List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3900278/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Propagating characteristics of waves on a thin layer of mud. Journal of Hydrodynamics, 2021, 33, 1078-1088.                                                                                                                 | 3.2 | 0         |
| 2  | Starting Poiseuille Flow in a Circular Tube With Two Immiscible Fluids. Journal of Fluids Engineering,<br>Transactions of the ASME, 2019, 141, .                                                                            | 1.5 | 4         |
| 3  | The Effects of Thermocapillarity on the Thin Film Flow of MHD UCM Fluid over an Unsteady Elastic<br>Surface with Convective Boundary Conditions. International Journal of Thermofluid Science and<br>Technology, 2019, 6, . | 0.3 | 2         |
| 4  | Rotating electroosmotic flow in a non-uniform microchannel. Meccanica, 2018, 53, 2105-2120.                                                                                                                                 | 2.0 | 8         |
| 5  | Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential. International Journal of Heat and Mass Transfer, 2018, 119, 52-64.                                         | 4.8 | 26        |
| 6  | Interaction between oblique waves and multiple bottom-standing flexible porous barriers near a rigid wall. Meccanica, 2018, 53, 871-885.                                                                                    | 2.0 | 27        |
| 7  | Effect of a Submerged Porous Plate on the Hydroelastic Response of a Very Large Floating Structure.<br>Journal of Marine Science and Application, 2018, 17, 564-577.                                                        | 1.7 | 12        |
| 8  | End loss for Stokes flow through a slippery circular pore in a barrier of finite thickness. Physics of Fluids, 2018, 30, .                                                                                                  | 4.0 | 3         |
| 9  | Oblique wave scattering by a floating elastic plate over a porous bed in single and two-layer fluid systems. Ocean Engineering, 2018, 159, 280-294.                                                                         | 4.3 | 33        |
| 10 | Starting flow in channels with boundary slip. Meccanica, 2017, 52, 45-67.                                                                                                                                                   | 2.0 | 5         |
| 11 | Mixed Convective Flow of a Casson Fluid over a Vertical Stretching Sheet. International Journal of Applied and Computational Mathematics, 2017, 3, 1619-1638.                                                               | 1.6 | 14        |
| 12 | Rotating electroosmotic flow of an Eyring fluid. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 295-315.                                                                                                                     | 3.4 | 11        |
| 13 | MHD squeeze flow and heat transfer of a nanofluid between parallel disks with variable fluid<br>properties and transpiration. International Journal of Mechanical and Materials Engineering, 2017, 12, .                    | 2.2 | 33        |
| 14 | Effective slip for Stokes flow between two grooved walls with an arbitrary phase shift. Fluid<br>Dynamics Research, 2017, 49, 025516.                                                                                       | 1.3 | 1         |
| 15 | MHD Flow and Heat Transfer Over a Slender Elastic Permeable Sheet in a Rotating Fluid with Hall<br>Current. International Journal of Applied and Computational Mathematics, 2017, 3, 3175-3200.                             | 1.6 | 5         |
| 16 | Pressure loss in channel flow resulting from a sudden change in boundary condition from no-slip to partial-slip. Physics of Fluids, 2017, 29, 103603.                                                                       | 4.0 | 8         |
| 17 | Rotating electroosmotic flow of viscoplastic material between two parallel plates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 355-366.                                                    | 4.7 | 30        |
| 18 | Effective slip for flow through a channel bounded by lubricant-impregnated grooved surfaces.<br>Theoretical and Computational Fluid Dynamics, 2017, 31, 189-209.                                                            | 2.2 | 12        |

CHIU-ON NG

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effective slip for flow in a rotating channel bounded by stick-slip walls. Physical Review E, 2016, 94, 063115.                                                                                                              | 2.1 | 1         |
| 20 | Wave Scattering by a Partial Flexible Porous Barrier in the Presence of a Step-Type Bottom Topography.<br>Coastal Engineering Journal, 2016, 58, 1650008-1-1650008-26.                                                       | 1.9 | 19        |
| 21 | Effects of a depletion layer on flow in a rotating channel. Mechanics Research Communications, 2016, 76, 57-63.                                                                                                              | 1.8 | 1         |
