Jehâ€}eng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3902972/publications.pdf

Version: 2024-02-01

94 papers	2,431 citations	29 h-index	243625 44 g-index
110	110	110	2586
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient synthesis of unsymmetrical disulfides. Tetrahedron, 2011, 67, 8895-8901.	1.9	107
2	Facile, Selective, and Regiocontrolled Synthesis of Oxazolines and Oxazoles Mediated by Znl ₂ and FeCl ₃ . Organic Letters, 2012, 14, 4478-4481.	4.6	103
3	I ₂ –TBHP-Catalyzed Oxidative Cross-Coupling of <i>N</i> Isocyanides to 5-Aminopyrazoles. Organic Letters, 2015, 17, 1521-1524.	4.6	93
4	lodine-promoted cyclization of N-propynyl amides and N-allyl amides via sulfonylation and sulfenylation. Chemical Communications, 2016, 52, 11410-11413.	4.1	79
5	Design, Synthesis, and Biological Evaluation of Pyrrolo[2,1-c][1,4]benzodiazepine and Indole Conjugates as Anticancer Agents. Journal of Medicinal Chemistry, 2006, 49, 1442-1449.	6.4	71
6	Metal-Free, Acid-Promoted Synthesis of Imidazole Derivatives via a Multicomponent Reaction. Organic Letters, 2013, 15, 6116-6119.	4.6	71
7	Alkene <i>versus </i> alkyne reactivity in unactivated 1,6-enynes: regio- and chemoselective radical cyclization with chalcogens under metal- and oxidant-free conditions. Green Chemistry, 2020, 22, 2288-2300.	9.0	63
8	Discovery, Synthetic Methodology, and Biological Evaluation for Antiphotoaging Activity of Bicyclic[1,2,3]triazoles: In Vitro and in Vivo Studies. Journal of Medicinal Chemistry, 2013, 56, 5422-5435.	6.4	61
9	Iodineâ€Catalyzed, Stereo―and Regioselective Synthesis of 4â€Arylidineâ€4 <i>H</i> àâ€benzo[<i>d</i>][1,3]oxazines and their Applications for the Synthesis of Quinazoline 3â€Oxides. Advanced Synthesis and Catalysis, 2012, 354, 2218-2228.	4.3	59
10	Iron-Catalyzed Oxidative Direct α-C–H Bond Functionalization of Cyclic Ethers: Selective C–O Bond Formation in the Presence of a Labile Aldehyde Group. Organic Letters, 2014, 16, 1912-1915.	4.6	59
11	Synthesis, and biological evaluation of 2-(4-aminophenyl)benzothiazole derivatives as photosensitizing agents. Bioorganic and Medicinal Chemistry, 2010, 18, 6197-6207.	3.0	55
12	BF ₃ -Etherate-Promoted Cascade Reaction of 2-Alkynylanilines with Nitriles: One-Pot Assembly of 4-Amido-Cinnolines. Organic Letters, 2016, 18, 2890-2893.	4.6	54
13	Palladium-Catalyzed Double-Isocyanide Insertion via Oxidative N–O Cleavage of Acetyl Oximes: Syntheses of 2 <i>H</i> -Pyrrol-2-imines. Organic Letters, 2017, 19, 1172-1175.	4.6	53
14	Palladium(0)â€Catalyzed Single and Double Isonitrile Insertion: A Facile Synthesis of Benzofurans, Indoles, and Isatins. Chemistry - A European Journal, 2015, 21, 998-1003.	3.3	51
15	Comparison of a DSB-120 DNA Interstrand Cross-Linked Adduct with the Corresponding Bis-tomaymycin Adduct: An Example of a Successful Template-Directed Approach to Drug Design Based upon the Monoalkylating Compound Tomaymycin. Journal of Medicinal Chemistry, 1994, 37, 3132-3140.	6.4	47
16	A one-pot hypoiodite catalysed oxidative cycloetherification approach to benzoxazoles. Chemical Communications, 2014, 50, 6726-6728.	4.1	46
17	Copper-Catalyzed Oxidative Coupling of Formamides with Salicylaldehydes: Synthesis of Carbamates in the Presence of a Sensitive Aldehyde Group. Journal of Organic Chemistry, 2014, 79, 3206-3214.	3.2	45
18	Synthesis of Carbamates by Direct C–H Bond Activation of Formamides. European Journal of Organic Chemistry, 2012, 2012, 6760-6766.	2.4	44

