Chisato Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3903500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA - Journal of the American Medical Association, 2020, 324, 259.	7.4	1,528
2	ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nature Genetics, 2008, 40, 35-42.	21.4	423
3	Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nature Genetics, 2011, 43, 1241-1246.	21.4	297
4	A genome-wide association study identifies three new risk loci for Kawasaki disease. Nature Genetics, 2012, 44, 517-521.	21.4	284
5	Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children. JAMA - Journal of the American Medical Association, 2016, 316, 835.	7.4	263
6	A Genome-Wide Association Study Identifies Novel and Functionally Related Susceptibility Loci for Kawasaki Disease. PLoS Genetics, 2009, 5, e1000319.	3.5	234
7	Common variants in CASP3 confer susceptibility to Kawasaki disease. Human Molecular Genetics, 2010, 19, 2898-2906.	2.9	141
8	Transforming Growth Factor-β Signaling Pathway in Patients With Kawasaki Disease. Circulation: Cardiovascular Genetics, 2011, 4, 16-25.	5.1	127
9	Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Medicine, 2014, 6, 541.	8.2	126
10	Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. Journal of Immunology, 2016, 197, 3481-3489.	0.8	99
11	miR-483 Targeting of CTGF Suppresses Endothelial-to-Mesenchymal Transition. Circulation Research, 2017, 120, 354-365.	4.5	93
12	Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature. JAMA Pediatrics, 2018, 172, e182293.	6.2	92
13	Coronary artery outcomes among children with Kawasaki disease in the United States and Japan. International Journal of Cardiology, 2013, 168, 3825-3828.	1.7	84
14	Lymph-Node-First Presentation of Kawasaki Disease Compared with Bacterial Cervical Adenitis and Typical Kawasaki Disease. Journal of Pediatrics, 2013, 162, 1259-1263.e2.	1.8	83
15	Human Coronavirus NL63 Is Not Detected in the Respiratory Tracts of Children with Acute Kawasaki Disease. Journal of Infectious Diseases, 2005, 192, 1767-1771.	4.0	75
16	Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance. Human Immunology, 2010, 71, 865-873.	2.4	75
17	PRINCESS: Privacy-protecting Rare disease International Network Collaboration via Encryption through Software guard extensionS. Bioinformatics, 2017, 33, 871-878.	4.1	75
18	The role of TGF-Î ² and myofibroblasts in the arteritis of Kawasaki disease. Human Pathology, 2013, 44, 189-198.	2.0	67