| 22 | STABILITY OF COUPLE STRESS FLUID FLOW THROUGH A HORIZONTAL POROUS LAYER. Journal of Porous Media, 2016, 19, 391-404.                                                                                                         | 1.9 | 12        |
| 23 | Electroosmotic flow of a power-law fluid through an asymmetrical slit microchannel with gradually varying wall shape and wall potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 26-37. | 4.7 | 20        |
| 24 | A thermal non-equilibrium model with Cattaneo effect for convection in a Brinkman porous layer.<br>International Journal of Non-Linear Mechanics, 2015, 71, 39-47.                                                           | 2.6 | 22        |
| 25 | Natural Convection for Slip Flow in a Vertical Polygonal Duct. Journal of Thermophysics and Heat<br>Transfer, 2015, 29, 117-126.                                                                                             | 1.6 | 2         |
| 26 | Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer. International<br>Journal of Heat and Mass Transfer, 2015, 84, 167-177.                                                                      | 4.8 | 44        |
| 27 | Electro-osmotic dispersion in a circular tube with slip-stick striped wall. Fluid Dynamics Research, 2015, 47, 015502.                                                                                                       | 1.3 | 4         |
| 28 | Electro-osmotic flow in a rotating rectangular microchannel. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2015, 471, 20150200.                                                    | 2.1 | 32        |
| 29 | Electroosmotic flow of a power-law fluid in a slit microchannel with gradually varying channel height and wall potential. European Journal of Mechanics, B/Fluids, 2015, 52, 160-168.                                        | 2.5 | 25        |
| 30 | Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid. Acta Mechanica, 2015, 226, 3763-3779.                                                                          | 2.1 | 12        |
| 31 | Numerical study of interactive motion of dielectrophoretic particles. European Journal of Mechanics,<br>B/Fluids, 2015, 49, 208-216.                                                                                         | 2.5 | 27        |
| 32 | Natural Convection in a Vertical Microannulus with Superhydrophobic Slip and Temperature Jump.<br>Journal of Thermophysics and Heat Transfer, 2014, 28, 287-294.                                                             | 1.6 | 7         |
| 33 | Temperature Jump Coefficient for Superhydrophobic Surfaces. Journal of Heat Transfer, 2014, 136, .                                                                                                                           | 2.1 | 25        |
| 34 | Natural Convection in a Vertical Slit Microchannel With Superhydrophobic Slip and Temperature<br>Jump. Journal of Heat Transfer, 2014, 136, .                                                                                | 2.1 | 14        |
| 35 | Electroosmotic flow of a power-law fluid in a non-uniform microchannel. Journal of Non-Newtonian<br>Fluid Mechanics, 2014, 208-209, 118-125.                                                                                 | 2.4 | 51        |
| 36 | Stability of fluid flow in a Brinkman porous medium—A numerical study. Journal of Hydrodynamics, 2014, 26, 681-688.                                                                                                          | 3.2 | 17        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dispersion in oscillatory electro-osmotic flow through a parallel-plate channel with kinetic sorptive exchange at walls. Journal of Hydrodynamics, 2014, 26, 363-373.                                                                     | 3.2 | 15        |
| 38 | Ferromagnetic Convection in a Heterogeneous Porous Medium. Arabian Journal for Science and Engineering, 2014, 39, 7265-7274.                                                                                                              | 1.1 | 3         |
| 39 | Oscillatory electro-osmotic flow through a slit channel with slipping stripes on walls. Fluid<br>Dynamics Research, 2013, 45, 025507.                                                                                                     | 1.3 | 4         |
| 40 | Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties. Nonlinear Analysis: Real World Applications, 2013, 14, 455-464.                                                          | 1.7 | 103       |
| 41 | Electrohydrodynamic instability of a rotating couple stress dielectric fluid layer. International<br>Journal of Heat and Mass Transfer, 2013, 62, 761-771.                                                                                | 4.8 | 23        |
| 42 | The effect of variable viscosity on the flow and heat transfer of a viscous Ag-water and Cu-water nanofluids. Journal of Hydrodynamics, 2013, 25, 1-9.                                                                                    | 3.2 | 61        |
