John A Hanover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3906243/publications.pdf

Version: 2024-02-01

151 10,348 52 98
papers citations h-index g-index

158 158 158 10314 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1510-1529.	4.5	18
2	Nutrient-responsive O-GlcNAcylation dynamically modulates the secretion of glycan-binding protein galectin 3. Journal of Biological Chemistry, 2022, 298, 101743.	3.4	11
3	Cytosolic O-GlcNAcylation and PNG1 maintain Drosophila gut homeostasis by regulating proliferation and apoptosis. PLoS Genetics, 2022, 18, e1010128.	3.5	4
4	Chronically Elevated O-GlcNAcylation Limits Nitric Oxide Production and Deregulates Specific Pro-Inflammatory Cytokines. Frontiers in Immunology, 2022, 13, 802336.	4.8	7
5	Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nature Chemical Biology, 2022, 18, 8-17.	8.0	28
6	Generation of an in vitro model for peripheral neuropathy in Fabry disease using CRISPR-Cas9 in the nociceptive dorsal root ganglion cell line 50B11. Molecular Genetics and Metabolism Reports, 2022, 31, 100871.	1.1	5
7	Drosophila O-GlcNAcase Mutants Reveal an Expanded Glycoproteome and Novel Growth and Longevity Phenotypes. Cells, 2021, 10, 1026.	4.1	6
8	O-GlcNAcylation protein disruption by Thiamet G promotes changes on the GBM U87-MG cells secretome molecular signature. Clinical Proteomics, 2021, 18, 14.	2.1	5
9	Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver. Science Advances, 2021, 7, .	10.3	6
10	A tribute to William (Bill) B. Jakoby. Analytical Biochemistry, 2021, , 114315.	2.4	0
11	O-GlcNAc cycling mediates energy balance by regulating caloric memory. Appetite, 2021, 165, 105320.	3.7	4
12	Blocked O-GlcNAc cycling alters mitochondrial morphology, function, and mass. Scientific Reports, 2021, 11, 22106.	3.3	24
13	The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress. PLoS Genetics, 2020, 16, e1008821.	3.5	18
14	O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Frontiers in Genetics, 2020, 11, 605263.	2.3	19
15	<i>O-</i> GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain, 2020, 143, 3699-3716.	7.6	52
16	Nutrient-Driven O-GlcNAcylation Controls DNA Damage Repair Signaling and Stem/Progenitor Cell Homeostasis. Cell Reports, 2020, 31, 107632.	6.4	28
17	Cardiomyocyte Oga haploinsufficiency increases O-GlcNAcylation but hastens ventricular dysfunction following myocardial infarction. PLoS ONE, 2020, 15, e0242250.	2.5	11
18	Title is missing!. , 2020, 16, e1008821.		0

#	Article	IF	Citations
19	Title is missing!. , 2020, 16, e1008821.		O
20	Title is missing!., 2020, 16, e1008821.		0
21	Title is missing!. , 2020, 16, e1008821.		0
22	Title is missing!. , 2020, 16, e1008821.		0
23	Title is missing!. , 2020, 16, e1008821.		0
24	Blocked O-GlcNAc cycling disrupts mouse hematopoeitic stem cell maintenance and early T cell development. Scientific Reports, 2019, 9, 12569.	3.3	27
25	Maternal Exposure to Non-nutritive Sweeteners Impacts Progeny's Metabolism and Microbiome. Frontiers in Microbiology, 2019, 10, 1360.	3.5	65
26	Evaluation of a PET Radioligand to Image <i>O</i> -GlcNAcase in Brain and Periphery of Rhesus Monkey and Knock-Out Mouse. Journal of Nuclear Medicine, 2019, 60, 129-134.	5.0	28
27	O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. Journal of Bioenergetics and Biomembranes, 2018, 50, 155-173.	2.3	105
28	Coronary calcification in adults with Turner syndrome. Genetics in Medicine, 2018, 20, 664-668.	2.4	17
29	Nutrientâ€driven <i>O</i> >â€Glc <scp>NA</scp> c in proteostasis and neurodegeneration. Journal of Neurochemistry, 2018, 144, 7-34.	3.9	64
30	Nutrient-Driven O-GlcNAcylation at Promoters Impacts Genome-Wide RNA Pol II Distribution. Frontiers in Endocrinology, 2018, 9, 521.	3.5	13
31	A genetic model to study O-GlcNAc cycling in immortalized mouse embryonic fibroblasts. Journal of Biological Chemistry, 2018, 293, 13673-13681.	3.4	9
32	T cell development and the physiological role of <i>O</i> â€GlcNAc. FEBS Letters, 2018, 592, 3943-3949.	2.8	17
33	Detection of phosphoglucomutase-3 deficiency by lectin-based flow cytometry. Journal of Allergy and Clinical Immunology, 2017, 140, 291-294.e4.	2.9	10
34	Evaluation of the Chemical Reporter Analog <scp>PNPâ€6AzGlcNAc</scp> as an Oâ€ <scp>GlcNAcase</scp> Substrate. Bulletin of the Korean Chemical Society, 2017, 38, 264-270.	1.9	1
35	Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism. Journal of Biological Chemistry, 2017, 292, 6076-6085.	3.4	65
36	A Genetic Analysis of the <i>Caenorhabditis elegans</i> Detoxification Response. Genetics, 2017, 206, 939-952.	2.9	21

