Ulf J Nilsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/390534/publications.pdf

Version: 2024-02-01

		38742	5	8581	
181	8,252	50		82	
papers	citations	h-index		g-index	
195	195	195		7672	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Selective Monovalent Galectinâ€8 Ligands Based on 3â€Lactoylgalactoside. ChemMedChem, 2022, 17, .	3.2	4
2	Engineering the Ligand Specificity of the Human Galectinâ€1 by Incorporation of Tryptophan Analogues. ChemBioChem, 2022, , .	2.6	2
3	Selective Galectinâ€8N Ligands: The Design and Synthesis of Phthalazinoneâ€∢scp>dâ€Galactals. ChemMedChem, 2022, 17, e202100575.	3.2	2
4	Direct sialic acid 4-OAc substitution by nitrogen, sulfur and carbon nucleophiles with retention of stereochemistry. RSC Advances, 2022, 12, 11992-11995.	3.6	1
5	Novel Selective Galectin-3 Antagonists Are Cytotoxic to Acute Lymphoblastic Leukemia. Journal of Medicinal Chemistry, 2022, 65, 5975-5989.	6.4	11
6	Galectin-9 Signaling Drives Breast Cancer Invasion through Extracellular Matrix. ACS Chemical Biology, 2022, 17, 1376-1386.	3.4	10
7	Sialic Acid Derivatives Inhibit SiaT Transporters and Delay Bacterial Growth. ACS Chemical Biology, 2022, 17, 1890-1900.	3.4	7
8	Design and synthesis of novel 3-triazolyl-1-thiogalactosides as galectin-1, -3 and -8 inhibitors. RSC Advances, 2022, 12, 18973-18984.	3.6	5
9	Paracetamol analogues conjugated by FAAH induce TRPV1-mediated antinociception without causing acute liver toxicity. European Journal of Medicinal Chemistry, 2021, 213, 113042.	5.5	5
10	Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. European Respiratory Journal, 2021, 57, 2002559.	6.7	106
11	Coupling of <i>N</i> -tosylhydrazones with tetrazoles: synthesis of $2-\hat{l}^2$ - <scp>d</scp> -glycopyranosylmethyl-5-substituted-2 <i>H</i> -tetrazole type glycomimetics. Organic and Biomolecular Chemistry, 2021, 19, 605-618.	2.8	4
12	Synthesis and Biological Studies of O3â€Aryl Galactosides as Galectin Inhibitors. Helvetica Chimica Acta, 2021, 104, e2000220.	1.6	2
13	Crosstalk between WNT and STAT3 is mediated by galectin-3 in tumor progression. Gastric Cancer, 2021, 24, 1050-1062.	5.3	14
14	Entropy–Entropy Compensation between the Protein, Ligand, and Solvent Degrees of Freedom Fine-Tunes Affinity in Ligand Binding to Galectin-3C. Jacs Au, 2021, 1, 484-500.	7.9	17
15	Benzimidazole–galactosides bind selectively to the Galectin-8 N-Terminal domain: Structure-based design and optimisation. European Journal of Medicinal Chemistry, 2021, 223, 113664.	5.5	10
16	Mapping the energy landscape of protein–ligand binding via linear free energy relationships determined by protein NMR relaxation dispersion. RSC Chemical Biology, 2021, 2, 259-265.	4.1	5
17	Structure-Guided Design of d-Galactal Derivatives with High Affinity and Selectivity for the Galectin-8 N-Terminal Domain. ACS Medicinal Chemistry Letters, 2021, 12, 1745-1752.	2.8	4
18	Chemokines modulate glycan binding and the immunoregulatory activity of galectins. Communications Biology, 2021, 4, 1415.	4.4	5

#	Article	IF	CITATIONS
19	<i>In Vivo Veritas</i> : ¹⁸ F-Radiolabeled Glycomimetics Allow Insights into the Pharmacological Fate of Galectin-3 Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 747-755.	6.4	18
20	Epimers Switch Galectin-9 Domain Selectivity: $3 < i > N < i > -Aryl$ Galactosides Bind the C-Terminal and Gulosides Bind the N-Terminal. ACS Medicinal Chemistry Letters, 2020, 11, 34-39.	2.8	11
21	The binding mechanism of the virulence factor Streptococcus suis adhesin P subtype to globotetraosylceramide is associated with systemic disease. Journal of Biological Chemistry, 2020, 295, 14305-14324.	3.4	10