| 43 | Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel.<br>Journal of Non-Newtonian Fluid Mechanics, 2013, 198, 1-9.                                                                                | 2.4 | 63        |
| 44 | An Exact, Fully Nonlinear Solution of the Poisson-Boltzmann Equation with Anti-symmetric Electric<br>Potential Profiles. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, .                                | 1.0 | 2         |
| 45 | Electroosmotic flow of a viscoplastic material through a slit channel with walls of arbitrary zeta potential. Physics of Fluids, 2013, 25, .                                                                                              | 4.0 | 18        |
| 46 | Dispersion in Electro-Osmotic Flow Through a Slit Channel With Axial Step Changes of Zeta Potential.<br>Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .                                                             | 1.5 | 10        |
| 47 | Dispersion due to Electroosmotic Flow Through a Circular Tube With Axial Step Changes of Zeta<br>Potential and Hydrodynamic Slippage. , 2013, , .                                                                                         |     | 0         |
| 48 | Stagnation Flow on a Heated Vertical Plate With Surface Slip. Journal of Heat Transfer, 2013, 135, .                                                                                                                                      | 2.1 | 11        |
| 49 | Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage. Fluid Dynamics Research, 2012, 44, 055507.                                                                                   | 1.3 | 21        |
| 50 | Theoretical and experimental study of particle trajectories for nonlinear water waves propagating on<br>a sloping bottom. Philosophical Transactions Series A, Mathematical, Physical, and Engineering<br>Sciences, 2012, 370, 1543-1571. | 3.4 | 14        |
| 51 | Hydrodynamic interactions among multiple circular cylinders in an inviscid flow. Journal of Fluid<br>Mechanics, 2012, 712, 505-530.                                                                                                       | 3.4 | 2         |
| 52 | Unsteady flow and heat transfer in a thin film of Ostwald–de Waele liquid over a stretching surface.<br>Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4163-4173.                                                | 3.3 | 38        |
| 53 | Dispersion due to electroosmotic flow in a circular microchannel with slowly varying wall potential and hydrodynamic slippage. Physics of Fluids, 2012, 24, .                                                                             | 4.0 | 46        |
| 54 | Electroosmotic Flow Through a Circular Tube With Slip-Stick Striped Wall. Journal of Fluids<br>Engineering, Transactions of the ASME, 2012, 134, .                                                                                        | 1.5 | 11        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | On the time development of dispersion in electroosmotic flow through a rectangular channel. Acta<br>Mechanica Sinica/Lixue Xuebao, 2012, 28, 631-643.                                           | 3.4 | 17        |
| 56 | MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface. Applied Mathematics and Mechanics (English Edition), 2012, 33, 899-910.                    | 3.6 | 30        |
| 57 | A New Lagrangian Asymptotic Solution for Gravity–Capillary Waves in Water of Finite Depth. Journal of Mathematical Fluid Mechanics, 2012, 14, 79-94.                                            | 1.0 | 8         |
| 58 | Dispersion in electroosmotic flow generated by oscillatory electric field interacting with oscillatory wall potentials. Microfluidics and Nanofluidics, 2012, 12, 237-256.                      | 2.2 | 26        |
| 59 | Electrokinetic flows through a parallel-plate channel with slipping stripes on walls. Physics of Fluids, 2011, 23, .                                                                            | 4.0 | 41        |
| 60 | Slip flow due to a stretching cylinder. International Journal of Non-Linear Mechanics, 2011, 46, 1191-1194.                                                                                     | 2.6 | 110       |
| 61 | Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature. International Journal of Heat and Mass Transfer, 2011, 54, 4960-4965.             | 4.8 | 42        |
| 62 | Effective slip for Stokes flow over a surface patterned with two- or three-dimensional protrusions.<br>Fluid Dynamics Research, 2011, 43, 065504.                                               | 1.3 | 46        |
| 63 | Ferromagnetic Convection in a Heterogeneous Darcy Porous Medium Using a Local Thermal<br>Non-equilibrium (LTNE) Model. Transport in Porous Media, 2011, 90, 529-544.                            | 2.6 | 7         |
| 64 | How does wall slippage affect hydrodynamic dispersion?. Microfluidics and Nanofluidics, 2011, 10, 47-57.                                                                                        | 2.2 | 30        |
| 65 | Electrohydrodynamic Dispersion of Deformable Aerosols in the Presence of an Electric Field and<br>Chemical Reaction Using Taylor Dispersion Model. Journal of Hydrodynamics, 2011, 23, 247-257. | 3.2 | 2         |
