Daniel B Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3903139/publications.pdf

Version: 2024-02-01

257450 197818 2,413 60 24 49 h-index citations g-index papers 60 60 60 2033 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning between Quenching and Energy Transfer in DNA-Templated Heterodimer Aggregates. Journal of Physical Chemistry Letters, 2022, 13, 2782-2791.	4.6	15
2	Oblique Packing and Tunable Excitonic Coupling in DNAâ€Templated Squaraine Rotaxane Dimer Aggregates. ChemPhotoChem, 2022, 6, .	3.0	12
3	Characterizing Mode Anharmonicity and Huang–Rhys Factors Using Models of Femtosecond Coherence Spectra. Journal of Physical Chemistry Letters, 2022, 13, 5413-5423.	4.6	12
4	Rotaxane rings promote oblique packing and extended lifetimes in DNA-templated molecular dye aggregates. Communications Chemistry, 2021, 4, .	4.5	26
5	Signatures of Vibrational and Electronic Quantum Beats in Femtosecond Coherence Spectra. Journal of Physical Chemistry A, 2021, 125, 2425-2435.	2.5	12
6	Excited-State Lifetimes of DNA-Templated Cyanine Dimer, Trimer, and Tetramer Aggregates: The Role of Exciton Delocalization, Dye Separation, and DNA Heterogeneity. Journal of Physical Chemistry B, 2021, 125, 10240-10259.	2.6	26
7	Basis set truncation further clarifies vibrational coherence spectra. Chemical Physics, 2020, 539, 110948.	1.9	9
8	Fluorescence Quenching Effects of Tetrazines and Their Diels–Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angewandte Chemie - International Edition, 2020, 59, 22140-22149.	13.8	31
9	A systematic model study quantifying how conical intersection topography modulates photochemical reactions. Physical Chemistry Chemical Physics, 2020, 22, 20265-20283.	2.8	17
10	Fluorescence Quenching Effects of Tetrazines and Their Diels–Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angewandte Chemie, 2020, 132, 22324-22333.	2.0	6
11	Interference among Multiple Vibronic Modes in Two-Dimensional Electronic Spectroscopy. Mathematics, 2020, 8, 157.	2.2	11
12	Standardized specifications of 2D optical spectrometers. Results in Chemistry, 2019, 1, 100001.	2.0	7
13	Nonadiabatic Photochemistry Induced by Inaccessible Conical Intersections. Journal of Physical Chemistry A, 2019, 123, 7768-7776.	2.5	6
14	<i>E</i> to <i>Z</i> Photoisomerization of Phytochrome Cph1î" Exceeds the Bornâ€"Oppenheimer Adiabatic Limit. Journal of Physical Chemistry Letters, 2019, 10, 3550-3556.	4.6	9
15	Resolving the Fluorescence Quenching Mechanism of an Oxazine Dye Using Ultrabroadband Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 5072-5080.	2.5	11
16	Two-Dimensional Electronic Spectroscopy Reveals the Spectral Dynamics of Förster Resonance Energy Transfer. CheM, 2019, 5, 2111-2125.	11.7	15
17	Inertial water response dominates protein solvation dynamics. Chemical Physics Letters, 2019, 728, 1-5.	2.6	3
18	Addition of a Carbonyl End Group Increases the Rate of Excited-State Decay in a Carotenoid via Conjugation Extension and Symmetry Breaking. Journal of Physical Chemistry B, 2018, 122, 10872-10879.	2.6	1