Снізато Ѕніміzu

#	Article	IF	CITATIONS
19	Memory T-cells and characterization of peripheral T-cell clones in acute Kawasaki disease. Autoimmunity, 2010, 43, 317-324.	2.6	62
20	Differential Expression of miR-145 in Children with Kawasaki Disease. PLoS ONE, 2013, 8, e58159.	2.5	60
21	Treatment Response in Kawasaki Disease Is Associated with Sialylation Levels of Endogenous but Not Therapeutic Intravenous Immunoglobulin G. PLoS ONE, 2013, 8, e81448.	2.5	56
22	Review: Found in Translation: International Initiatives Pursuing Interleukinâ€∃ Blockade for Treatment of Acute Kawasaki Disease. Arthritis and Rheumatology, 2017, 69, 268-276.	5.6	51
23	Cardiovascular biomarkers in acute Kawasaki disease. International Journal of Cardiology, 2013, 164, 58-63.	1.7	49
24	Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity, 2014, 47, 95-104.	2.6	49
25	Kawasaki Disease Outcomes and Response to Therapy in a Multiethnic Community: A 10-Year Experience. Journal of Pediatrics, 2018, 203, 408-415.e3.	1.8	48
26	Genetic Variation in the SLC8A1 Calcium Signaling Pathway Is Associated With Susceptibility to Kawasaki Disease and Coronary Artery Abnormalities. Circulation: Cardiovascular Genetics, 2016, 9, 559-568.	5.1	45
27	Matrix metalloproteinase haplotypes associated with coronary artery aneurysm formation in patients with Kawasaki disease. Journal of Human Genetics, 2010, 55, 779-784.	2.3	43
28	Extensive Ethnic Variation and Linkage Disequilibrium at the FCGR2/3 Locus: Different Genetic Associations Revealed in Kawasaki Disease. Frontiers in Immunology, 2019, 10, 185.	4.8	43
29	An Artificial Intelligence-guided signature reveals the shared host immune response in MIS-C and Kawasaki disease. Nature Communications, 2022, 13, 2687.	12.8	37
30	Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C. Nature Communications, 2022, 13, .	12.8	36
31	Cardiovascular pathology in 2 young adults with sudden, unexpected death due to coronary aneurysms from Kawasaki disease in childhood. Cardiovascular Pathology, 2015, 24, 310-316.	1.6	35
32	Immune response to intravenous immunoglobulin in patients with Kawasaki disease and MIS-C. Journal of Clinical Investigation, 2021, 131, .	8.2	31
33	Clustering and climate associations of Kawasaki Disease in San Diego County suggest environmental triggers. Scientific Reports, 2018, 8, 16140.	3.3	29
34	Hemolymph analysis and evaluation of newly formulated media for culture of shrimp cells (Penaeus) Tj ETQq0 C) 0 rgBT /O	verlock 10 Tf
35	Psoriasiform eruptions during Kawasaki disease (KD): A distinct phenotype. Journal of the American Academy of Dermatology, 2016, 75, 69-76.e2.	1.2	27

³⁶Circulating Markers of Inflammation Persist in Children and Adults With Giant Aneurysms After
Kawasaki Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002433.3.626

Снізато Ѕніміzu

#	Article	IF	CITATIONS
37	Galectin-3 is a marker of myocardial and vascular fibrosis in Kawasaki disease patients with giant aneurysms. International Journal of Cardiology, 2015, 201, 429-437.	1.7	25
38	Differences in GlycA and lipoprotein particle parameters may help distinguish acute kawasaki disease from other febrile illnesses in children. BMC Pediatrics, 2016, 16, 151.	1.7	25
39	Phase I/IIa Trial of Atorvastatin in Patients with Acute Kawasaki Disease with Coronary Artery Aneurysm. Journal of Pediatrics, 2019, 215, 107-117.e12.	1.8	24
40	INFECTION OF CULTURED EMBRYO CELLS OF THE PACIFIC OYSTER, CRASSOSTREA GIGAS, BY PANTROPIC RETROVIRAL VECTORS. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 395.	1.5	23
41	Role of TGF-β Signaling in Remodeling of Noncoronary Artery Aneurysms in Kawasaki Disease. Pediatric and Developmental Pathology, 2015, 18, 310-317.	1.0	20
42	Autoantibodies Against Proteins Previously Associated With Autoimmunity in Adult and Pediatric Patients With COVID-19 and Children With MIS-C. Frontiers in Immunology, 2022, 13, 841126.	4.8	18
43	Biomarkers for the Discrimination of Acute Kawasaki Disease From Infections in Childhood. Frontiers in Pediatrics, 2020, 8, 355.	1.9	17
44	Characterization of SARSâ€CoVâ€2 and common cold coronavirusâ€specific Tâ€cell responses in MISâ€C and Kawasaki disease children. European Journal of Immunology, 2022, 52, 123-137.	2.9	17
45	Epidemiological and Clinical Features of Kawasaki Disease During the COVID-19 Pandemic in the United States. JAMA Network Open, 2022, 5, e2217436.	5.9	16
46	Infliximab Pharmacokinetics are Influenced by Intravenous Immunoglobulin Administration in Patients with Kawasaki Disease. Clinical Pharmacokinetics, 2018, 57, 1593-1601.	3.5	15
47	Pediatric tolerogenic DCs expressing CD4 and immunoglobulinâ€like transcript receptor (ILT)â€4 secrete ILâ€10 in response to Fc and adenosine. European Journal of Immunology, 2018, 48, 482-491.	2.9	15
48	CHARACTERIZATION OF A WHITE BASS (MORONE CHRYSOPS) EMBRYONIC CELL LINE WITH EPITHELIAL FEATURES. In Vitro Cellular and Developmental Biology - Animal, 2003, 39, 29.	1.5	14
49	Whole genome sequencing of an African American family highlights toll like receptor 6 variants in Kawasaki disease susceptibility. PLoS ONE, 2017, 12, e0170977.	2.5	14
50	Anakinra Treatment in Patients with Acute Kawasaki Disease with Coronary Artery Aneurysms: A Phase I/IIa Trial. Journal of Pediatrics, 2022, 243, 173-180.e8.	1.8	14
51	Inflammasome Activation in Children With Kawasaki Disease and Multisystem Inflammatory Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2509-2511.	2.4	11
52	Temporal Clusters of Kawasaki Disease Cases Share Distinct Phenotypes That Suggest Response to Diverse Triggers. Journal of Pediatrics, 2021, 229, 48-53.e1.	1.8	10
53	Identification of novel locus associated with coronary artery aneurysms and validation of loci for susceptibility to Kawasaki disease. European Journal of Human Genetics, 2021, 29, 1734-1744.	2.8	10
54	T Cells in Multisystem Inflammatory Syndrome in Children (MIS-C) Have a Predominant CD4+ T Helper Response to SARS-CoV-2 Peptides and Numerous Virus-Specific CD4â^' CD8â^' Double-Negative T Cells. International Journal of Molecular Sciences, 2022, 23, 7219.	4.1	10

