Yijun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/390425/publications.pdf Version: 2024-02-01

YHUN WANC

#	Article	IF	CITATIONS
1	Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. Food Science and Human Wellness, 2022, 11, 627-634.	4.9	13
2	Potential prebiotic effects of nonabsorptive components of Keemun and Dianhong black tea: an in vitro study. Food Science and Human Wellness, 2022, 11, 648-659.	4.9	4
3	Comprehensive comparison on the chemical metabolites and taste evaluation of tea after roasting using untargeted and pseudotargeted metabolomics. Food Science and Human Wellness, 2022, 11, 606-617.	4.9	19
4	Effects of Keemun and Dianhong Black Tea in Alleviating Excess Lipid Accumulation in the Liver of Obese Mice: A Comparative Study. Frontiers in Nutrition, 2022, 9, 849582.	3.7	3
5	Relationship between flexibility and interfacial functional properties of soy protein isolate: succinylation modification. Journal of the Science of Food and Agriculture, 2022, 102, 6454-6463.	3.5	12
6	Yellow Tea Stimulates Thermogenesis in Mice through Heterogeneous Browning of Adipose Tissues. Molecular Nutrition and Food Research, 2021, 65, e2000864.	3.3	9
7	The beneficial or detrimental fluoride to gut microbiota depends on its dosages. Ecotoxicology and Environmental Safety, 2021, 209, 111732.	6.0	7
8	Black Tea Quality is Highly Affected during Processing by its Leaf Surface Microbiome. Journal of Agricultural and Food Chemistry, 2021, 69, 7115-7126.	5.2	19
9	SARS-CoV-2 suppresses mRNA expression of selenoproteins associated with ferroptosis, endoplasmic reticulum stress and DNA synthesis. Food and Chemical Toxicology, 2021, 153, 112286.	3.6	56
10	Green Tea Suppresses Amyloid β Levels and Alleviates Cognitive Impairment by Inhibiting APP Cleavage and Preventing Neurotoxicity in 5XFAD Mice. Molecular Nutrition and Food Research, 2021, 65, e2100626.	3.3	11
11	Effects of different dietary polyphenols on conformational changes and functional properties of protein–polyphenol covalent complexes. Food Chemistry, 2021, 361, 130071.	8.2	99
12	Prospective Selective Mechanism of Emerging Senolytic Agents Derived from Flavonoids. Journal of Agricultural and Food Chemistry, 2021, 69, 12418-12423.	5.2	15
13	Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome activation. Food Research International, 2020, 127, 108628.	6.2	49
14	Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet. Food and Function, 2020, 11, 9924-9935.	4.6	23
15	Black and Green Tea Supplements Ameliorate Male Infertility in a Murine Model of Obesity. Journal of Medicinal Food, 2020, 23, 1303-1311.	1.5	5
16	Ameliorative effects of L-theanine on dextran sulfate sodium induced colitis in C57BL/6J mice are associated with the inhibition of inflammatory responses and attenuation of intestinal barrier disruption. Food Research International, 2020, 137, 109409.	6.2	39
17	Supplementation with green tea extract affects lipid metabolism and egg yolk lipid composition in laying hens. Journal of Applied Poultry Research, 2019, 28, 881-891.	1.2	11
18	Tea aroma formation from six model manufacturing processes. Food Chemistry, 2019, 285, 347-354.	8.2	218