#	Article	IF	CITATIONS
19	Femtosecond pulse compression using a neural-network algorithm. Optics Letters, 2018, 43, 5166.	3.3	19
20	Resonance is the key for coherence. Nature Chemistry, 2017, 9, 196-197.	13.6	5
21	A Tractable Numerical Model for Exploring Nonadiabatic Quantum Dynamics. Journal of Chemical Education, 2017, 94, 582-591.	2.3	4
22	Spin–Orbit Coupling Drives Femtosecond Nonadiabatic Dynamics in a Transition Metal Compound. Journal of Physical Chemistry Letters, 2017, 8, 1315-1322.	4.6	12
23	Signatures of Herzberg–Teller coupling in three-dimensional electronic spectroscopy. Journal of Chemical Physics, 2017, 146, 084311.	3.0	12
24	Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy. Nano Letters, 2017, 17, 2809-2815.	9.1	72
25	Conformational Homogeneity in the P _r Isomer of Phytochrome Cph1. Journal of Physical Chemistry B, 2017, 121, 2622-2630.	2.6	20
26	Triplet Separation Drives Singlet Fission after Femtosecond Correlated Triplet Pair Production in Rubrene. Journal of the American Chemical Society, 2017, 139, 11745-11751.	13.7	107
27	Coherent Two-Quantum Two-Dimensional Electronic Spectroscopy Using Incoherent Light. Journal of Physical Chemistry A, 2017, 121, 9211-9220.	2.5	0
28	Ultrabroadband two-quantum two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2016, 145, .	3.0	34
29	Broad-Band Pump–Probe Spectroscopy Quantifies Ultrafast Solvation Dynamics of Proteins and Molecules. Journal of Physical Chemistry Letters, 2016, 7, 4722-4731.	4.6	49
30	Experimental Detection of Branching at a Conical Intersection in a Highly Fluorescent Molecule. Journal of Physical Chemistry Letters, 2016, 7, 14-19.	4.6	56
31	Coherent Wavepacket Evolution Analysis Reveals a Conical Intersection in a Highly Fluorescent Molecule. , 2016, , .		0
32	Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2015, 143, 164203.	3.0	50
33	Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations. Journal of Physical Chemistry B, 2015, 119, 10025-10034.	2.6	50
34	Accurate convergence of transient-absorption spectra using pulsed lasers. Review of Scientific Instruments, 2015, 86, 053106.	1.3	41
35	Lineshape analysis of coherent multidimensional optical spectroscopy using incoherent light. Journal of Chemical Physics, 2015, 142, 212420.	3.0	3
36	Crossing disciplines ―A view on twoâ€dimensional optical spectroscopy. Annalen Der Physik, 2014, 526, 31-49.	2.4	77

3

#	Article	IF	Citations
37	Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State. Journal of Physical Chemistry B, 2014, 118, 1296-1308.	2.6	83
38	Coherent multidimensional optical spectra measured using incoherent light. Nature Communications, 2013, 4, 2298.	12.8	24
39	Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis. Journal of Physical Chemistry A, 2013, 117, 5926-5954.	2.5	16
40	Electronic and Vibrational Coherences in Algal Light-Harvesting Proteins. EPJ Web of Conferences, 2013, 41, 08004.	0.3	1
41	Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Physical Chemistry Chemical Physics, 2012, 14, 4857.	2.8	158
42	Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nature Chemistry, 2012, 4, 396-404.	13.6	110
43	Solar light harvesting by energy transfer: from ecology to coherence. Energy and Environmental Science, 2012, 5, 9374.	30.8	113
44	Exciton Superposition States in CdSe Nanocrystals Measured Using Broadband Two-Dimensional Electronic Spectroscopy. Nano Letters, 2012, 12, 880-886.	9.1	102
45	Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy. Physical Review B, 2012, 85, .	3.2	44
46	Comparison of Electronic and Vibrational Coherence Measured by Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 1904-1911.	4.6	181
47	Coherent two-exciton dynamics measured using two-quantum rephasing two-dimensional electronic spectroscopy. Physical Review B, 2011, 84, .	3.2	14
48	Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier. Review of Scientific Instruments, 2011, 82, 081301.	1.3	76
49	Multiple-quantum 2D spectroscopy of many-body correlations in GaAs quantum wells. , 2010, , .		0
50	Coherent measurements of high-order electronic correlations in quantum wells. Nature, 2010, 466, 1089-1092.	27.8	161
51	Selective Excitation of Resonances in 2D Fourier Transform Optical Spectroscopy with Tailored Pulse Shapes. , 2010, , .		0
52	Coherent Measurements of High-Order Electronic Correlations in GaAs Quantum Wells. , 2010, , .		1
53	Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells. Science, 2009, 324, 1169-1173.	12.6	262
54	Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells. Journal of Chemical Physics, 2009, 131, 144510.	3.0	73

#	Article	IF	CITATIONS
55	Excitonâ^'Exciton Correlations Revealed by Two-Quantum, Two-Dimensional Fourier Transform Optical Spectroscopy. Accounts of Chemical Research, 2009, 42, 1452-1461.	15.6	77
56	Three-Dimensional Electronic Four Wave-Mixing Spectroscopy in GaAs Quantum Wells. Springer Series in Chemical Physics, 2009, , 286-288.	0.2	1
57	Multidimensional coherent spectroscopy made easy. Chemical Physics, 2007, 341, 89-94.	1.9	63
58	Factorized time correlation diagram analysis of Raman induced Kerr effect spectroscopy using noisy light. Journal of Chemical Physics, 2003, 119, 10745-10752.	3.0	5
59	Factorized time correlation diagram analysis of paired causal systems excited by twin stochastic driving functions. Physical Review E, 2002, 65, 026142.	2.1	7
60	Two-Dimensional Electronic Spectroscopy Reveals the Spectral Dynamics of FÃ \P rster Resonance Energy Transfer. SSRN Electronic Journal, 0, , .	0.4	1