22	Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. Journal of Nanobiotechnology, 2020, 18, 27.	9.1	13
23	Synthesis of tricyclic carbohydrate–benzene hybrids as selective inhibitors of galectin-1 and galectin-8 N-terminal domains. RSC Advances, 2020, 10, 19636-19642.	3.6	9
24	Translational pharmacology of TD139, an inhaled small molecule galectinâ€3 (Galâ€3) inhibitor for the treatment of idiopathic pulmonary fibrosis (IPF). FASEB Journal, 2020, 34, 1-1.	0.5	2
25	Structure and Energetics of Ligand–Fluorine Interactions with Galectinâ€3 Backbone and Sideâ€Chain Amides: Insight into Solvation Effects and Multipolar Interactions. ChemMedChem, 2019, 14, 1528-1536.	3.2	24
26	A Galactoside-Binding Protein Tricked into Binding Unnatural Pyranose Derivatives: 3-Deoxy-3-Methyl-Gulosides Selectively Inhibit Galectin-1. International Journal of Molecular Sciences, 2019, 20, 3786.	4.1	11
27	Substituted polyfluoroaryl interactions with an arginine side chain in galectin-3 are governed by steric-, desolvation and electronic conjugation effects. Organic and Biomolecular Chemistry, 2019, 17, 1081-1089.	2.8	14
28	An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Research, 2019, 79, 1480-1492.	0.9	87
29	Stereo- and regioselective hydroboration of 1- <i>exo</i> -methylene pyranoses: discovery of aryltriazolylmethyl C-galactopyranosides as selective galectin-1 inhibitors. Beilstein Journal of Organic Chemistry, 2019, 15, 1046-1060.	2.2	4
30	Aminopyrimidine–galactose hybrids are highly selective galectin-3 inhibitors. MedChemComm, 2019, 10, 913-925.	3.4	19
31	C1-Galactopyranosyl Heterocycle Structure Guides Selectivity: Triazoles Prefer Galectin-1 and Oxazoles Prefer Galectin-3. ACS Omega, 2019, 4, 7047-7053.	3.5	13
32	Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta Neuropathologica, 2019, 138, 251-273.	7.7	187
33	Human trophoblast requires galectin-3 for cell migration and invasion. Scientific Reports, 2019, 9, 2136.	3.3	28
34	Extracellular and intracellular small-molecule galectin-3 inhibitors. Scientific Reports, 2019, 9, 2186.	3.3	74
35	3-Substituted 1-Naphthamidomethyl-C-galactosyls Interact with Two Unique Sub-Sites for High-Affinity and High-Selectivity Inhibition of Galectin-3. Molecules, 2019, 24, 4554.	3.8	5
36	Interplay between Conformational Entropy and Solvation Entropy in Protein–Ligand Binding. Journal of the American Chemical Society, 2019, 141, 2012-2026.	13.7	89

#	Article	IF	Citations
37	Galectin-3 type-C self-association on neutrophil surfaces; The carbohydrate recognition domain regulates cell function. Journal of Leukocyte Biology, 2018, 103, 341-353.	3.3	29
38	Arynes in the Monoarylation of Unprotected Carbohydrate Amines. Organic Letters, 2018, 20, 616-619.	4.6	12
39	Galectinâ€3 is an amplifier of the interleukinâ€1 <i>β</i> àêmediated inflammatory response in corneal keratinocytes. Immunology, 2018, 154, 490-499.	4.4	21
40	Systematic Tuning of Fluoro-galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit nM Affinity and High Selectivity. Journal of Medicinal Chemistry, 2018, 61, 1164-1175.	6.4	76
41	Rationally Designed Chemically Modified Glycodendrimer Inhibits <i>Streptococcus suis</i> Adhesin SadP at Picomolar Concentrations. Chemistry - A European Journal, 2018, 24, 1905-1912.	3.3	11
42	Monosaccharide Derivatives with Lowâ€Nanomolar Lectin Affinity and High Selectivity Based on Combined Fluorine–Amide, Phenyl–Arginine, Sulfur–π, and Halogen Bond Interactions. ChemMedChem, 2018, 13, 133-137.	3.2	75
43	Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions. Chemical Science, 2018, 9, 1014-1021.	7.4	15
44	Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin–glycan specificities in a natural context. Journal of Biological Chemistry, 2018, 293, 20249-20262.	3.4	67