#	Article	IF	Citations
19	Efficient synthesis of quinoxalines with hypervalent iodine as a catalyst. Tetrahedron, 2013, 69, 9735-9741.	1.9	43
20	Synthesis and biological evaluation of thiobenzanilides as anticancer agents. Bioorganic and Medicinal Chemistry, 2008, 16, 5295-5302.	3.0	41
21	Sustainable methine sources for the synthesis of heterocycles under metal- and peroxide-free conditions. Green Chemistry, 2019, 21, 979-985.	9.0	41
22	An Efficient Synthesis of Pyrrolo[2,1-c][1,4]benzodiazepine. Synthesis of the Antibiotic DC-81. Journal of Organic Chemistry, 2001, 66, 2881-2883.	3.2	39
23	Palladium(ii)-catalysed regioselective synthesis of 3,4-disubstituted quinolines and 2,3,5-trisubstituted pyrroles from alkenes via anti-Markovnikov selectivity. Chemical Communications, 2015, 51, 13795-13798.	4.1	37
24	Synthesis of Sulfurâ^'Sulfur Bond Formation from Thioamides Promoted by 2,3-Dichloro-5,6-dicyanobenzoquinone. Organic Letters, 2010, 12, 5570-5572.	4.6	36
25	Metal-free annulation/aerobic oxidative dehydrogenation of cyclohexanones with o-acylanilines: efficient syntheses of acridines. Green Chemistry, 2016, 18, 6241-6245.	9.0	35
26	A New Approach to 1,4-Oxazines and 1,4-Oxazepines via Base-Promoted Exo Mode Cyclization of Alkynyl Alcohols: Mechanism and DFT Studies. Organic Letters, 2012, 14, 3134-3137.	4.6	34
27	Silver(I)â€Catalyzed Coniaâ€Ene Reaction: Synthesis of 3â€Pyrrolines <i>via</i> a 5â€ <i>endo</i> â€ <i>dig</i> Cyclization. Advanced Synthesis and Catalysis, 2013, 355, 3570-3574.	4.3	31
28	An Ironâ€Catalyzed Cascade Approach to Benzo[<i>b</i>)carbazole Synthesis Followed by 1,4â€Sulfonyl Migration. Chemistry - A European Journal, 2015, 21, 3193-3197.	3.3	31
29	DC-81-Indole Conjugate Agent Induces Mitochondria Mediated Apoptosis in Human Melanoma A375 Cells. Chemical Research in Toxicology, 2007, 20, 905-912.	3.3	30
30	Synthesis, DNA-binding abilities and anticancer activities of triazole-pyrrolo[2,1-c][1,4]benzodiazepines hybrid scaffolds. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6854-6859.	2.2	30
31	Mild Access to Nâ€Formylation of Primary Amines using Ethers as C1 Synthons under Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2018, 360, 3960-3968.	4.3	30
32	Regio- and chemoselective synthesis of nitrogen-containing heterocycles $\langle i \rangle via \langle i \rangle$ the oxidative cascade cyclization of unactivated 1, $\langle i \rangle n \langle i \rangle$ -enynes. Chemical Communications, 2020, 56, 2051-2054.	4.1	27
33	Bis(dibenzylideneacetone)palladium(0)/ <i>tertâ€</i> Butyl Nitrite―Catalyzed Cyclization of <i>o</i> â€Alkynylanilines with <i>tertâ€</i> Butyl Nitrite: Synthesis and Applications of Indazole 2â€Oxides. Advanced Synthesis and Catalysis, 2017, 359, 2747-2753.	4.3	26
34	Oximes as reusable templates for the synthesis of ureas and carbamates by an in situ generation of carbamoyl oximes. Green Chemistry, 2017, 19, 4272-4277.	9.0	26
35	Synthesis and antitumor activity of novel enediyne-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrids. Bioorganic and Medicinal Chemistry, 2009, 17, 1172-1180.	3.0	24
36	A convenient method to construct (Z)-oxazines via 6-exo-dig iodocyclization and synthesis of indolin-3-one. Organic and Biomolecular Chemistry, 2013 , 11 , 6520 .	2.8	24