YIJUN WANG

#	Article	IF	CITATIONS
19	Differences in chemical composition predictive of in vitro biological activity among commercially important cultivars of genus Camellia. Food Chemistry, 2019, 297, 124950.	8.2	3
20	Characterization of Brazilian coffee based on isotope ratio mass spectrometry (δ13C, δ18O, δ2H, and δ15N) and supervised chemometrics. Food Chemistry, 2019, 297, 124963.	8.2	28
21	Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the phenolic composition, antioxidant, antihemolytic and cytotoxic/cytoprotection activities. Food Research International, 2019, 125, 108516.	6.2	52
22	Green tea polyphenols prevent lipopolysaccharide-induced inflammatory liver injury in mice by inhibiting NLRP3 inflammasome activation. Food and Function, 2019, 10, 3898-3908.	4.6	38
23	Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single <i>Camellia sinensis</i> Cultivar, Longjing 43. Journal of Agricultural and Food Chemistry, 2019, 67, 5423-5436.	5.2	151
24	Differences in Chemical Composition among Commercially Important Cultivars of Genus <i>Camellia</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 5457-5464.	5.2	7
25	LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea. Journal of Agricultural and Food Chemistry, 2019, 67, 5405-5412.	5.2	93
26	Assuring that your cup of tea is risk-free. Current Opinion in Food Science, 2019, 30, 98-102.	8.0	2
27	Theanine supplementation prevents liver injury and heat shock response by normalizing hypothalamic-pituitaryadrenal axis hyperactivity in mice subjected to whole body heat stress. Journal of Functional Foods, 2018, 45, 181-189.	3.4	20
28	Roasting improves the hypoglycemic effects of a large-leaf yellow tea infusion by enhancing the levels of epimerized catechins that inhibit α-glucosidase. Food and Function, 2018, 9, 5162-5168.	4.6	39
29	Protective Effect and Mechanism of Theanine on Lipopolysaccharide-Induced Inflammation and Acute Liver Injury in Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 7674-7683.	5.2	48
30	TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds. Frontiers in Plant Science, 2018, 9, 211.	3.6	3
31	Supplemental summer-autumn tea leaf (<i>Camellia sinensis</i>) improve the immune status of broilers. Journal of Applied Animal Research, 2018, 46, 1260-1267.	1.2	6
32	TBC2health: a database of experimentally validated health-beneficial effects of tea bioactive compounds. Briefings in Bioinformatics, 2017, 18, bbw055.	6.5	24
33	The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS. Scientific Reports, 2017, 7, 46131.	3.3	15
34	Novel Acylated Flavonol Tetraglycoside with Inhibitory Effect on Lipid Accumulation in 3T3-L1 Cells from Lu'an GuaPian Tea and Quantification of Flavonoid Glycosides in Six Major Processing Types of Tea. Journal of Agricultural and Food Chemistry, 2017, 65, 2999-3005.	5.2	46
35	Green tea infusion protects against alcoholic liver injury by attenuating inflammation and regulating the PI3K/Akt/eNOS pathway in C57BL/6 mice. Food and Function, 2017, 8, 3165-3177.	4.6	35
36	Theanine: the unique amino acid in the tea plant as an oral hepatoprotective agent. Asia Pacific Journal of Clinical Nutrition, 2017, 26, 384-391.	0.4	19

YIJUN WANG

#	Article	IF	CITATIONS
37	Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Molecular Nutrition and Food Research, 2016, 60, 160-174.	3.3	290
38	Principles of Biomedical Agriculture Applied to the Plant Family Theaceae To Identify Novel Interventions for Cancer Prevention and Control. Journal of Agricultural and Food Chemistry, 2016, 64, 2809-2814.	5.2	7
39	Certain (â^')-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chemistry, 2016, 204, 218-226.	8.2	73
40	Serum thioredoxin reductase is highly increased in mice with hepatocellular carcinoma and its activity is restrained by several mechanisms. Free Radical Biology and Medicine, 2016, 99, 426-435.	2.9	17
41	Safety and anti-hyperglycemic efficacy of various tea types in mice. Scientific Reports, 2016, 6, 31703.	3.3	51
42	Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China. Ecotoxicology and Environmental Safety, 2016, 131, 14-21.	6.0	26
43	The absorption, distribution, metabolism and excretion of procyanidins. Food and Function, 2016, 7, 1273-1281.	4.6	139
44	Green tea polyphenol (â^')-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway. Toxicology and Applied Pharmacology, 2015, 283, 65-74.	2.8	125
45	Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth inÂvitro and inÂvivo. Food and Chemical Toxicology, 2015, 85, 71-77.	3.6	64
46	Inhibition of lung tumor growth by targeting EGFR/VEGFR-Akt/NF-κB pathways with novel theanine derivatives. Oncotarget, 2014, 5, 8528-8543.	1.8	46
47	The anti-obesity effects of green tea in human intervention and basic molecular studies. European Journal of Clinical Nutrition, 2014, 68, 1075-1087.	2.9	180
48	High-dose sodium selenite toxicity cannot be prevented by the co-administration of pharmacological levels of epigallocatechin-3-gallate which in turn aggravates the toxicity. Food and Chemical Toxicology, 2013, 52, 36-41.	3.6	6
49	Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase. Toxicology and Applied Pharmacology, 2012, 265, 342-350.	2.8	20
50	Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. International Journal of Nanomedicine, 2012, 7, 1711.	6.7	45