45	Quinoline–galactose hybrids bind selectively with high affinity to a galectin-8 N-terminal domain. Organic and Biomolecular Chemistry, 2018, 16, 6295-6305.	2.8	23
46	Aromatic heterocycle galectin-1 interactions for selective single-digit nM affinity ligands. RSC Advances, 2018, 8, 24913-24922.	3.6	12
47	Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site. Nature Communications, 2018, 9, 1753.	12.8	62
48	<i>N,N</i> 'â€Bis(2â€mercaptoethyl)isophthalamide Binds Electrophilic Paracetamol Metabolites and Prevents Paracetamolâ€Induced Liver Toxicity. Basic and Clinical Pharmacology and Toxicology, 2018, 123, 589-593.	2.5	4
49	Galectin-3: studying role of fluorine interaction to achieve high affinity and selectivity. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e198-e198.	0.1	0
50	Improved molecular recognition of Carbonic Anhydrase IX by polypeptide conjugation to acetazolamide. Bioorganic and Medicinal Chemistry, 2017, 25, 5838-5848.	3.0	8
51	Spindle pole cohesion requires glycosylation-mediated localization of NuMA. Scientific Reports, 2017, 7, 1474.	3.3	24
52	Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis. , 2017, 58, 9.		55
53	Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans. Journal of Biological Chemistry, 2016, 291, 13318-13334.	3.4	55
54	Flap Dynamics in Aspartic Proteases: A Computational Perspective. Chemical Biology and Drug Design, 2016, 88, 159-177.	3.2	28

#	Article	IF	Citations
55	Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nature Communications, 2016, 7, 11302.	12.8	70
56	Structural characterisation of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3′-sulfo-lactose and 2′-fucosyllactose. Scientific Reports, 2016, 6, 20289.	3.3	31
57	A Selective Galactose–Coumarin-Derived Galectin-3 Inhibitor Demonstrates Involvement of Galectin-3-glycan Interactions in a Pulmonary Fibrosis Model. Journal of Medicinal Chemistry, 2016, 59, 8141-8147.	6.4	60
58	Efficient Oâ€Functionalization of Carbohydrates with Electrophilic Reagents. Angewandte Chemie, 2016, 128, 11392-11396.	2.0	20
59	Efficient Oâ€Functionalization of Carbohydrates with Electrophilic Reagents. Angewandte Chemie - International Edition, 2016, 55, 11226-11230.	13.8	78
60	Galectinâ€3â€Binding Glycomimetics that Strongly Reduce Bleomycinâ€Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition. ChemBioChem, 2016, 17, 1759-1770.	2.6	145
61	Perdeuteration, crystallization, data collection and comparison of five neutron diffraction data sets of complexes of human galectin-3C. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1194-1202.	2.3	15
62	Hydrophobic ion pairing of a minocycline/Ca 2+ /AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release. International Journal of Pharmaceutics, 2016, 499, 351-357.	5.2	41
63	Galactose-amidine derivatives as selective antagonists of galectin-9. Canadian Journal of Chemistry, 2016, 94, 936-939.	1.1	15
64	Structural characterization of human galectinâ€4 Câ€terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens. FEBS Journal, 2015, 282, 3348-3367.	4.7	32
65	The Physico-Chemical Properties of Dietary Fibre Determine Metabolic Responses, Short-Chain Fatty Acid Profiles and Gut Microbiota Composition in Rats Fed Low- and High-Fat Diets. PLoS ONE, 2015, 10, e0127252.	2.5	68
66	Galâ€3 regulates the capacity of dendritic cells to promote NKTâ€cellâ€induced liver injury. European Journal of Immunology, 2015, 45, 531-543.	2.9	41
67	Aryl Sulfonates in Inversions at Secondary Carbohydrate Hydroxyl Groups: A New and Improved Route Toward 3-Azido-3-deoxy-Î ² -d-galactopyranosides. Journal of Carbohydrate Chemistry, 2015, 34, 490-499.	1.1	8
