 2800 km Latitudinal Profile of Western Siberia: Impact of Local Pollution and Global Transfer. Water (Switzerland), 2022, 14, 94.	2.7	7
227	Carbon storage and burial in thermokarst lakes of permafrost peatlands. Biogeochemistry, 2022, 159, 69-86.	3.5	7
228	Basalt weathering and trace elements migration in the boreal Arctic zone. Journal of Geochemical Exploration, 2006, 88, 304-307.	3.2	6
229	Acidâ^'Base Behavior of the Gaspeite (NiCO ₃ (s)) Surface in NaCl Solutions. Langmuir, 2010, 26, 12626-12639.	3.5	6
230	Sphalerite dissolution kinetics at low hydrothermal conditions. Chemical Geology, 2011, 286, 272-272.	3.3	6
231	Transformation of the dissolved components runoff in the mouth areas of small watersheds of the southern coast of the Kola Peninsula. Oceanology, 2011, 51, 785-795.	1.2	6
232	Impact of heterotrophic bacterium Pseudomonas aureofaciens on the release of major and trace elements from podzol soil into aqueous solution. Chemical Geology, 2015, 410, 174-187.	3.3	6
233	Surface complexation modeling of interactions between freshwater and marine diatom species and trace elements (Mo, W, Cr, Ge, Ga, Al). Chemical Geology, 2018, 494, 117-126.	3.3	6
234	Sources of Dissolved Organic Carbon in Rivers of the Yenisei River Basin. Doklady Earth Sciences, 2018, 480, 763-766.	0.7	6

#	Article	IF	CITATIONS
235	Chemical weathering of mafic rocks in boreal subarctic environment (northwest Russia) under influence of glacial moraine deposits. Chemical Geology, 2019, 509, 115-133.	3.3	6
236	The temporal evolution of the carbon isotope composition of calcite in the presence of cyanobacteria. Chemical Geology, 2021, 584, 120556.	3.3	6
237	Iron, Phosphorus and Trace Elements in Mussels' Shells, Water, and Bottom Sediments from the Severnaya Dvina and the Onega River Basins (Northwestern Russia). Water (Switzerland), 2021, 13, 3227.	2.7	6
238	Major and Trace Elements in Water and Suspended Matter of the Northern Dvina River and Their Annual Discharge into the White Sea. Oceanology, 2021, 61, 994-1005.	1.2	6
239	First data on the composition of atmospheric dust responsible for yellow snow in Northern European Russia in March 2008. Doklady Earth Sciences, 2010, 431, 497-501.	0.7	5
240	Small Boreal Lake Ecosystem Evolution under the Influence of Natural and Anthropogenic Factors: Results of Multidisciplinary Long-Term Study. Water (Switzerland), 2016, 8, 316.	2.7	5
241	Major anion and cation fluxes from the Central SiberianPlateau watersheds with underlying permafrost. IOP Conference Series: Earth and Environmental Science, 2016, 48, 012018.	0.3	5
242	Metal contaminations impact archaeal community composition, abundance and function in remote alpine lakes. Environmental Microbiology, 2018, 20, 2422-2437.	3.8	5
243	The Geochemical Features of the River Discharge to the White Sea. Handbook of Environmental Chemistry, 2018, , 47-81.	0.4	5
244	Enhancement of cyanobacterial growth by riverine particulate material. Chemical Geology, 2019, 525, 143-167.	3.3	5
245	Symbiotic cooperation between freshwater rock-boring bivalves and microorganisms promotes silicate bioerosion. Scientific Reports, 2020, 10, 13385.	3.3	5
246	Testing Landscape, Climate and Lithology Impact on Carbon, Major and Trace Elements of the Lena River and Its Tributaries during a Spring Flood Period. Water (Switzerland), 2021, 13, 2093.	2.7	5
247	Carbon, nutrient and metal controls on phytoplankton concentration and biodiversity in thermokarst lakes of latitudinal gradient from isolated to continuous permafrost. Science of the Total Environment, 2022, 806, 151250.	8.0	5
248	Export of dissolved carbon from watersheds of the Central Siberian Plateau. Doklady Earth Sciences, 2011, 441, 1568-1571.	0.7	4
249	Short-term partitioning of Cd recently taken up between sunflowers organs (Helianthus annuus) at flowering and grain filling stages: effect of plant transpiration and allometry. Plant and Soil, 2016, 408, 163-181.	3.7	4
250	Russian–EU collaboration via the mega-transect approach for large-scale projects: cases of RF Federal target Programme and SIWA JPI Climate EU Programme. International Journal of Environmental Studies, 2018, 75, 385-394.	1.6	4
251	Interaction of Freshwater Diatom with Gold Nanoparticles: Adsorption, Assimilation, and Stabilization by Cell Exometabolites. Minerals (Basel, Switzerland), 2018, 8, 99.	2.0	4
252	Diel cycles of carbon, nutrient and metal in humic lakes of permafrost peatlands. Science of the Total Environment, 2020, 737, 139671.	8.0	4

