
Neus Bastus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3901313/publications.pdf Version: 2024-02-01

NEUS RASTUS

#	Article	IF	CITATIONS
1	Pharmacokinetics of PEGylated Gold Nanoparticles: In Vitro—In Vivo Correlation. Nanomaterials, 2022, 12, 511.	4.1	20
2	Antibacterial Films Based on MOF Composites that Release Iodine Passively or Upon Triggering by Nearâ€Infrared Light. Advanced Functional Materials, 2022, 32, .	14.9	23
3	Heterogeneous Rate Constant for Amorphous Silica Nanoparticle Adsorption on Phospholipid Monolayers. Langmuir, 2022, 38, 5372-5380.	3.5	5
4	Pathways Related to NLRP3 Inflammasome Activation Induced by Gold Nanorods. International Journal of Molecular Sciences, 2022, 23, 5763.	4.1	1
5	Introducing visible-light sensitivity into photocatalytic CeO ₂ nanoparticles by hybrid particle preparation exploiting plasmonic properties of gold: enhanced photoelectrocatalysis exemplified for hydrogen peroxide sensing. Nanoscale, 2021, 13, 980-990.	5.6	13
6	Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation. Journal of Hazardous Materials, 2021, 402, 123793.	12.4	20
7	Antibody cooperative adsorption onto AuNPs and its exploitation to force natural killer cells to kill HIV-infected T cells. Nano Today, 2021, 36, 101056.	11.9	7
8	Formation and evolution of the nanoparticle environmental corona: The case of Au and humic acid. Science of the Total Environment, 2021, 768, 144792.	8.0	22
9	Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening. Small, 2021, 17, 2006012.	10.0	24
10	Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. Environmental Science: Nano, 2020, 7, 3216-3232.	4.3	17
11	Nanocrystal–Molecular Hybrids for the Photocatalytic Oxidation of Water. ACS Applied Energy Materials, 2020, 3, 10008-10014.	5.1	5
12	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small, 2020, 16, e2000598.	10.0	35
13	Increasing complexity of nanocrystals. Nano Today, 2020, 32, 100859.	11.9	0
14	Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. Nanomaterials, 2020, 10, 545.	4.1	55
15	MOF-Beads Containing Inorganic Nanoparticles for the Simultaneous Removal of Multiple Heavy Metals from Water. ACS Applied Materials & Interfaces, 2020, 12, 10554-10562.	8.0	89
16	Understanding galvanic replacement reactions: the case of Pt and Ag. Materials Today Advances, 2020, 5, 100037.	5.2	23
17	A lab-on-a-chip system with an embedded porous membrane-based impedance biosensor array for nanoparticle risk assessment on placental Bewo trophoblast cells. Sensors and Actuators B: Chemical, 2020, 312, 127946.	7.8	34
18	Dynamic Equilibrium in the Cetyltrimethylammonium Bromide–Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona. Bioconjugate Chemistry, 2019, 30, 2917-2930.	3.6	22