68	Haemophilus influenzae surface fibril (Hsf) is a unique twisted hairpin-like trimeric autotransporter. International Journal of Medical Microbiology, 2015, 305, 27-37.	3.6	12
69	Pathological Lymphangiogenesis Is Regulated by Galectinâ€8â€Dependent Crosstalk among VEGF , Podoplanin and Integrin Pathways. FASEB Journal, 2015, 29, 890.6.	0.5	0
70	The role of Galectin-3 in $\hat{l}\pm$ -synuclein-induced microglial activation. Acta Neuropathologica Communications, 2014, 2, 156.	5.2	63
71	Ligand binding and complex formation of galectin-3 is modulated by pH variations. Biochemical Journal, 2014, 457, 107-115.	3.7	22
72	Design, Synthesis, and Applications of Galectin Modulators in Human Health. Topics in Medicinal Chemistry, 2014, , 95-121.	0.8	2

#	Article	IF	Citations
73	Cereal Byproducts Have Prebiotic Potential in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2014, 62, 8169-8178.	5.2	43
74	Synthesis and evaluation of iminocoumaryl and coumaryl derivatized glycosides as galectin antagonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3516-3520.	2.2	31
75	Tri-isopropylsilyl thioglycosides as masked glycosyl thiol nucleophiles for the synthesis of S-linked glycosides and glyco-conjugates. Organic and Biomolecular Chemistry, 2014, 12, 4816-4819.	2.8	19
76	Synthesis of 1,2,3-triazole-linked galactohybrids and their inhibitory activities on galectins. Arkivoc, 2014, 2014, 90-112.	0.5	16
77	Tuning the Preference of Thiodigalactoside- and Lactosamine-Based Ligands to Galectin-3 over Galectin-1. Journal of Medicinal Chemistry, 2013, 56, 1350-1354.	6.4	62
78	Investigation into the Feasibility of Thioditaloside as a Novel Scaffold for Galectinâ€3â€Specific Inhibitors. ChemBioChem, 2013, 14, 1331-1342.	2.6	36
79	Galectinâ€3 deficiency protects pancreatic islet cells from cytokineâ€triggered apoptosis in vitro. Journal of Cellular Physiology, 2013, 228, 1568-1576.	4.1	50
80	Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands. Biology, 2013, 2, 918-935.	2.8	17
81	TDX, a galectinâ€1 and galectinâ€3â€specific inhibitor, mitigates VEGFâ€Aâ€induced angiogenesis. FASEB Journa 2013, 27, 828.1.	al, 0.5	1
82	Ligand Induced Galectin-3 Protein Self-association. Journal of Biological Chemistry, 2012, 287, 21751-21756.	3.4	122
83	Low-Molecular Weight Inhibitors of Galectins. ACS Symposium Series, 2012, , 47-59.	0.5	10
84	The Carbohydrate-Binding Site in Galectin-3 Is Preorganized To Recognize a Sugarlike Framework of Oxygens: Ultra-High-Resolution Structures and Water Dynamics. Biochemistry, 2012, 51, 296-306.	2.5	137
85	Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 804-818.	2.4	49
86	Regulation of Transforming Growth Factor-β1–driven Lung Fibrosis by Galectin-3. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 537-546.	5.6	425
87	Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice. Hepatology, 2012, 55, 1954-1964.	7.3	93
88	Taloside Inhibitors of Galectinâ€1 and Galectinâ€3. Chemical Biology and Drug Design, 2012, 79, 339-346.	3.2	56
89	Inhibition mechanism of human galectinâ€7 by a novel galactoseâ€benzylphosphate inhibitor. FEBS Journal, 2012, 279, 193-202.	4.7	18
90	N-Substituted salicylamides as selective malaria parasite dihydroorotate dehydrogenase inhibitors. MedChemComm, 2011, 2, 895.	3.4	16

#	Article	IF	Citations
91	Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries. Organic and Biomolecular Chemistry, 2011, 9, 1653.	2.8	31
92	Inhibition of Galectins with Small Molecules. Chimia, 2011, 65, 18.	0.6	73
93	Synthesis of 3-amido-3-deoxy- \hat{l}^2 -d-talopyranosides: all-cis-substituted pyranosides as lectin inhibitors. Tetrahedron, 2011, 67, 9164-9172.	1.9	24