Снізато Ѕніміzu

#	Article	IF	CITATIONS
55	Biomarkers of Inflammation and Fibrosis in Kawasaki Disease Patients Years After Initial Presentation With Low Ejection Fraction. Journal of the American Heart Association, 2020, 9, e014569.	3.7	9
56	High-Throughput Screening of Kawasaki Disease Sera for Antiviral Antibodies. Journal of Infectious Diseases, 2020, 222, 1853-1857.	4.0	9
57	Pulmonary Artery Dilation and Right Ventricular Function in Acute Kawasaki Disease. Pediatric Cardiology, 2016, 37, 482-490.	1.3	6
58	Kawasaki Disease Patient Stratification and Pathway Analysis Based on Host Transcriptomic and Proteomic Profiles. International Journal of Molecular Sciences, 2021, 22, 5655.	4.1	6
59	Urotensin 2 in Kawasaki disease pathogenesis. Pediatric Research, 2017, 82, 1048-1055.	2.3	4
60	Temporal clustering of Kawasaki disease cases around the world. Scientific Reports, 2021, 11, 22584.	3.3	4
61	Bifid T waves on the ECG and genetic variation in <i>calcium channel voltageâ€dependent beta 2 subunit</i> gene (<i>CACNB2</i>) in acute Kawasaki disease. Congenital Heart Disease, 2019, 14, 213-220.	0.2	3
62	Biomarkers of inflammation and fibrosis in young adults with history of Kawasaki disease. IJC Heart and Vasculature, 2021, 36, 100863.	1.1	3
63	RNA Sequencing Reveals Beneficial Effects of Atorvastatin on Endothelial Cells in Acute Kawasaki Disease. Journal of the American Heart Association, 0, , .	3.7	2
64	Bridging a diagnostic Kawasaki disease classifier from a microarray platform to a qRT-PCR assay. Pediatric Research, 0, , .	2.3	1
65	Neutralization of SARS-CoV-2 Omicron and other variants in serum from children with vaccination-induced myocarditis. Clinical Infectious Diseases, 2022, , .	5.8	0