#	Article	IF	CITATIONS
37	$\langle i \rangle O \langle j i \rangle$ -GlcNAc cycling and the regulation of nucleocytoplasmic dynamics. Biochemical Society Transactions, 2017, 45, 427-436.	3.4	31
38	Coronary Atherosclerosis in Females with Turner Syndrome. Canadian Journal of Diabetes, 2017, 41, S30.	0.8	0
39	Drosophila O-GlcNAcase Deletion Globally Perturbs Chromatin O-GlcNAcylation. Journal of Biological Chemistry, 2016, 291, 9906-9919.	3.4	41
40	Development of a model system for neuronal dysfunction in Fabry disease. Molecular Genetics and Metabolism, 2016, 119, 144-150.	1.1	11
41	A comparison of strategies for immortalizing mouse embryonic fibroblasts. Journal of Biological Methods, 2016, 3, e41.	0.6	13
42	You are what you eat. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 339-345.	2.5	48
43	A tribute to G. Gilbert Ashwell. Glycobiology, 2015, 25, 135-135.	2.5	0
44	A little sugar goes a long way: The cell biology of O-GlcNAc. Journal of Cell Biology, 2015, 208, 869-880.	5.2	478
45	Conditional Knock-out Reveals a Requirement for O-Linked N-Acetylglucosaminase (O-GlcNAcase) in Metabolic Homeostasis. Journal of Biological Chemistry, 2015, 290, 7097-7113.	3.4	119
46	Conserved Nutrient Sensor O-GlcNAc Transferase Is Integral to C. elegans Pathogen-Specific Immunity. PLoS ONE, 2014, 9, e113231.	2.5	39
47	Chromosome Imbalance as a Driver of Sex Disparity in Disease. Journal of Genomics, 2014, 2, 77-88.	0.9	49
48	Natural Antisense Transcript for Hyaluronan Synthase 2 (HAS2-AS1) Induces Transcription of HAS2 via Protein O-GlcNAcylation. Journal of Biological Chemistry, 2014, 289, 28816-28826.	3.4	116
49	Disruption of O-GlcNAc Cycling in C. elegans Perturbs Nucleotide Sugar Pools and Complex Glycans. Frontiers in Endocrinology, 2014, 5, 197.	3.5	15
50	Gil Ashwell, 1916–2014. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16232-16233.	7.1	0
51	X-inactivation normalizes O-GlcNAc transferase levels and generates an O-GlcNAc-depleted Barr body. Frontiers in Genetics, 2014, 5, 256.	2.3	19
52	X chromosome parental origin and aortic stiffness in turner syndrome. Clinical Endocrinology, 2014, 81, 467-470.	2.4	11
53	Functions and Roles of Proteins: Diabetes as a Paradigm. Progress in Biophysics and Molecular Biology, 2014, 114, 2-7.	2.9	3
54	O-GlcNAc and the Epigenetic Regulation of Gene Expression. Journal of Biological Chemistry, 2014, 289, 34440-34448.	3.4	128