94	Arene–Anion Based Arginineâ€Binding Motif on a Galactose Scaffold: Structure–Activity Relationships of Interactions with Arginineâ€Rich Galectins. Chemistry - A European Journal, 2011, 17, 8139-8144.	3.3	22
95	ldentification of a Novel Streptococcal Adhesin P (SadP) Protein Recognizing Galactosyl-α1–4-galactose-containing Glycoconjugates. Journal of Biological Chemistry, 2011, 286, 38854-38864.	3.4	36
96	The Anti-angiogenic Peptide Anginex Greatly Enhances Galectin-1 Binding Affinity for Glycoproteins. Journal of Biological Chemistry, 2011, 286, 13801-13804.	3.4	45
97	Inhibition of Human DHODH by 4â€Hydroxycoumarins, Fenamic Acids, and <i>N</i> à€(Alkylcarbonyl)anthranilic Acids Identified by Structureâ€Guided Fragment Selection. ChemMedChem, 2010, 5, 608-617.	3.2	26
98	Multimeric Lactoside "Click Clusters―as Tools to Investigate the Effect of Linker Length in Specific Interactions with Peanut Lectin, Galectinâ€1, and â€3. ChemBioChem, 2010, 11, 1430-1442.	2.6	44
99	1H-1,2,3-Triazol-1-yl thiodigalactoside derivatives as high affinity galectin-3 inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 5367-5378.	3.0	93
100	Mutational Tuning of Galectin-3 Specificity and Biological Function. Journal of Biological Chemistry, 2010, 285, 35079-35091.	3.4	98
101	Protein Flexibility and Conformational Entropy in Ligand Design Targeting the Carbohydrate Recognition Domain of Galectin-3. Journal of the American Chemical Society, 2010, 132, 14577-14589.	13.7	209
102	Monovalent Interactions of Galectin-1. Biochemistry, 2010, 49, 9518-9532.	2.5	54
103	Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Letters, 2010, 299, 95-110.	7.2	91
104	Galectin-3 Targeted Therapy with a Small Molecule Inhibitor Activates Apoptosis and Enhances Both Chemosensitivity and Radiosensitivity in Papillary Thyroid Cancer. Molecular Cancer Research, 2009, 7, 1655-1662.	3.4	69
105	Synthesis and Evaluation of New Thiodigalactosideâ€Based Chemical Probes to Label Galectinâ€3. ChemBioChem, 2009, 10, 1724-1733.	2.6	36
106	Synthesis of 3-azido-3-deoxy-β-d-galactopyranosides. Carbohydrate Research, 2009, 344, 1282-1284.	2.3	14
107	Fragment-based development of triazole-substituted O-galactosyl aldoximes with fragment-induced affinity and selectivity for galectin-3. Organic and Biomolecular Chemistry, 2009, 7, 3982.	2.8	44
108	Double Affinity Amplification of Galectin–Ligand Interactions through Arginine–Arene Interactions: Synthetic, Thermodynamic, and Computational Studies with Aromatic Diamido Thiodigalactosides. Chemistry - A European Journal, 2008, 14, 4233-4245.	3.3	76

#	Article	IF	CITATIONS
109	Protein subtype-targeting through ligand epimerization: Talose-selectivity of galectin-4 and galectin-8. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3691-3694.	2.2	35
110	Carbohydrate functionalization using cationic iron carbonyl complexes. Carbohydrate Research, 2008, 343, 1808-1813.	2.3	4
111	Intermolecular Pauson–Khand reactions on a galactose scaffold. Tetrahedron Letters, 2008, 49, 2820-2823.	1.4	11
112	Arginine Binding Motifs: Design and Synthesis of Galactose-Derived Arginine Tweezers as Galectin-3 Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 2297-2301.	6.4	38
113	Galectin-Inhibitory Thiodigalactoside Ester Derivatives Have Antimigratory Effects in Cultured Lung and Prostate Cancer Cells. Journal of Medicinal Chemistry, 2008, 51, 8109-8114.	6.4	59
114	Different affinity of galectins for human serum glycoproteins: Galectin-3 binds many protease inhibitors and acute phase proteins. Glycobiology, 2008, 18, 384-394.	2.5	59