NEUS BASTUS

#	Article	IF	CITATIONS
19	Seeded-Growth Aqueous Synthesis of Colloidal-Stable Citrate-Stabilized Au/CeO ₂ Hybrid Nanocrystals: Heterodimers, Core@Shell, and Clover- and Star-Like Structures. Chemistry of Materials, 2019, 31, 7922-7932.	6.7	17
20	Mechanomodulation of Lipid Membranes by Weakly Aggregating Silver Nanoparticles. Biochemistry, 2019, 58, 4761-4773.	2.5	7
21	Robust one-pot synthesis of citrate-stabilized Au@CeO2 hybrid nanocrystals with different thickness and dimensionality. Applied Materials Today, 2019, 15, 445-452.	4.3	9
22	Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Scientific Reports, 2019, 9, 18776.	3.3	13
23	Assessment of iron oxide nanoparticle ecotoxicity on regeneration and homeostasis in the replacement model system Schmidtea mediterranea. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 583-596.	1.5	5
24	Fluorescently labelled nanomaterials in nanosafety research: Practical advice to avoid artefacts and trace unbound dye. NanoImpact, 2018, 9, 102-113.	4.5	21
25	Sequential Deconstruction–Reconstruction of Metal–Organic Frameworks: An Alternative Strategy for Synthesizing (Multi)-Layered ZIF Composites. ACS Applied Materials & Interfaces, 2018, 10, 23952-23960.	8.0	10
26	Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis. Chemistry of Materials, 2018, 30, 5098-5107.	6.7	27
27	Nanosafety: Towards Safer Nanoparticles by Design. Current Medicinal Chemistry, 2018, 25, 4587-4601.	2.4	19
28	Probing the surface reactivity of nanocrystals by the catalytic degradation of organic dyes: the effect of size, surface chemistry and composition. Journal of Materials Chemistry A, 2017, 5, 11917-11929.	10.3	49
29	Core–shell Au/CeO ₂ nanoparticles supported in UiO-66 beads exhibiting full CO conversion at 100 °C. Journal of Materials Chemistry A, 2017, 5, 13966-13970.	10.3	24
30	Seeded Growth Synthesis of Au–Fe ₃ O ₄ Heterostructured Nanocrystals: Rational Design and Mechanistic Insights. Chemistry of Materials, 2017, 29, 4022-4035.	6.7	67
31	Modeling the Optical Responses of Noble Metal Nanoparticles Subjected to Physicochemical Transformations in Physiological Environments: Aggregation, Dissolution and Oxidation. Zeitschrift Fur Physikalische Chemie, 2017, 231, 33-50.	2.8	13
32	Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Seminars in Immunology, 2017, 34, 52-60.	5.6	191
33	One-Pot Synthesis of Cationic Gold Nanoparticles by Differential Reduction. Zeitschrift Fur Physikalische Chemie, 2017, 231, 7-18.	2.8	4
34	Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjugate Chemistry, 2017, 28, 88-97.	3.6	264
35	Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications. Nanophotonics, 2017, 6, 193-213.	6.0	107
36	Shell or Dots â^' Precursor Controlled Morphology of Au–Se Deposits on CdSe Nanoparticles. Chemistry of Materials, 2016, 28, 2704-2714.	6.7	8

NEUS BASTUS

#	Article	IF	CITATIONS
37	Hollow metal nanostructures for enhanced plasmonics (Conference Presentation). , 2016, , .		0
38	One-pot polyol synthesis of highly monodisperse short green silver nanorods. Chemical Communications, 2016, 52, 10960-10963.	4.1	20
39	The influence of the MOF shell thickness on the catalytic performance of composites made of inorganic (hollow) nanoparticles encapsulated into MOFs. Catalysis Science and Technology, 2016, 6, 8388-8391.	4.1	18
40	Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties Chemistry of Materials, 2016, 28, 1066-1075.	6.7	419
41	Quantifying the Sensitivity of Multipolar (Dipolar, Quadrupolar, and Octapolar) Surface Plasmon Resonances in Silver Nanoparticles: The Effect of Size, Composition, and Surface Coating. Langmuir, 2016, 32, 290-300.	3.5	104
42	Tuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures. ACS Photonics, 2016, 3, 770-779.	6.6	49
43	Enhanced reactivity of high-index surface platinum hollow nanocrystals. Journal of Materials Chemistry A, 2016, 4, 200-208.	10.3	32
44	SERS efficiencies of micrometric polystyrene beads coated with gold and silver nanoparticles: the effect of nanoparticle size. Journal of Optics (United Kingdom), 2015, 17, 114012.	2.2	33
45	Exploring New Synthetic Strategies for the Production of Advanced Complex Inorganic Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2015, 229, 65-83.	2.8	9
46	Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chemistry of Materials, 2014, 26, 2836-2846.	6.7	699
47	Little Adjustments Significantly Improve the Turkevich Synthesis of Gold Nanoparticles. Langmuir, 2014, 30, 10779-10784.	3.5	155
48	Effect of the Spacer Structure on the Stability of Gold Nanoparticles Functionalized with Monodentate Thiolated Poly(ethylene glycol) Ligands. Langmuir, 2013, 29, 9897-9908.	3.5	80
49	Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes. Nanoscale, 2013, 5, 7433.	5.6	39
50	Radical Initiated Reactions on Biocompatible CdSe-Based Quantum Dots: Ligand Cross-Linking, Crystal Annealing, and Fluorescence Enhancement. Journal of Physical Chemistry C, 2013, 117, 8570-8578.	3.1	21
51	<i>In Situ</i> Functionalization and PEO Coating of Iron Oxide Nanocrystals Using Seeded Emulsion Polymerization. Langmuir, 2013, 29, 4915-4921.	3.5	26
52	Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions. Nanoscale, 2013, 5, 10605.	5.6	25
53	A general route towards well-defined magneto- or fluorescent-plasmonic nanohybrids. Nanoscale, 2013, 5, 11783.	5.6	22
54	Characterizing Nanoparticles Reactivity: Structure-Photocatalytic Activity Relationship. Journal of Physics: Conference Series, 2013, 429, 012040.	0.4	4