#	Article	lF	Citations
55	X marks the spot: Does it matter that O-GlcNAc Transferase is an X-linked gene?. Biochemical and Biophysical Research Communications, 2014, 453, 201-207.	2.1	24
56	Nutrient-driven <i>O</i> -GlcNAc cycling – think globally but act locally. Journal of Cell Science, 2014, 127, 1857-67.	2.0	51
57	Chemical tools to explore nutrient-driven O-GlcNAc cycling. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 327-342.	5.2	13
58	Functions and Roles of a Protein-Associated Factor. Cell Biochemistry and Biophysics, 2014, 68, 577-582.	1.8	0
59	Versatile <i>O</i> -GlcNAc Transferase Assay for High-Throughput Identification of Enzyme Variants, Substrates, and Inhibitors. Bioconjugate Chemistry, 2014, 25, 1025-1030.	3.6	21
60	Evaluation of the fluids mixing enclosure system for life science experiments during a commercial Caenorhabditis elegans spaceflight experiment. Advances in Space Research, 2013, 51, 2241-2250.	2.6	9
61	Optimizing the selectivity of DIFO-based reagents for intracellular bioorthogonal applications. Carbohydrate Research, 2013, 377, 18-27.	2.3	28
62	Nutrient-driven <i><i>O</i></i> ClcNAc cycling influences autophagic flux and neurodegenerative proteotoxicity. Autophagy, 2013, 9, 604-606.	9.1	36
63	<i>O-</i> GlcNAc Cycling: A Link Between Metabolism and Chronic Disease. Annual Review of Nutrition, 2013, 33, 205-229.	10.1	264
64	Enzymatic Characterization of Recombinant Enzymes of O-GlcNAc Cycling. Methods in Molecular Biology, 2013, 1022, 129-145.	0.9	4
65	<i>O</i> -GlcNAc cycling shows neuroprotective potential in <i>C. elegans</i> models of neurodegenerative disease. Worm, 2013, 2, e27043.	1.0	20
66	The Signal Peptide of Mouse Mammary Tumor Virus-Env: A Phosphoprotein Tumor Modulator. Molecular Cancer Research, 2012, 10, 1077-1086.	3.4	27
67	O-GlcNAc cycling mutants modulate proteotoxicity in <i>Caenorhabditis elegans</i> models of human neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17669-17674.	7.1	86
68	linking metabolism to epigenetics through O-GlcNAcylation. Nature Reviews Molecular Cell Biology, 2012, 13, 312-321.	37.0	364
69	Evidence of the Involvement of O-GlcNAc-modified Human RNA Polymerase II CTD in Transcription in Vitro and in Vivo. Journal of Biological Chemistry, 2012, 287, 23549-23561.	3.4	142
70	A Versatile Sugar Transferase Makes the Cut. Cell, 2011, 144, 321-323.	28.9	6
71	Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids, 2011, 40, 885-893.	2.7	57
72	<i>O</i> -Linked- <i>N</i> -Acetylglucosamine Cycling and Insulin Signaling Are Required for the Glucose Stress Response in <i>Caenorhabditis elegans</i> . Genetics, 2011, 188, 369-382.	2.9	66