115	Regulation of Alternative Macrophage Activation by Galectin-3. Journal of Immunology, 2008, 180, 2650-2658.	0.8	447
116	Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology, 2007, 17, 663-676.	2.5	162
117	Studies of Arginine–Arene Interactions through Synthesis and Evaluation of a Series of Galectinâ€Binding Aromatic Lactose Esters. ChemBioChem, 2007, 8, 1389-1398.	2.6	61
118	Synthesis of galactose-mimicking $1H-(1,2,3-triazol-1-yl)$ -mannosides as selective galectin-3 and $9N$ inhibitors. Carbohydrate Research, 2007 , 342 , $1869-1875$.	2.3	46
119	Synthesis of a 3′-naphthamido-LacNAc fluorescein conjugate with high selectivity and affinity for galectin-3. Carbohydrate Research, 2006, 341, 1363-1369.	2.3	11
120	Synthesis of multivalent lactose derivatives by 1,3-dipolar cycloadditions: selective galectin-1 inhibition. Carbohydrate Research, 2006, 341, 1353-1362.	2.3	71
121	Thioureido N-acetyllactosamine derivatives as potent galectin-7 and 9N inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 1215-1220.	3.0	37
122	Cobalt-mediated solid phase synthesis of 3-O-alkynylbenzyl galactosides and their evaluation as galectin inhibitors. Tetrahedron, 2006, 62, 8309-8317.	1.9	17
123	Synthesis of a Chiral and Fluorescent Sugar-Based Macrocycle by 1,3-Dipolar Cycloaddition. Synthesis, 2006, 2006, 3141-3145.	2.3	6
124	Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility. British Journal of Nutrition, 2005, 94, 705-713.	2.3	81
125	Synthesis of a C3-symmetric macrocycle with alternating sugar amino acid and tyrosine residues. Tetrahedron Letters, 2005, 46, 991-993.	1.4	14
126	Cyclic peptides containing a δ-sugar amino acid—synthesis and evaluation as artificial receptors. Tetrahedron, 2005, 61, 863-874.	1.9	45

#	Article	IF	Citations
127	Synthesis of O-galactosyl aldoximes as potent LacNAc-mimetic galectin-3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2343-2345.	2.2	64
128	3-(1,2,3-Triazol-1-yl)-1-thio-galactosides as small, efficient, and hydrolytically stable inhibitors of galectin-3. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3344-3346.	2.2	85
129	C2-Symmetrical Thiodigalactoside Bis-Benzamido Derivatives as High-Affinity Inhibitors of Galectin-3: Efficient Lectin Inhibition through Double Arginine-Arene Interactions. Angewandte Chemie - International Edition, 2005, 44, 5110-5112.	13.8	120
130	Measurements of the binding force between the Helicobacter pylori adhesin BabA and the Lewis b blood group antigen using optical tweezers. Journal of Biomedical Optics, 2005, 10, 044024.	2.6	25
131	Structure–activity relationships of galabioside derivatives as inhibitors of E. coli and S. suis adhesins: nanomolar inhibitors of S. suis adhesins. Organic and Biomolecular Chemistry, 2005, 3, 886-900.	2.8	27
132	Structural and Thermodynamic Studies on Cationâ~Î Interactions in Lectinâ~Ligand Complexes:Â High-Affinity Galectin-3 Inhibitors through Fine-Tuning of an Arginineâ~Arene Interaction. Journal of the American Chemical Society, 2005, 127, 1737-1743.	13.7	231
133	C2-Symmetric Macrocyclic Carbohydrate/Amino Acid Hybrids through Copper(I)-Catalyzed Formation of 1,2,3-Triazoles. Journal of Organic Chemistry, 2005, 70, 4847-4850.	3.2	112
134	Synthesis of a phenyl thio- $\hat{1}^2$ -d-galactopyranoside library from 1,5-difluoro-2,4-dinitrobenzene: discovery of efficient and selective monosaccharide inhibitors of galectin-7. Organic and Biomolecular Chemistry, 2005, 3, 1922.	2.8	86
135	Synthesis of Chiral Macrocycles by Cyclodimerization of Diamines with Stepwise Nucleophilic Aromatic Substitution of 1,5-Difluoro-2,4-dinitrobenzene. Synlett, 2004, 2004, 2517-2520.	1.8	1
136	Design and Synthesis of Galectin Inhibitors. ChemInform, 2004, 35, no.	0.0	0