NEUS BASTUS

#	Article	IF	CITATIONS
55	Inorganic nanoparticles and the immune system: detection, selective activation and tolerance. , 2012, , .		Ο
56	Tunable Plasmon Coupling in Distance-Controlled Gold Nanoparticles. Langmuir, 2012, 28, 8862-8866.	3.5	85
57	Influence of the Sequence of the Reagents Addition in the Citrate-Mediated Synthesis of Gold Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 15752-15757.	3.1	136
58	Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 2011, 11, 4742-4747.	9.1	14
59	Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir, 2011, 27, 11098-11105.	3.5	1,394
60	Analysis of time-dependent conjugation of gold nanoparticles with an antiparkinsonian molecule by using curve resolution methods. Analytica Chimica Acta, 2011, 683, 170-177.	5.4	4
61	Small Gold Nanoparticles Synthesized with Sodium Citrate and Heavy Water: Insights into the Reaction Mechanism. Journal of Physical Chemistry C, 2010, 114, 1800-1804.	3.1	207
62	Growth and reductive transformation of a gold shell around pyramidal cadmium selenide nanocrystals. Journal of Materials Chemistry, 2010, 20, 10602.	6.7	22
63	Inorganic Engineered Nanoparticles and Their Impact on the Immune Response. Current Drug Metabolism, 2009, 10, 895-904.	1.2	25
64	Shuttling Gold Nanoparticles into Tumoral Cells with an Amphipathic Prolineâ€Rich Peptide. ChemBioChem, 2009, 10, 1025-1031.	2.6	50
65	Peptides conjugated to gold nanoparticles induce macrophage activation. Molecular Immunology, 2009, 46, 743-748.	2.2	130
66	Homogeneous Conjugation of Peptides onto Gold Nanoparticles Enhances Macrophage Response. ACS Nano, 2009, 3, 1335-1344.	14.6	148
67	Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis. Nanoscale Research Letters, 2008, 3, .	5.7	75
68	Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. TrAC - Trends in Analytical Chemistry, 2008, 27, 672-683.	11.4	120
69	Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology, 2008, 2, 99-112.	3.0	52
70	Gold nanoparticles for selective and remote heating of β-amyloid protein aggregates. Materials Science and Engineering C, 2007, 27, 1236-1240.	7.3	38
71	Nanoparticle-Mediated Local and Remote Manipulation of Protein Aggregation. Nano Letters, 2006, 6, 110-115.	9.1	305
72	Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nature Materials, 2004, 3, 263-268.	27.5	297