José A Martina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/389994/publications.pdf

Version: 2024-02-01

Ιοςà Ο Α Μαρτινία

#	Article	IF	CITATIONS
1	HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene, 2022, 41, 1701-1717.	5.9	8
2	The FACT complex facilitates expression of lysosomal and antioxidant genes through binding to TFEB and TFE3. Autophagy, 2022, 18, 2333-2349.	9.1	9
3	A conserved cysteineâ€based redox mechanism sustains TFEB/HLHâ€30 activity under persistent stress. EMBO Journal, 2021, 40, e105793.	7.8	22
4	The role of protease-activated receptor 1 signaling in CD8 TÂcell effector functions. IScience, 2021, 24, 103387.	4.1	9
5	SnapShot: Lysosomal Storage Diseases. Cell, 2020, 180, 602-602.e1.	28.9	16
6	MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Frontiers in Cell and Developmental Biology, 2020, 8, 609683.	3.7	46
7	The Transcription Factors TFEB and TFE3 Link the FLCN-AMPK Signaling Axis to Innate Immune Response and Pathogen Resistance. Cell Reports, 2019, 26, 3613-3628.e6.	6.4	91
8	Improved efficacy of a next-generation ERT in murine Pompe disease. JCl Insight, 2019, 4, .	5.0	57
9	Emerging roles for TFEB in the immune response and inflammation. Autophagy, 2018, 14, 181-189.	9.1	118
10	Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. Journal of Biological Chemistry, 2018, 293, 12525-12534.	3.4	101
11	Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy, 2018, 14, 1779-1795.	9.1	53
12	The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. ELife, 2018, 7, .	6.0	69
13	TFEB and TFE3: The art of multi-tasking under stress conditions. Transcription, 2017, 8, 48-54.	3.1	32
14	TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes. Nature Communications, 2017, 8, 1580.	12.8	135
15	The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes and Development, 2016, 30, 2551-2564.	5.9	100
16	TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy, 2016, 12, 1240-1258.	9.1	230
17	<scp>TFEB</scp> and <scp>TFE</scp> 3 are novel components of the integrated stress response. EMBO Journal, 2016, 35, 479-495.	7.8	237
18	The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris. Science Signaling, 2014, 7, ra9.	3.6	486

JOSé A MARTINA

#	Article	IF	CITATIONS
19	Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cellular and Molecular Life Sciences, 2014, 71, 2483-2497.	5.4	135
20	Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes. Journal of Cell Biology, 2013, 200, 475-491.	5.2	278
21	RRAG GTPases link nutrient availability to gene expression, autophagy and lysosomal biogenesis. Autophagy, 2013, 9, 928-930.	9.1	18
22	MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 2012, 8, 903-914.	9.1	983
23	Melanoregulin is stably targeted to the melanosome membrane by palmitoylation. Biochemical and Biophysical Research Communications, 2012, 426, 209-214.	2.1	14
24	Transcriptional Activation of Lysosomal Exocytosis Promotes Cellular Clearance. Developmental Cell, 2011, 21, 421-430.	7.0	594
25	Imaging of lytic granule exocytosis in CD8+ cytotoxic T lymphocytes reveals a modified form of full fusion. Cellular Immunology, 2011, 271, 267-279.	3.0	14
26	LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. Journal of Cell Science, 2011, 124, 459-468.	2.0	55
27	Two modes of lytic granule fusion during degranulation by natural killer cells. Immunology and Cell Biology, 2011, 89, 728-738.	2.3	45
28	Identification of the Penta-EF-hand Protein ALG-2 as a Ca2+-dependent Interactor of Mucolipin-1. Journal of Biological Chemistry, 2009, 284, 36357-36366.	3.4	77
29	The Calcium Channel Mucolipinâ€3 is a Novel Regulator of Trafficking Along the Endosomal Pathway. Traffic, 2009, 10, 1143-1156.	2.7	81
30	EphB2 and EphB4 receptors forward signaling promotes SDF-1–induced endothelial cell chemotaxis and branching remodeling. Blood, 2006, 108, 2914-2922.	1.4	80
31	Modulation of GalT1 and SialT1 Sub-Golgi Localization by SialT2 Expression Reveals an Organellar Level of Glycolipid Synthesis Control. Journal of Biological Chemistry, 2006, 281, 32852-32860.	3.4	32
32	Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7910-7915.	7.1	122
33	Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to Melanosomes. Molecular Biology of the Cell, 2005, 16, 5356-5372.	2.1	225
34	Polycystic liver disease is a disorder of cotranslational protein processing. Trends in Molecular Medicine, 2005, 11, 37-42.	6.7	83
35	Molecular characterization of hepatocystin, the protein that is defective in autosomal dominant polycystic liver disease. Gastroenterology, 2004, 126, 1819-1827.	1.3	60
36	Reduced pigmentation (rp), a mouse model of Hermansky-Pudlak syndrome, encodes a novel component of the BLOC-1 complex. Blood, 2004, 104, 3181-3189.	1.4	48

José A Martina

#	Article	IF	CITATIONS
37	Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 γ–σ1 and AP-3 δ–σ3 hemicomplexes. Journal of Cell Biology, 2003, 163, 1281-1290.	5.2	223
38	BLOC-3, a Protein Complex Containing the Hermansky-Pudlak Syndrome Gene Products HPS1 and HPS4. Journal of Biological Chemistry, 2003, 278, 29376-29384.	3.4	116
39	GM3 α2,8-Sialyltransferase (GD3 Synthase). Journal of Neurochemistry, 2002, 74, 1711-1720.	3.9	41
40	Stonin 2. Journal of Cell Biology, 2001, 153, 1111-1120.	5.2	140
41	GM1 synthase depends on N-glycosylation for enzyme activity and trafficking to the Golgi complex. Neurochemical Research, 2000, 25, 725-731.	3.3	39
42	Mouse ? 1,3-galactosyltransferase (GA1/GM1/GD1b synthase): Protein characterization, tissue expression, and developmental regulation in neural retina. Journal of Neuroscience Research, 1999, 58, 318-327.	2.9	19
43	Organization of ganglioside synthesis in the Golgi apparatus. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1437, 101-118.	2.4	84
44	Influence of N-Glycosylation and N-Glycan Trimming on the Activity and Intracellular Traffic of GD3 Synthase. Journal of Biological Chemistry, 1998, 273, 3725-3731.	3.4	72