| 66 | Numerical Analysis of the Performance of Horizontal and Wavy Subsurface Flow Constructed Wetlands. Journal of Hydrodynamics, 2011, 23, 339-347.                                                 | 3.2 | 9         |
| 67 | Mass transport due to oscillatory flow through a prestressed viscoelastic tube with a retentive and absorptive wall. European Journal of Mechanics, B/Fluids, 2011, 30, 195-205.                | 2.5 | 1         |
| 68 | The onset of electrothermoconvection in a rotating Brinkman porous layer. International Journal of Engineering Science, 2011, 49, 646-663.                                                      | 5.0 | 22        |
| 69 | Emulsification of Silicone Oil and Eye Movements. , 2011, 52, 9721.                                                                                                                             |     | 39        |
| 70 | Oscillatory Flow Through a Channel With Stick-Slip Walls: Complex Navier's Slip Length. Journal of<br>Fluids Engineering, Transactions of the ASME, 2011, 133, .                                | 1.5 | 13        |
| 71 | Lagrangian transport induced by peristaltic pumping in a tube. Fluid Dynamics Research, 2011, 43, 015505.                                                                                       | 1.3 | 1         |
| 72 | ELECTROHYDRODYNAMIC STABILITY OF COUPLE STRESS FLUID FLOW IN A CHANNEL OCCUPIED BY A POROUS MEDIUM. Special Topics and Reviews in Porous Media, 2011, 2, 11-22.                                 | 1.1 | 14        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development and Validation of a Numerical Model of Subsurface Flow Constructed Wetlands. Energy<br>Procedia, 2011, 11, 3993-3998.                                                                    | 1.8 | 0         |
| 74 | Stokes Flow Through a Periodically Grooved Tube. Journal of Fluids Engineering, Transactions of the ASME, 2010, 132, .                                                                               | 1.5 | 11        |
| 75 | Apparent slip arising from Stokes shear flow over a bidimensional patterned surface. Microfluidics and Nanofluidics, 2010, 8, 361-371.                                                               | 2.2 | 54        |
| 76 | Darcy–Brinkman Flow Through a Corrugated Channel. Transport in Porous Media, 2010, 85, 605-618.                                                                                                      | 2.6 | 52        |
| 77 | Wave Induced Oscillatory and Steady Flows in the Annulus of A Catheterized Viscoelastic Tube.<br>Journal of Hydrodynamics, 2010, 22, 605-617.                                                        | 3.2 | 1         |
| 78 | Lagrangian transport by peristalsis in a closed cavity. Journal of Hydrodynamics, 2010, 22, 138-143.                                                                                                 | 3.2 | 1         |
| 79 | On the effects of liquid-gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls. Physics of Fluids, 2010, 22, .                                     | 4.0 | 43        |
| 80 | Lagrangian transport induced by peristaltic pumping in a closed channel. Physical Review E, 2009, 80,<br>056307.                                                                                     | 2.1 | 11        |
| 81 | Use of Mathcad as a Calculation Tool for Water Waves Over a Stratified Muddy Bed. Coastal<br>Engineering Journal, 2009, 51, 69-79.                                                                   | 1.9 | 3         |
| 82 | Stokes shear flow over a grating: Implications for superhydrophobic slip. Physics of Fluids, 2009, 21, .                                                                                             | 4.0 | 89        |
| 83 | Wave propagation and induced steady streaming in viscous fluid contained in a prestressed viscoelastic tube. Physics of Fluids, 2009, 21, 051901.                                                    | 4.0 | 8         |
| 84 | Nonlinear mechanism of bed load transport. Transactions of Tianjin University, 2009, 15, 126-129.                                                                                                    | 6.4 | 0         |
| 85 | Numerical Simulation of the Dispersion in Oscillating Flows with Reversible and Irreversible Wall Reactions. Journal of Hydrodynamics, 2009, 21, 482-490.                                            | 3.2 | 2         |
| 86 | Predicting tsunami arrivals: Estimates and policy implications. Marine Policy, 2009, 33, 643-650.                                                                                                    | 3.2 | 14        |
| 87 | Enhancement of Nitrogen and Phosphorus Removal in Pilot-Scale Vertical Subsurface<br>Flow-Constructed Wetlands Using Polypropylene Pellets. Environmental Engineering Science, 2009,<br>26, 621-631. | 1.6 | 10        |
| 88 | Pulsatile Casson Fluid Flow Through a Stenosed Bifurcated Artery. International Journal of Fluid<br>Mechanics Research, 2009, 36, 43-63.                                                             | 0.4 | 38        |
| 89 | Wave Propagation Through a Viscous Fluid Contained in a Prestressed Viscoelastic Tube. , 2009, , .                                                                                                   |     | 0         |