#	Article	IF	CITATIONS
37	Copperâ€Catalyzed Synthesis of Substituted 4â€Quinolones using Water as a Benign Reaction Media: Application for the Construction of Oxolinic Acid and BQCA. Advanced Synthesis and Catalysis, 2019, 361, 3373-3386.	4.3	24
38	Metal-free Câ€"H methylation and acetylation of heteroarenes with PEG-400. Green Chemistry, 2020, 22, 3506-3511.	9.0	23
39	Synthesis of fused triazolo [4,5-d] quinoline/chromene/thiochromene derivatives via palladium catalysis mediated by tetrabutylammonium iodide. RSC Advances, 2013, 3, 2710.	3.6	22
40	Sequential, Oneâ€Pot Access to Arylated Benzoquinones/Naphthoquinones from Phenols/Naphthols. European Journal of Organic Chemistry, 2016, 2016, 2284-2289.	2.4	22
41	A Palladium―and Copperâ€Catalyzed Synthesis of Dihydro[1,2â€ <i>b</i>]indenoindoleâ€9â€ol and Benzofuro[3,2â€ <i>b</i>]indolines: Metalâ€Controlled Intramolecular CC and CO Bondâ€Forming Reactions. Chemistry - A European Journal, 2015, 21, 17044-17050.	3.3	21
42	Chemical and Cytotoxic Constituents from the Stem of Machilus zuihoensis. Helvetica Chimica Acta, 2002, 85, 1909.	1.6	20
43	A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1α-mediated signaling. Toxicology and Applied Pharmacology, 2011, 255, 150-159.	2.8	20
44	Nickel―or Palladiumâ€Catalyzed Stereoselective Synthesis of Tetrasubstituted Olefinic Indolinesâ€Fused Triazoles: Extension to the Spiroindoline Core. Advanced Synthesis and Catalysis, 2013, 355, 3679-3693.	4.3	20
45	Synthesis of Fusedâ€Pyrazines <i>via</i> Palladiumâ€Catalyzed Double Benzyl Isocyanide Insertion and Crossâ€Dehydrogenative Coupling. Advanced Synthesis and Catalysis, 2018, 360, 491-501.	4.3	20
46	Photoinduced ynamide structural reshuffling and functionalization. Nature Communications, 2022, 13, 2345.	12.8	20
47	A K ₂ CO ₃ â€Mediated Regioselective Synthesis of Indole/Pyrroleâ€Fused 1,4â€Oxazines: An Unexpected Indoleâ€Fused Azlactone Synthesis. European Journal of Organic Chemistry, 2014, 2014, 6219-6226.	2.4	19
48	Copper-catalyzed selective C_O bond formation by oxidative \hat{i} ±-C(sp3)_H/O_H coupling between ethers and salicylaldehydes. Tetrahedron, 2015, 71, 2290-2297.	1.9	19
49	FeCl ₃ -Promoted ring size-dictating diversity-oriented synthesis (DOS) of N-heterocycles using <i>in situ</i> -generated cyclic imines and enamines. Chemical Communications, 2019, 55, 7542-7545.	4.1	19
50	New Meroditerpenoids from a Taiwanese Marine Sponge <i>Strongylophora Durissima </i> Journal of the Chinese Chemical Society, 2000, 47, 567-570.	1.4	18
51	Novel Examples of 3-Aza-Grob Fragmentation. Journal of Organic Chemistry, 2000, 65, 4208-4209.	3.2	18
52	A new approach for fused isoindolines via hexadehydro-Diels–Alder reaction (HDDA) by Fe(0) catalysis. RSC Advances, 2014, 4, 57547-57552.	3.6	17
53	Apoptosis Induced by 2-Aryl Benzothiazoles-Mediated Photodynamic Therapy in Melanomas via Mitochondrial Dysfunction. Chemical Research in Toxicology, 2014, 27, 1187-1198.	3.3	17
54	A Palladium atalyzed Domino Approach to 2,3â€Disubstituted Benzofurans <i>via</i> an Intermolecular Carbopalladation/C(<i>sp</i> ³)â°'H Functionalization/Isomerization Sequence. Advanced Synthesis and Catalysis, 2016, 358, 2984-2989.	4.3	17

#	Article	IF	CITATIONS
55	Acid-Promoted Intramolecular Decarbonylative Coupling Reactions of Unstrained Ketones: A Modular Approach to Synthesis of Acridines and Diaryl Ketones. Organic Letters, 2020, 22, 1955-1960.	4.6	17
