Mauro Sulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3903580/publications.pdf Version: 2024-02-01

ΜΑΠΡΟ SHILLS

#	Article	IF	CITATIONS
1	Downwelling longwave radiation and sensible heat flux observations are critical for surface temperature and emissivity estimation from flux tower data. Scientific Reports, 2022, 12, .	3.3	3
2	Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermalâ€Based Evaporation Modeling. Geophysical Research Letters, 2022, 49, .	4.0	11
3	Advances in Catchment Science through Integrated Hydrological Modelling and Monitoring. Water (Switzerland), 2021, 13, 2013.	2.7	0
4	The role of aerodynamic resistance in thermal remote sensing-based evapotranspiration models. Remote Sensing of Environment, 2021, 264, 112602.	11.0	22
5	Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resources Research, 2021, 57, .	4.2	62
6	Potential Added Value of Incorporating Human Water Use on the Simulation of Evapotranspiration and Precipitation in a Continentalâ€scale Bedrockâ€toâ€Atmosphere Modeling System: A Validation Study Considering Observational Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 1959-1980.	3.8	3
7	Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations. Agricultural and Forest Meteorology, 2019, 269-270, 28-45.	4.8	28
8	Effects of horizontal grid resolution on evapotranspiration partitioning using TerrSysMP. Journal of Hydrology, 2018, 557, 910-915.	5.4	20
9	Quantifying the Impact of Subsurfaceâ€Land Surface Physical Processes on the Predictive Skill of Subseasonal Mesoscale Atmospheric Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9131-9151.	3.3	18
10	Introduction of an Experimental Terrestrial Forecasting/Monitoring System at Regional to Continental Scales Based on the Terrestrial Systems Modeling Platform (v1.1.0). Water (Switzerland), 2018, 10, 1697.	2.7	17
11	Human Water Use Impacts on the Strength of the Continental Sink for Atmospheric Water. Geophysical Research Letters, 2018, 45, 4068-4076.	4.0	36
12	Connection Between Root Zone Soil Moisture and Surface Energy Flux Partitioning Using Modeling, Observations, and Data Assimilation for a Temperate Grassland Site in Germany. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2839-2862.	3.0	20
13	Coupling Groundwater, Vegetation, and Atmospheric Processes: A Comparison of Two Integrated Models. Journal of Hydrometeorology, 2017, 18, 1489-1511.	1.9	26
14	The integrated hydrologic model intercomparison project, <scp>IHâ€MIP2</scp> : A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 2017, 53, 867-890.	4.2	113
15	Studying the influence of groundwater representations on land surfaceâ€atmosphere feedbacks during the European heat wave in 2003. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,301.	3.3	74
16	Evaluating the dualâ€boundary forcing concept in subsurface–land surface interactions of the hydrological cycle. Hydrological Processes, 2016, 30, 1563-1573.	2.6	12
17	An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 2016, 537, 45-60.	5.4	349
18	Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System. Bulletin of the American Meteorological Society, 2015, 96, 1765-1787.	3.3	80

MAURO SULIS

#	Article	IF	CITATIONS
19	Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model. Hydrology and Earth System Sciences, 2015, 19, 4317-4326.	4.9	35
20	An assessment of recharge estimates from stream and well data and from a coupled surface-water/groundwater model for the des Anglais catchment, Quebec (Canada). Hydrogeology Journal, 2015, 23, 1731-1743.	2.1	10
21	The subsurface–land surface–atmosphere connection under convective conditions. Advances in Water Resources, 2015, 83, 240-249.	3.8	32
22	Evaluating the Influence of Plant-Specific Physiological Parameterizations on the Partitioning of Land Surface Energy Fluxes. Journal of Hydrometeorology, 2015, 16, 517-533.	1.9	24
23	Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP) Tj ETQq1 1 0 Geoscientific Model Development, 2014, 7, 2531-2543.	.784314 rg 3.6	gBT /Overlo 54
24	A Scale-Consistent Terrestrial Systems Modeling Platform Based on COSMO, CLM, and ParFlow. Monthly Weather Review, 2014, 142, 3466-3483.	1.4	140
25	The concept of dualâ€boundary forcing in land surfaceâ€subsurface interactions of the terrestrial hydrologic and energy cycles. Water Resources Research, 2014, 50, 8531-8548.	4.2	22
26	Surfaceâ€subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 2014, 50, 1531-1549.	4.2	222
27	Comparison of two modeling approaches for groundwater–surface water interactions. Hydrological Processes, 2013, 27, 2258-2270.	2.6	29
28	Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions. Water Resources Research, 2012, 48, .	4.2	62
29	Analysis of coupling errors in a physically-based integrated surface water–groundwater model. Advances in Water Resources, 2012, 49, 86-96.	3.8	14
30	Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surfaceâ€subsurface interactions and comparison with a land surface model. Water Resources Research, 2011, 47, .	4.2	85
31	Impact of grid resolution on the integrated and distributed response of a coupled surface–subsurface hydrological model for the des Anglais catchment, Quebec. Hydrological Processes, 2011, 25, 1853-1865.	2.6	50
32	A comparison of two physics-based numerical models for simulating surface water–groundwater interactions. Advances in Water Resources, 2010, 33, 456-467.	3.8	108
33	Conjunctive Use of a Hydrological Model and a Multicriteria Decision Support System for a Case Study on the Caia Catchment, Portugal. Journal of Hydrologic Engineering - ASCE, 2009, 14, 141-152.	1.9	14