Marcel Spaargaren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3896883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A loss-of-adhesion CRISPR-Cas9 screening platform to identify cell adhesion-regulatory proteins and signaling pathways. Nature Communications, 2022, 13, 2136.	12.8	4
2	Redirecting T-cell Activity with Anti-BCMA/Anti-CD3 Bispecific Antibodies in Chronic Lymphocytic Leukemia and Other B-cell Lymphomas. Cancer Research Communications, 2022, 2, 330-341.	1.7	6
3	Tipping the balance: toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma. Leukemia, 2022, 36, 2165-2176.	7.2	8
4	Identification of the SRC-family tyrosine kinase HCK as a therapeutic target in mantle cell lymphoma. Leukemia, 2021, 35, 881-886.	7.2	14
5	Syndecan-1 and stromal heparan sulfate proteoglycans: key moderators of plasma cell biology and myeloma pathogenesis. Blood, 2021, 137, 1713-1718.	1.4	14
6	Immune evasion in primary testicular and central nervous system lymphomas: HLA loss rather than 9p24.1/ <i>PD-L1/PD-L2</i> alterations. Blood, 2021, 138, 1194-1197.	1.4	5
7	Infection and transmission of SARSâ€CoVâ€2 depend on heparan sulfate proteoglycans. EMBO Journal, 2021, 40, e106765.	7.8	50
8	The CXCL12gamma chemokine immobilized by heparan sulfate on stromal niche cells controls adhesion and mediates drug resistance in multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 11.	17.0	15
9	<i>MYD88</i> mutations identify a molecular subgroup of diffuse large B-cell lymphoma with an unfavorable prognosis. Haematologica, 2020, 105, 424-434.	3.5	55
10	Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188437.	7.4	26
11	AKT signaling restrains tumor suppressive functions of FOXO transcription factors and GSK3 kinase in multiple myeloma. Blood Advances, 2020, 4, 4151-4164.	5.2	20
12	MET Signaling Overcomes Epidermal Growth Factor Receptor Inhibition in Normal and Colorectal Cancer Stem Cells Causing Drug Resistance. Gastroenterology, 2019, 157, 1153-1155.e1.	1.3	14
13	The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. British Journal of Cancer, 2019, 120, 1137-1146.	6.4	12
14	Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia, 2019, 33, 1063-1075.	7.2	119
15	Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e108.	0.4	0
16	Syndecan-1 and stromal HSPGs: key moderators of communication between myeloma plasma cells and the bone marrow niche. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e96-e97.	0.4	0
17	Syndecan-1 promotes Wnt/l²-catenin signaling in multiple myeloma by presenting Wnts and R-spondins. Blood, 2018, 131, 982-994	1.4	68
18	The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica, 2017, 102, 573-583.	3.5	18

#	Article	IF	CITATIONS
19	Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 376-381.	7.1	37
20	MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms. Gastroenterology, 2017, 153, 1040-1053.e4.	1.3	48
21	Loss of CYLD expression unleashes Wnt signaling in multiple myeloma and is associated with aggressive disease. Oncogene, 2017, 36, 2105-2115.	5.9	34
22	Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signaling. Oncotarget, 2017, 8, 71981-71995.	1.8	27
23	Targeting cell adhesion and homing as strategy to cure Waldenström's macroglobulinemia. Best Practice and Research in Clinical Haematology, 2016, 29, 161-168.	1.7	5
24	Ibrutinib and idelalisib target B cell receptor- but not CXCL12/CXCR4-controlled integrin-mediated adhesion in Waldenstrom macroglobulinemia. Haematologica, 2016, 101, e111-e115.	3.5	30
25	The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia, 2016, 30, 337-345.	7.2	17
26	Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood, 2015, 125, 2306-2309.	1.4	79
27	The forkhead transcription factor FOXP1 represses human plasma cell differentiation. Blood, 2015, 126, 2098-2109.	1.4	42
28	Ibrutinib for AML? Check CD117 (KIT)!. Lancet Haematology,the, 2015, 2, e180-e181.	4.6	1
29	BTK inhibitors in chronic lymphocytic leukemia: a glimpse to the future. Oncogene, 2015, 34, 2426-2436.	5.9	29
30	Diffuse large B cell lymphomas relapsing in the CNS lack oncogenic MYD88 and CD79B mutations. Blood Cancer Journal, 2014, 4, e266-e266.	6.2	11
31	High prevalence of oncogenic MYD88 and CD79B mutations in primary testicular diffuse large B-cell lymphoma. Leukemia, 2014, 28, 719-720.	7.2	91
32	Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. Oncogene, 2014, 33, 665-670.	5.9	116
33	FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-Î ^{\circ} B to promote survival of human B cells. Blood, 2014, 124, 3431-3440.	1.4	86
34	Combined Inhibition of mTOR and DNA-PK Blocks Survival, Adhesion, Proliferation and Chemoresistance in Primary Chronic Lymphocytic Leukemia (CLL) Cells. Blood, 2014, 124, 1981-1981.	1.4	3
35	Combined Inhibition of Phosphatidylinositol 3-Kinase (PI3K) Isoform α and δBy the Pan-Class I PI3K Inhibitor SAR245409 (XL765) in Primary Chronic Lymphocytic Leukemia Cells Blocks Survival, Adhesion and Proliferation. Blood, 2014, 124, 4691-4691.	1.4	1
36	Heparan sulfate proteoglycans in the control of <scp>B</scp> cell development and the pathogenesis of multiple myeloma. FEBS Journal, 2013, 280, 2180-2193.	4.7	47