56	A simple and efficient method for constructing azepino[4,5-b]indole derivatives via acid catalysis. Organic and Biomolecular Chemistry, 2017, 15, 1872-1875.	2.8	16
57	Induction of Apoptosis by DC-81-Indole Conjugate Agent Through NF-κB and JNK/AP-1 Pathway. Chemical Research in Toxicology, 2008, 21, 1330-1336.	3.3	15
58	Time and Atom Economical Regio―and Chemoselective Radical Cyclization of Unactivated 1,6â€Enynes Under Metal―and Oxidantâ€Free Conditions. Chemistry - A European Journal, 2022, 28, .	3.3	15
59	Palladiumâ€Catalyzed Regioselective Synthesis of 1 â€Benzoazepine Carbonitriles from <i>>o</i> à€Alkynylanilines via 7 â€ <i>>endo</i> à6€dig Annulation and Cyanation. Advanced Synthesis and Catalysis, 2018, 360, 4754-4763.	4.3	14
60	Novel 3-Aza-Grob Fragmentation in Hydride Reduction of Ether-Protected Aromatic Lactams. Journal of Organic Chemistry, 1999, 64, 5725-5727.	3.2	13
61	DC-81-enediyne induces apoptosis of human melanoma A375 cells: involvement of the ROS, p38 MAPK, and AP-1 signaling pathways. Cell Biology and Toxicology, 2013, 29, 85-99.	5.3	13
62	Au(<scp>i</scp>)-catalyzed synthesis of 8-oxabicyclo[3.2.1]oct-2-enes and 9-oxabicyclo[3.3.1]nona-2,6-dienes from enynol via oxonium/Prins-type cyclization. Chemical Communications, 2015, 51, 12435-12438.	4.1	12
63	ZnBr ₂ -Mediated Cascade Reaction of <i>>o</i> -Alkoxy Alkynols: Synthesis of Indeno[1,2- <i>c</i>]chromenes. Organic Letters, 2017, 19, 488-491.	4.6	12
64	Efficient Approach to Amide Bond Formation with Nitriles and Peroxides: Oneâ€Pot Access to Boronated βâ€Ketoamides. Advanced Synthesis and Catalysis, 2017, 359, 3014-3021.	4.3	12
65	Silver(I)â€Catalyzed Tandem Approach to βâ€Oxo Amides. European Journal of Organic Chemistry, 2015, 2015, 3171-3177.	2.4	11
66	Unraveling innate substrate-controlled arylation and bicyclization of 1,5-enynes with $\hat{l}\pm,\hat{l}^2$ conjugates: synthesis of substituted benzo[<i>a</i>) fluorenes. Green Chemistry, 2021, 23, 4144-4149.	9.0	11
67	Aryl λ ³ â€lodaneâ€Mediated 6â€ <i>exo</i> â€ <i>trig</i> Cyclization to Synthesize Highly Substitute Chiral Morpholines. Advanced Synthesis and Catalysis, 2015, 357, 2788-2794.	d _{4.3}	10
68	Metal-free cycloaddition to synthesize naphtho[2,3-d][1,2,3]triazole-4,9-diones. Organic and Biomolecular Chemistry, 2015, 13, 9261-9266.	2.8	10
69	Design and synthesis of pyrrolobenzodiazepine-gallic hybrid agents as p53-dependent and -independent apoptogenic signaling in melanoma cells. European Journal of Medicinal Chemistry, 2016, 109, 59-74.	5.5	10
70	Palladium-Catalyzed Intramolecular Cross-Dehydrogenative Coupling: Synthesis of Fused Imidazo[1,2- <i>a</i>]pyrimidines and Pyrazolo[1,5- <i>a</i>]pyrimidines. ACS Omega, 2017, 2, 11-19.	3.5	10
71	<i>>p</i> -TsOH promoted synthesis of benzo-fused O-heterocycles from alkynols <i>via</i> ring contraction and C–O scission strategy. Green Chemistry, 2018, 20, 3420-3425.	9.0	10
72	A sequential one-pot approach to 1,2,4,5-tetrasubstituted-2H-imidazole synthesis from disubstituted alkynes. New Journal of Chemistry, 2015, 39, 6914-6918.	2.8	9

#	Article	IF	CITATIONS
73	Arsenic leads to autophagy of keratinocytes by increasing aquaporin 3 expression. Scientific Reports, 2021, 11, 17523.	3.3	9
74	Pyrrolo [2,1-c] [1,4] benzodiazepine and indole conjugate (IN6CPBD) has better efficacy and superior safety than the mother compound DC-81 in suppressing the growth of established melanoma in vivo. Chemico-Biological Interactions, 2009, 180, 360-367.	4.0	8