| 90 | Double diffusive convection of anomalous density fluids in a porous cavity. Transport in Porous Media, 2008, 71, 133-145.                                                                            | 2.6 | 17        |

CHIU-ON NG

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Interfacial capillary–gravity waves due to a fundamental singularity in a system of two semi-infinite<br>fluids. Journal of Engineering Mathematics, 2008, 62, 233-245.                                             | 1.2 | 9         |
| 92  | Effective boundary element method for the interaction of oblique waves with long prismatic structures in water of finite depth. Ocean Engineering, 2008, 35, 494-502.                                               | 4.3 | 13        |
| 93  | Dispersion of suspended particles in a wave boundary layer over a viscoelastic bed. International<br>Journal of Engineering Science, 2008, 46, 50-65.                                                               | 5.0 | 5         |
| 94  | Convective diffusion in steady flow through a tube with a retentive and absorptive wall. Physics of Fluids, 2008, 20, 073604.                                                                                       | 4.0 | 48        |
| 95  | Transient buoyancy-driven convection of water around 4 °C in a porous cavity with internal heat generation. Physics of Fluids, 2008, 20, .                                                                          | 4.0 | 6         |
| 96  | Natural convection in enclosures with partially thermally active side walls containing internal heat sources. Physics of Fluids, 2008, 20, 097104.                                                                  | 4.0 | 14        |
| 97  | Mass transport in water waves over a thin layer of soft viscoelastic mud. Journal of Fluid Mechanics, 2007, 573, 105-130.                                                                                           | 3.4 | 43        |
| 98  | Hydraulics of a submerged weir and applicability in navigational channels: basic flow structures.<br>International Journal for Numerical Methods in Engineering, 2007, 69, 2264-2278.                               | 2.8 | 8         |
| 99  | Experimental investigation of the effect of flow turbulence and sediment transport patterns on the adsorption of cadmium ions onto sediment particles. Journal of Environmental Sciences, 2007, 19, 696-703.        | 6.1 | 14        |
| 100 | Interaction of oblique waves with an array of long horizontal circular cylinders. Science in China<br>Series D: Earth Sciences, 2007, 50, 490-509.                                                                  | 0.9 | 6         |
| 101 | Dispersion in Porous Media with and without Reaction: A Review. Journal of Porous Media, 2007, 10, 219-248.                                                                                                         | 1.9 | 12        |
| 102 | Dispersion in steady and oscillatory flows through a tube with reversible and irreversible wall reactions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 481-515. | 2.1 | 90        |
| 103 | Dispersion in open-channel flow subject to the processes of sorptive exchange on the bottom and air-water exchange on the free surface. Journal of Hydrodynamics, 2006, 18, 57-64.                                  | 3.2 | 3         |
| 104 | Dispersion in open-channel flow subject to the processes of sorptive exchange on the bottom and air-water exchange on the free surface. Journal of Hydrodynamics, 2006, 18, 57-64.                                  | 3.2 | 1         |
| 105 | A Fourier–Chebyshev collocation method for the mass transport in a layer of power-law fluid mud.<br>Computer Methods in Applied Mechanics and Engineering, 2006, 195, 1136-1153.                                    | 6.6 | 7         |
| 106 | Dispersion in open-channel flow subject to the processes of sorptive exchange on the bottom and air–water exchange on the free surface. Fluid Dynamics Research, 2006, 38, 359-385.                                 | 1.3 | 23        |
| 107 | On the oscillatory and mean motions due to waves in a thin viscoelastic layer. Wave Motion, 2006, 43, 387-405.                                                                                                      | 2.0 | 10        |
| 108 | Nonlinear dynamical characteristics of bed load motion. Science in China Series D: Earth Sciences, 2006, 49, 365-384.                                                                                               | 0.9 | 9         |

CHIU-ON NG

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Dispersion in oscillatory Couette flow with sorptive boundaries. Acta Mechanica, 2005, 178, 65-84.                                                                                         | 2.1 | 21        |
| 110 | A SPECTRAL METHOD FOR THE MASS TRANSPORT IN A LAYER OF POWER-LAW FLUID UNDER PERIODIC FORCING. , 2005, , .                                                                                 |     | 0         |
| 111 | Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k–ε<br>turbulence modeling. Ocean Engineering, 2004, 31, 87-95.                               | 4.3 | 48        |