137	Synthesis and conformational analysis of 9,10-bis-aminomethyl-11,12-dicarboxy-dibenzobarrelene derivatives. Tetrahedron Letters, 2004, 45, 6083-6085.	1.4	3
138	Fluorescence polarization as an analytical tool to evaluate galectin–ligand interactions. Analytical Biochemistry, 2004, 334, 36-47.	2.4	150
139	Physical Properties of Escherichia coli P Pili Measured by Optical Tweezers. Biophysical Journal, 2004, 87, 4271-4283.	0.5	94
140	Functional Adaptation of BabA, the <i>H. pylori</i> ABO Blood Group Antigen Binding Adhesin. Science, 2004, 305, 519-522.	12.6	368
141	Synthesis of chiral, amphiphilic, and water-soluble macrocycles via urea formation. Tetrahedron, 2003, 59, 7921-7928.	1.9	7
142	A galabiose-based two-dimensional scaffold for the synthesis of inhibitors targeting Pk- and P-antigen binding proteins. Tetrahedron Letters, 2003, 44, 2785-2787.	1.4	9
143	Quantitative studies of the binding of the class II PapG adhesin from uropathogenic Escherichia coli to oligosaccharides. Bioorganic and Medicinal Chemistry, 2003, 11, 2255-2261.	3.0	45
144	Efficient and Expedient Two-Step Pyranose-Retaining Fluorescein Conjugation of Complex Reducing Oligosaccharides:Â Galectin Oligosaccharide Specificity Studies in a Fluorescence Polarization Assay. Bioconjugate Chemistry, 2003, 14, 1289-1297.	3.6	23

#	Article	IF	CITATIONS
145	Fluorescence Polarization to Study Galectin–Ligand Interactions. Methods in Enzymology, 2003, 362, 504-512.	1.0	46
146	Conformational studies on phenyl thioglycosides: a remote effect on disaccharide linkage by phenyl aglycons attenuates recognition of galabiosides by a bacterial adhesin. Chemical Communications, 2003, , 384.	4.1	5
147	Design and Synthesis of Galectin Inhibitors. Methods in Enzymology, 2003, 363, 157-169.	1.0	45
148	Amphiphilic Anthracene-Amino Acid Conjugates as Simple Carbohydrate Receptors in Water. Supramolecular Chemistry, 2002, 14, 367-372.	1.2	20
149	Low Micromolar Inhibitors of Galectin-3 Based on 3′-Derivatization of N-Acetyllactosamine. ChemBioChem, 2002, 3, 183-189.	2.6	99
150	Discovery of Potent Inhibitors of PapG Adhesins from Uropathogenic Escherichia coli through Synthesis and Evaluation of Galabiose Derivatives. ChemBioChem, 2002, 3, 772.	2.6	47
151	Synthesis of GD3-lactam: a potential ligand for the development of an anti-melanoma vaccine. Carbohydrate Research, 2002, 337, 569-580.	2.3	16
152	Synthesis of a globotetraose trimer. Carbohydrate Research, 2002, 337, 947-949.	2.3	5
153	The p-methoxybenzyl ether as an in situ-removable carbohydrate-protecting group: a simple one-pot synthesis of the globotetraose tetrasaccharide. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 886-890.	1.3	52
154	An efficient and convergent route towards water-soluble, chiral and amphiphilic macrocycles. Tetrahedron Letters, 2001, 42, 2873-2875.	1.4	20
155	A study of the donor properties of sialyl phosphites having an auxiliary 3-(S)-phenylseleno group. Carbohydrate Research, 2001, 331, 255-263.	2.3	9
156	Didecyl squarate-a practical amino-reactive cross-linking reagent for neoglycoconjugate synthesis. Glycoconjugate Journal, 2001, 18, 615-621.	2.7	28
157	Regio- and Stereoselective Methods of Glycosylation. , 2001, , 1543-1587.		1
158	Regio- and Stereoselective Methods of Glycosylation. , 2001, , 1543-1587.		9
159	Solid-phase extraction for combinatorial libraries. Journal of Chromatography A, 2000, 885, 305-319.	3.7	52
160	Conversion of 2-(trimethylsilyl)ethyl sulfides into thioesters. Tetrahedron Letters, 1999, 40, 1811-1814.	1.4	24
161	Comparative 1H NMR study of hydroxy protons in galabioside and its S-linked 4-thiodisaccharide analogue in aqueous solution. Carbohydrate Research, 1999, 322, 46-56.	2.3	20