75	Rapid Access to Indeno[1,2â€∢i>c)]quinolines <i>via</i>) Brønsted Acid―Catalyzed Cascade Reaction. Advanced Synthesis and Catalysis, 2017, 359, 1844-1848.	4.3	8
76	Metal-Free Solvent/Base-Switchable Divergent Synthesis of Multisubstituted Dihydrofurans. Organic Letters, 2020, 22, 6160-6165.	4.6	8
77	Photodynamic Therapy Using Indolines-Fused-Triazoles Induces Mitochondrial Apoptosis in Human Non-Melanoma BCC Cells. , 2017, 37, 5499-5505.		8
78	Diacid architecture effect on the synthesis and microstructure of rigid-rod poly(benzobisthiazole)s. Polymer International, 2006, 55, 1450-1455.	3.1	7
79	Unusual C ₃ -acetylation of quinoxalin-2(1 <i>H</i>)-one <i>via</i> oxidative C–C and C–O bond cleavages of PEG-400. Organic and Biomolecular Chemistry, 2021, 19, 5567-5571.	2.8	7
80	ortho-Amide-Directed Oxidation of Internal Aryl Alkynes Mediated by Cerium(IV) Ammonium Nitrate. Synlett, 2012, 23, 2132-2136.	1.8	6
81	Probing the structural diversities of long alpha-neurotoxins by fluorescence quenching studies. The Protein Journal, 2001, 20, 115-121.	1.1	5
82	A Bioorthogonally Synthesized and Disulfide-Containing Fluorescence Turn-On Chemical Probe for Measurements of Butyrylcholinesterase Activity and Inhibition in the Presence of Physiological Glutathione. Catalysts, 2020, 10, 1169.	3.5	5
83	An Efficient Approach to Functionalized Indoles from λ ³ ″odanes via Acyloxylation and Acyl Transfer. Advanced Synthesis and Catalysis, 2020, 362, 2911-2920.	4.3	5
84	Lewis Acid Catalyzed Atom-Economic Synthesis of C2-Substituted Indoles from <i>o</i> -Amido Alkynols. Organic Letters, 2020, 22, 3531-3536.	4.6	5
85	A Simple Visible Recognition Method for Copper Ions Using Dibenzo[b,j][1,10]Phenanthroline Scaffold as a Colorimetric Sensor. Chemosensors, 2021, 9, 7.	3.6	5
86	Visible light-assisted Ni-/Ir-catalysed atom-economic synthesis of spiro[furan-3,1′-indene] derivatives. Chemical Communications, 2022, 58, 4087-4090.	4.1	5
87	Copper-catalyzed one-pot process to construct triazole-linked urea derivatives. Synthetic Communications, 2016, 46, 1612-1618.	2.1	4
88	De Novo Protocol for the Construction of Benzo[<i>a</i>]fluorenes via Nitrile/Alkene Activation. Organic Letters, 2020, 22, 7848-7852.	4.6	4
89	A metal-free strategy for the cross-dehydrogenative coupling of 1,3-dicarbonyl compounds with 2-methoxyethanol. Organic and Biomolecular Chemistry, 2022, 20, 1226-1230.	2.8	4
90	Halogenation of Arenes via an In situ Generated Hypohalous Acid from ⟨i⟩m⟨ i⟩ PBA and HX: Mechanistic Insights from Cyclic Voltammetry. ChemistrySelect, 2016, 1, 2207-2211.	1.5	3

#	Article	IF	CITATIONS
91	Involvement of cytotoxicity and variation of the mitochondrial membrane potential induced by hybrid agent. Drug Development Research, 2004, 61, 1-5.	2.9	1
92	Bis(phenylidenebenzeneamine)-1-disulfide Derivatives Induce Autophagy in Melanoma Cells Through a Mitochondria-mediated Pathway. Anticancer Research, 2015, 35, 6075-80.	1.1	1
93	Sensitive Assay for the Lactonase Activity of Serum Paraoxonase 1 (PON1) by Harnessing the Fluorescence Turn-On Characteristics of Bioorthogonally Synthesized and Geometrically Controlled Chemical Probes. Molecules, 2022, 27, 2435.	3.8	1
94	DBUâ€Promoted Synthesis of 1,3â€Benzoxazines from Geminal Dibromo Olefins: Applications to the Construction of o â€Amido Phenacyl Bromides. ChemistrySelect, 2020, 5, 3778-3783.	1.5	0