#	Article	IF	CITATIONS
73	A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. Journal of Cell Science, 2011, 124, 2851-2860.	2.0	82
74	C. elegans Genetic Networks Predict Roles for O-GlcNAc Cycling in Key Signaling Pathways. Current Signal Transduction Therapy, 2010, 5, 60-73.	0.5	2
75	Epigenetics Gets Sweeter: O-GlcNAc Joins the "Histone Code― Chemistry and Biology, 2010, 17, 1272-1274.	6.0	36
76	OGA inhibition by GlcNAc-selenazoline. Bioorganic and Medicinal Chemistry, 2010, 18, 7058-7064.	3.0	13
77	Dynamic O-GlcNAc cycling at promoters of <i>Caenorhabditis elegans</i> genes regulating longevity, stress, and immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7413-7418.	7.1	136
78	Blocking O-Linked GlcNAc Cycling in Drosophila Insulin-producing Cells Perturbs Glucose-Insulin Homeostasis. Journal of Biological Chemistry, 2010, 285, 38684-38691.	3.4	48
79	The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 80-95.	2.4	284
80	O-GlcNAc cycling: Emerging roles in development and epigenetics. Seminars in Cell and Developmental Biology, 2010, 21, 646-654.	5.0	101
81	The conserved NAD(H)-dependent corepressor CTBP-1 regulates <i>Caenorhabditis elegans</i> life span. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1496-1501.	7.1	60
82	Calmodulin-driven Nuclear Entry: Trigger for Sex Determination and Terminal Differentiation. Journal of Biological Chemistry, 2009, 284, 12593-12597.	3.4	47
83	O-GlcNAc cycling: Implications for neurodegenerative disorders. International Journal of Biochemistry and Cell Biology, 2009, 41, 2134-2146.	2.8	92
84	Characterization of the antibodies to p62 nucleoporin in primary biliary cirrhosis using human recombinant antigen. Journal of Cellular Biochemistry, 2008, 104, 27-37.	2.6	13
85	A convenient synthesis of the C-1-phosphonate analogue of UDP-GlcNAc and its evaluation as an inhibitor of O-linked GlcNAc transferase (OGT). Carbohydrate Research, 2008, 343, 189-195.	2.3	42
86	Karyopherin \hat{l}^2 3: A new cellular target for the HPV-16 E5 oncoprotein. Biochemical and Biophysical Research Communications, 2008, 371, 684-688.	2.1	31
87	Koilocytosis. American Journal of Pathology, 2008, 173, 682-688.	3.8	116
88	Nuclear Receptor Corepressor Is a Novel Regulator of Phosphatidylinositol 3-Kinase Signaling. Molecular and Cellular Biology, 2007, 27, 6116-6126.	2.3	35
89	The High Mobility Group Box Transcription Factor Nhp6Ap Enters the Nucleus by a Calmodulin-dependent, Ran-independent Pathway. Journal of Biological Chemistry, 2007, 282, 33743-33751.	3.4	23
90	Tumor Necrosis Factor Receptor 2 Signaling Induces Selective c-IAP1-dependent ASK1 Ubiquitination and Terminates Mitogen-activated Protein Kinase Signaling. Journal of Biological Chemistry, 2007, 282, 7777-7782.	3.4	73

#	Article	IF	CITATIONS
91	Distinctive Inhibition of $\langle i \rangle O \langle j i \rangle$ -GlcNAcase Isoforms by an \hat{I}_{\pm} -GlcNAc Thiolsulfonate. Journal of the American Chemical Society, 2007, 129, 14854-14855.	13.7	33
92	Tautomeric Modification of GlcNAc-Thiazoline. Organic Letters, 2007, 9, 2321-2324.	4.6	39
93	An O-GlcNAcase-Specific Inhibitor and Substrate Engineered by the Extension of theN-Acetyl Moiety. Journal of the American Chemical Society, 2006, 128, 4234-4235.	13.7	46
94	Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate. Carbohydrate Research, 2006, 341, 971-982.	2.3	77
95	Inhibition of O-GlcNAcase by PUGNAc is dependent upon the oxime stereochemistry. Bioorganic and Medicinal Chemistry, 2006, 14, 837-846.	3.0	23
96	Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology, 2006, 16, 415-421.	2.5	112
97	Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11952-11957.	7.1	151
98	Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1780-1785.	7.1	141
99	Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone \hat{l}^2 receptor inhibits mitotic progression. Journal of Clinical Investigation, 2006, 116, 2972-2984.	8.2	79
100	The Hexosamine Signaling Pathway: Deciphering the "O-GlcNAc Code". Science Signaling, 2005, 2005, re13-re13.	3.6	379
101	TNF-α induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO Journal, 2005, 24, 1886-1898.	7.8	98
102	Mouse Mammary Tumor Virus Env–Derived Peptide Associates with Nucleolar Targets in Lymphoma, Mammary Carcinoma, and Human Breast Cancer. Cancer Research, 2005, 65, 7223-7230.	0.9	24
103	Endoplasmic Reticulum-Localized Human Papillomavirus Type 16 E5 Protein Alters Endosomal pH but Not trans-Golgi pH. Journal of Virology, 2005, 79, 5839-5846.	3.4	7 5
104	Mutational Analysis of the Catalytic Domain of O-Linked N-Acetylglucosaminyl Transferase. Journal of Biological Chemistry, 2005, 280, 35537-35544.	3.4	30
105	A Caenorhabditis elegans model of insulin resistance: Altered macronutrient storage and dauer formation in an OGT-1 knockout. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11266-11271.	7.1	208
106	A Nutrient-Sensing Hexosamine Signaling Pathway. Oxidative Stress and Disease, 2005, , .	0.3	0
107	Nuclear Export. , 2005, , 118-136.		0
108	The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin $\hat{l}\pm$. Nature Structural and Molecular Biology, 2004, 11, 1001-1007.	8.2	263