162	Parallel solution synthesis of a "Carbohybrid" library designed to inhibit galactose-binding proteins. Combinatorial Chemistry and High Throughput Screening, 1999, 2, 335-52.	1.1	1

#	Article	IF	Citations
163	Solid-phase extraction on C18 silica as a purification strategy in the solution synthesis of a 1-thio- \hat{l}^2 - d -galactopyranoside library. Bioorganic and Medicinal Chemistry, 1998, 6, 1563-1575.	3.0	68
164	Immobilization of Reducing Sugars as Toxin Binding Agents. Bioconjugate Chemistry, 1997, 8, 466-471.	3.6	17
165	Synthesis, Conformational Analysis and Comparative Protein Binding of a Galabioside and Its Thioglycoside Analogues. Chemistry - A European Journal, 1996, 2, 295-302.	3.3	38
166	Determination of the Degree of Branching in Normal and Amylopectin Type Potato Starch with 1H-NMR Spectroscopy Improved resolution and two-dimensional spectroscopy. Starch/Staerke, 1996, 48, 352-357.	2.1	136
167	PapG adhesin from E. coli J96 recognizes the same saccharide epitope when present on whole bacteria and as isolated protein. Bioorganic and Medicinal Chemistry, 1996, 4, 1809-1817.	3.0	22
168	Synthesis of the saccharide moiety of galactosylgloboside (SSEA-3) and its conjugation to bovine serum albumin and sepharose. Carbohydrate Research, 1995, 272, 9-16.	2.3	14
169	Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Molecular Microbiology, 1995, 16, 1021-1029.	2.5	65
170	Major histocompatibility complex class I binding glycopeptides for the estimation of †empty†dess I molecules. Journal of Immunological Methods, 1995, 188, 21-31.	1.4	7
171	Synthesis of Ganglioside Lactams Corresponding to GM1-, GM2-, GM3-, and GM4-Ganglioside Lactones. Journal of the American Chemical Society, 1995, 117, 4742-4754.	13.7	58
172	An Improved Synthesis of 3,4,6-Tri-O-acetyl-2-azido-2-deoxy-α-d-galactopyranosyl Bromide: A Key Component for Synthesis of Glycopeptides and Glycolipids. Journal of Carbohydrate Chemistry, 1994, 13, 129-132.	1.1	34
173	Nuclear magnetic resonance and conformational investigations of the pentasaccharide of the Forssman antigen and overlapping di-, tri-, and tetra-saccharide sequences. Carbohydrate Research, 1994, 257, 35-54.	2.3	49
174	Synthesis of the globotetraose tetrasaccharide and terminal tri- and di-saccharide fragments. Carbohydrate Research, 1994, 252, 117-136.	2.3	26
175	Synthesis of the Forssman pentasaccharide and terminal tetra-, tri-, and di-saccharide fragments. Carbohydrate Research, 1994, 252, 137-148.	2.3	20
176	Ganglioside Lactams as Analogs of Ganglioside Lactones. ACS Symposium Series, 1994, , 233-248.	0.5	1
177	Synthesis of the 2"-Hydroxy, 4"-Deoxy and 4"-Epi Analogues of beta-D-GalNAc-(1->3)-alpha-D-Gal-(1->4)-beta-D-Gal, the Terminal Trisaccharide of Globotetraose Acta Chemica Scandinavica, 1994, 48, 356-361.	0.7	11
178	Synthesis and conformational analysis of GM3 lactam; a hydrolytically stable analog of GM3 ganglioside lactone. Journal of the American Chemical Society, 1992, 114, 2256-2257.	13.7	34
179	Efficient syntheses of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- \hat{l}^2 - and - \hat{l} ±-d-galactopyranosyl chloride. Carbohydrate Research, 1990, 208, 260-263.	2.3	14
180	Prespacer glycosides in glycoconjugate chemistry. Dibromoisobutyl (DIB) glycosides for the synthesis of neoglycolipids, neoglycoproteins, neoglycoparticles, and soluble glycosides. Journal of Organic Chemistry, 1990, 55, 3932-3946.	3.2	37

ARTICLE IF CITATIONS

181 GM CHARACTERS OF 7 S γ MYELOMA PROTEINS AND CORRESPONDING INDIVIDUAL NORMAL γâ€GLOBULINS. Acta
Pathologica Et Microbiologica Scandinavica, 1964, 61, 181-189.

5