#	Article	IF	CITATIONS
253	Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus. Chemical Geology, 2022, 599, 120854.	3.3	4
254	Dispersed Sedimentary Matter of the Atmosphere. Handbook of Environmental Chemistry, 2018, , 9-46.	0.4	3
255	The evolution of the ecosystems of thermokarst lakes of the Bolshezemelskaya tundra in the context of climate change. E3S Web of Conferences, 2019, 98, 02010.	0.5	3
256	Experimental modeling of the bacterial community translocation during freezing and thawing of peat permafrost soils of Western Siberia. IOP Conference Series: Earth and Environmental Science, 2019, 400, 012017.	0.3	3
257	Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation. Minerals (Basel, Switzerland), 2019, 9, 763.	2.0	3
258	Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor. Environmental Pollution, 2021, 273, 116500.	7.5	3
259	Bioerosion of siliceous rocks driven by rock-boring freshwater insects. Npj Materials Degradation, 2022, 6, .	5.8	3
260	Migration of dissolved matter at Serebryanka R. Mouth, the basin of the Sea of Japan (Sikhote Alin) Tj ETQq0 0	0 rgBT/Ov	erlock 10 Tf 5
261	The Mixing Zone Between Waters of the Severnaya Dvina River and the White Sea. Handbook of Environmental Chemistry, 2018, , 83-113.	0.4	2
262	Spatial and Temporal Variability of the Transformation of Dissolved Matter Runoff in the Mezen River Estuary. Oceanology, 2019, 59, 199-207.	1.2	2
263	Carbon and nutrients in the Yenisei River tributaries draining the Western Siberia Peatlands. IOP Conference Series: Earth and Environmental Science, 2019, 232, 012010.	0.3	2
264	Phase Fractionation of Chemical Elements During the Formation of Ice in Fresh Surface Waters. Doklady Earth Sciences, 2020, 492, 327-332.	0.7	2
265	Using stable isotopes to assess river water dynamics and groundwater input in the largest European Arctic river (Severnaya Dvina). Environmental Monitoring and Assessment, 2020, 192, 444.	2.7	2
266	Variability of hydrochemical parameters of small boreal lakes under natural and anthropogenic factors (case study of NW Russia). Hydrobiologia, 2020, 847, 4653-4670.	2.0	2
267	Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake. Nitrogen, 2021, 2, 428-443.	1.3	2
268	Hydrochemistry of Medium-Size Pristine Rivers in Boreal and Subarctic Zone: Disentangling Effect of Landscape Parameters across a Permafrost, Climate, and Vegetation Gradient. Water (Switzerland), 2022, 14, 2250.	2.7	2
269	Reply to Comment by R. A. Berner on "Effect of organic ligands and heterotrophic bacteria on Wollastonite dissolution kinetics", American Journal of Science, v. 309, p. 731-772. Numerische Mathematik, 2010, 310, 425-426.	1.4	1
270	Experimental Modeling of Bacterially-Induced Ca Carbonate Precipitation: New Insights on Possible Mechanisms. Key Engineering Materials, 0, 672, 21-39.	0.4	1

#	Article	IF	CITATIONS
271	Measuring and Estimating Fluxes of Carbon, Major and Trace Elements to the Arctic Ocean. Springer Water, 2016, , 185-212.	0.3	1
272	Changes in the palsa landscapes' components in the West Siberian northern taiga 10 years after wildfires. IOP Conference Series: Earth and Environmental Science, 2019, 232, 012021.	0.3	1
273	Elemental and Isotopic Variations of Copper and Zinc Associated with the Diel Activity of Phototrophic Biofilm. Environmental Science & Technology, 2020, 54, 6741-6750.	10.0	1
274	The supply of trace elements from the atmosphere recorded in a natural archive by the example of the Ilas ombrotrophic bog in the White Sea drainage basin. Doklady Earth Sciences, 2015, 465, 1272-1277.	0.7	0
275	Macro- and Microelement Water Composition of the Volga River Delta and Its Interannual Variability. Arid Ecosystems, 2016, 6, 8-17.	0.8	0
276	Investigation of the earth roof through the combined method: mechanical way and ground penetrating radar in the Yamalo-Nenets Autonomous Okrug. IOP Conference Series: Earth and Environmental Science, 2019, 232, 012015.	0.3	0
277	Organic matter of floodplain lakes in the middle courses of the Ob River during the winter low-water season and the spring flood. IOP Conference Series: Earth and Environmental Science, 2019, 400, 012007.	0.3	0
278	Kinetics and mechanisms of cyanobacterially induced precipitation of magnesium silicate. Geobiology, 2022, 20, 560-574.	2.4	0
279	Transformation of the Major and Trace Element Composition of Dissolved Matter Runoff in the Mouths of Medium and Small Rivers of Russia's Black Sea Coast. Oceanology, 2022, 62, 324-345.	1.2	0