#	Article	IF	Citations
109	Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Archives of Biochemistry and Biophysics, 2003, 409, 287-297.	3.0	205
110	A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9116-9121.	7.1	496
111	Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. Journal of Cell Science, 2003, 116, 647-654.	2.0	171
112	MLN64 Mediates Mobilization of Lysosomal Cholesterol to Steroidogenic Mitochondria. Journal of Biological Chemistry, 2002, 277, 33300-33310.	3.4	143
113	Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10695-10699.	7.1	294
114	The Stat3/5 Locus Encodes Novel Endoplasmic Reticulum and Helicase-like Proteins That Are Preferentially Expressed in Normal and Neoplastic Mammary Tissue. Genomics, 2001, 78, 129-134.	2.9	55
115	Glycanâ€dependent signaling: Oâ€linked Nâ€acetylglucosamine. FASEB Journal, 2001, 15, 1865-1876.	0.5	272
116	Calreticulin Is a Receptor for Nuclear Export. Journal of Cell Biology, 2001, 152, 127-140.	5.2	245
117	Sterol-modulated Glycolipid Sorting Occurs in Niemann-Pick C1 Late Endosomes. Journal of Biological Chemistry, 2001, 276, 3417-3425.	3.4	100
118	An Isoform of Branched-chain Aminotransferase Is a Novel Co-repressor for Thyroid Hormone Nuclear Receptors. Journal of Biological Chemistry, 2001, 276, 48196-48205.	3.4	14
119	Functional Expression of O-linked GlcNAc Transferase. Journal of Biological Chemistry, 2000, 275, 10983-10988.	3.4	268
120	The Long Signal Peptide Isoform and Its Alternative Processing Direct the Intracellular Trafficking of Interleukin-15. Journal of Biological Chemistry, 2000, 275, 30653-30659.	3.4	88
121	Mex67p of Schizosaccharomyces pombe Interacts with Rae1p in Mediating mRNA Export. Molecular and Cellular Biology, 2000, 20, 8767-8782.	2.3	66
122	Structure of O-Linked GlcNAc Transferase: Mediator of Glycan-Dependent Signaling. Biochemical and Biophysical Research Communications, 2000, 271, 275-280.	2.1	56
123	Organization of the mouse ASGR1 gene encoding the major subunit of the hepatic asialoglycoprotein receptor. Gene, 2000, 241, 233-240.	2.2	7
124	Purification of CMP-N-acetylneuraminic acid synthetase from bovine anterior pituitary glands. Glycobiology, 1999, 9, 481-487.	2.5	14
125	Elevated O-LinkedN-Acetylglucosamine Metabolism in Pancreatic \hat{l}^2 -Cells. Archives of Biochemistry and Biophysics, 1999, 362, 38-45.	3.0	121
126	Phosphorylation and Glycosylation of Nucleoporins. Archives of Biochemistry and Biophysics, 1999, 367, 51-60.	3.0	89