| 112 | Mass transport in a layer of power-law fluid forced by periodic surface pressure. Wave Motion, 2004, 39, 241-259.                                                                          | 2.0 | 21        |
| 113 | A time-varying diffusivity model for shear dispersion in oscillatory channel flow. Fluid Dynamics<br>Research, 2004, 34, 335-355.                                                          | 1.3 | 28        |
| 114 | Mass transport in gravity waves revisited. Journal of Geophysical Research, 2004, 109, .                                                                                                   | 3.3 | 17        |
| 115 | Mass transport and set-ups due to partial standing surface waves in a two-layer viscous system.<br>Journal of Fluid Mechanics, 2004, 520, 297-325.                                         | 3.4 | 23        |
| 116 | 3D numerical modeling of non-isotropic turbulent buoyant helicoidal flow and heat transfer in a curved open channel. International Journal of Heat and Mass Transfer, 2003, 46, 2087-2093. | 4.8 | 12        |
| 117 | A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows. Ocean<br>Engineering, 2003, 30, 153-161.                                                          | 4.3 | 13        |
| 118 | On the propagation of a two-dimensional viscous density current under surface waves. Physics of Fluids, 2002, 14, 970-984.                                                                 | 4.0 | 13        |
| 119 | A model for flow induced by steady air venting and air sparging. Applied Mathematical Modelling, 2002, 26, 727-750.                                                                        | 4.2 | 14        |
| 120 | On the longitudinal dispersion of heavy particles in a horizontal circular pipe. International Journal of Engineering Science, 2002, 40, 239-250.                                          | 5.0 | 3         |
| 121 | Effects of kinetic sorptive exchange on solute transport in open-channel flow. Journal of Fluid<br>Mechanics, 2001, 446, 321-345.                                                          | 3.4 | 47        |
| 122 | Mass transport in a two-layer wave boundary layer. Ocean Engineering, 2001, 28, 1393-1411.                                                                                                 | 4.3 | 3         |
| 123 | Water waves over a muddy bed: a two-layer Stokes' boundary layer model. Coastal Engineering, 2000,<br>40, 221-242.                                                                         | 4.0 | 91        |
| 124 | A note on the Aris dispersion in a tube with phase exchange and reaction. International Journal of<br>Engineering Science, 2000, 38, 1639-1649.                                            | 5.0 | 13        |
| 125 | Chemical transport associated with discharge of contaminated fine particles to a steady open-channel flow. Physics of Fluids, 2000, 12, 136-144.                                           | 4.0 | 22        |
| 126 | Dispersion in Sediment-Laden Stream Flow. Journal of Engineering Mechanics - ASCE, 2000, 126, 779-786.                                                                                     | 2.9 | 11        |

| #   | Article                                                                                                                                                               | IF  | CITATION |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 127 | A model for stripping multicomponent vapor from unsaturated soil with free and trapped residual nonaqueous phase liquid. Water Resources Research, 1999, 35, 385-406. | 4.2 | 13       |
| 128 | Macroscopic equations for vapor transport in a multi-layered unsaturated zone. Advances in Water<br>Resources, 1999, 22, 611-622.                                     | 3.8 | 6        |
| 129 | Effects of a semipervious lens on soil vapour extraction. Journal of Fluid Mechanics, 1997, 341, 385-413.                                                             | 3.4 | 2        |
| 130 | Some Applications of the Homogenization Theory. Advances in Applied Mechanics, 1996, 32, 277-348.                                                                     | 2.3 | 108      |
| 131 | Aggregate Diffusion Model Applied to Soil Vapor Extraction in Unidirectional and Radial Flows. Water<br>Resources Research, 1996, 32, 1289-1297.                      | 4.2 | 27       |
| 132 | Homogenization theory applied to soil vapor extraction in aggregated soils. Physics of Fluids, 1996, 8, 2298-2306.                                                    | 4.0 | 14       |
| 133 | Ground Subsidence of Finite Amplitude Due to Pumping and Surface Loading. Water Resources<br>Research, 1995, 31, 1953-1968.                                           | 4.2 | 4        |
| 134 | Roll waves on a shallow layer of mud modelled as a power-law fluid. Journal of Fluid Mechanics, 1994, 263, 151-184.                                                   | 3.4 | 149      |
| 135 | Computations of water impact on a two-dimensional flat-bottomed body with a volume-of-fluid method. Ocean Engineering, 1992, 19, 377-393.                             | 4.3 | 24       |