#	Article	IF	CITATIONS
127	Mks1p Is a Regulator of Nitrogen Catabolism Upstream of Ure2p in Saccharomyces cerevisiae. Genetics, 1999, 153, 585-594.	2.9	51
128	An Evaluation of Sialation of the Nucleoporin p62. Archives of Biochemistry and Biophysics, 1998, 357, 95-100.	3.0	6
129	Nuclear Glycogen and Glycogen Synthase Kinase 3. Biochemical and Biophysical Research Communications, 1998, 249, 422-427.	2.1	25
130	Hormone-induced Translocation of Thyroid Hormone Receptors in Living Cells Visualized Using a Receptor Green Fluorescent Protein Chimera. Journal of Biological Chemistry, 1998, 273, 27058-27063.	3.4	103
131	O-Linked GlcNAc Transferase Is a Conserved Nucleocytoplasmic Protein Containing Tetratricopeptide Repeats. Journal of Biological Chemistry, 1997, 272, 9316-9324.	3.4	462
132	Nuclear Pore Complex: Biosynthesis, Structure, and Function of O-Linked N-Acetylglucosamine Glycoproteins Trends in Glycoscience and Glycotechnology, 1995, 7, 101-113.	0.1	0
133	Glucocorticoid receptor binding to rat liver nuclei occurs without nuclear transport. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 309-320.	2.5	6
134	The nuclear pore: at the crossroads. FASEB Journal, 1992, 6, 2288-2295.	0.5	89
135	Antibodies against the SV40 large T antigen nuclear localization sequence. Archives of Biochemistry and Biophysics, 1991, 288, 131-140.	3.0	8
136	A common structural motif in nuclear pore proteins (nucleoporins). BioEssays, 1991, 13, 145-146.	2.5	25
137	Structure and function of the nuclear pore complex: New perspectives. BioEssays, 1990, 12, 323-330.	2.5	26
138	Subcellular fractionation and centrifugation: A strategic approach. Analytical Biochemistry, 1989, 180, 193.	2.4	0
139	Nuclear protein import: Specificity for transport across the nuclear pore. Experimental Cell Research, 1988, 178, 318-334.	2.6	85
140	Intracellular transport of VSV G protein occurs in cells lacking a nuclear envelope. Biochemical and Biophysical Research Communications, 1988, 152, 469-476.	2.1	1
141	An atlas of immunofluorescence in cultured cells. Analytical Biochemistry, 1986, 155, 212.	2.4	0
142	[21] Isolation of receptosomes (endosomes) from human KB cells. Methods in Enzymology, 1985, 109, 257-271.	1.0	1
143	Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somatic Cell and Molecular Genetics, 1985, 11, 117-126.	0.7	446
144	Enzymes, receptors and carriers of biological membranes. Analytical Biochemistry, 1985, 148, 268.	2.4	0

#	Article	IF	Citations
145	The possible link between receptor phosphorylation and internalization. Trends in Pharmacological Sciences, 1985, 6, 457-459.	8.7	8
146	Inhibition of phosphatidylcholine synthesis does not alter uptake of transferrin by LM fibroblasts. Experimental Cell Research, 1985, 157, 276-281.	2.6	0
147	The Cellular Entry of EGF and Transferrin: A Problem in Intracellular Sorting. Current Topics in Cellular Regulation, 1985, 26, 17-25.	9.6	6
148	Verapamil enhances the toxicity of conjugates of epidermal growth factor withPseudomonas exotoxin and antitransferrin receptor withpseudomonas exotoxin. Journal of Cellular Physiology, 1984, 120, 271-279.	4.1	52
149	Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes. Cell, 1984, 39, 283-293.	28.9	169
150	$\hat{l}\pm 2$ -macroglobulin binding to cultured fibroblasts: Identification by affinity chromatography of high-affinity binding sites. Archives of Biochemistry and Biophysics, 1983, 227, 570-579.	3.0	16
151	RECEPTOR-MEDIATED ENDOCYTOSIS OF ?2-MACROGLOBULIN: SOLUBILIZATION AND PARTIAL PURIFICATION OF THE FIBROBLAST ?2-MACROGLOBULIN RECEPTOR. Annals of the New York Academy of Sciences, 1983, 421, 410-423.	3.8	10