MARCEL SPAARGAREN

#	Article	IF	CITATIONS
37	High prevalence of oncogenic MYD88 and CD79B mutations in diffuse large B-cell lymphomas presenting at immune-privileged sites. Blood Cancer Journal, 2013, 3, e139-e139.	6.2	164
38	The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia, 2013, 27, 1729-1737.	7.2	41
39	Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood, 2013, 122, 2412-2424.	1.4	185
40	Possible Mechanisms Of Resistance To The Novel BH3-Mimetic ABT-199 In In Vitro Lymph Node Models Of CLL – The Role Of Abl and Btk. Blood, 2013, 122, 4188-4188.	1.4	6
41	CD44 Expression in Intestinal Epithelium and Colorectal Cancer Is Independent of p53 Status. PLoS ONE, 2013, 8, e72849.	2.5	23
42	EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia, 2012, 26, 2159-2171.	7.2	409
43	The clinically active BTK inhibitor PCI-32765 targets B-cell receptor– and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood, 2012, 119, 2590-2594.	1.4	493
44	Tubular epithelial syndecan-1 maintains renal function in murine ischemia/reperfusion and human transplantation. Kidney International, 2012, 81, 651-661.	5.2	54
45	Transcriptional Silencing of the Wnt-Antagonist DKK1 by Promoter Methylation Is Associated with Enhanced Wnt Signaling in Advanced Multiple Myeloma. PLoS ONE, 2012, 7, e30359.	2.5	41
46	Mapping the Targets of Dasatinib in Chronic Lymphocytic Leukemia Reveals Distinct Roles for Abl and Btk in Drug Resistance and Adhesion, and Explains Clinical Effects On Lymph Node Reduction. Blood, 2012, 120, 3900-3900.	1.4	2
47	WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer. Biochemical and Biophysical Research Communications, 2011, 406, 1-6.	2.1	26
48	Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival. Blood, 2011, 117, 6162-6171.	1.4	48
49	Lymphoma spread? Target CD47-SIRPα!. Blood, 2011, 118, 4762-4764.	1.4	4
50	N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica, 2011, 96, 1653-1661.	3.5	36
51	Egress of CD19+CD5+ Cells Into Peripheral Blood Following Treatment with the Bruton Tyrosine Kinase Inhibitor, PCI-32765, in Mantle Cell Lymphoma Patients. Blood, 2011, 118, 954-954.	1.4	1
52	Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma. Blood, 2010, 115, 601-604.	1.4	50
53	The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 208-219.	7.4	28
54	Impaired Lymphoid Organ Development in Mice Lacking the Heparan Sulfate Modifying Enzyme Glucuronyl C5-Epimerase. Journal of Immunology, 2010, 184, 3656-3664.	0.8	25

MARCEL SPAARGAREN

#	Article	IF	CITATIONS
55	Transcriptional Silencing of the Wnt-Antagonist Dickkopf-1 (DKK1) by Promoter Methylation Unleashes Aberrant Wnt Signaling In Advanced Multiple Myeloma. Blood, 2010, 116, 1919-1919.	1.4	53
56	Targeting EXT-1 Reveals a Crucial Role of Heparan Sulfate in the Growth of Multiple Myeloma Blood, 2009, 114, 1830-1830.	1.4	1
57	Instant conditional transgenesis in the mouse hematopoietic compartment. Journal of Immunological Methods, 2008, 339, 259-263.	1.4	3
58	Illegitimate WNT Pathway Activation by β-Catenin Mutation or Autocrine Stimulation in T-Cell Malignancies. Cancer Research, 2008, 68, 6969-6977.	0.9	41
59	Deletion of the WNT Target and Cancer Stem Cell Marker CD44 in Apc(Min/+) Mice Attenuates Intestinal Tumorigenesis. Cancer Research, 2008, 68, 3655-3661.	0.9	163
60	Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. American Journal of Physiology - Renal Physiology, 2008, 294, F253-F263.	2.7	39
61	The small GTPase Ral mediates SDF-1–induced migration of B cells and multiple myeloma cells. Blood, 2008, 111, 3364-3372.	1.4	43
62	The B Cell Antigen Receptor Controls AP-1 and NFAT Activity through Ras-Mediated Activation of Ral. Journal of Immunology, 2007, 178, 1405-1414.	0.8	31
63	Lymphoma dissemination: the other face of lymphocyte homing. Blood, 2007, 110, 3102-3111.	1.4	157
64	Bruton's Tyrosine Kinase and Phospholipase Cγ2 Mediate Chemokine-Controlled B Cell Migration and Homing. Immunity, 2007, 26, 93-104.	14.3	262
65	Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia, 2007, 21, 207-214.	7.2	292
66	Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies Report of the BIOMED-2 Concerted Action BHM4 CT98-3936. Leukemia, 2007, 21, 215-221.	7.2	222
67	Functional analysis of HGF/MET signaling and aberrant HGF-activator expression in diffuse large B-cell lymphoma. Blood, 2006, 107, 760-768.	1.4	80
68	Stimulated plasmacytoid dendritic cells impair human T-cell development. Blood, 2006, 108, 3792-3800.	1.4	24
69	Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death and Differentiation, 2005, 12, 637-648.	11.2	204
70	Follicular Dendritic Cells Catalyze Hepatocyte Growth Factor (HGF) Activation in the Germinal Center Microenvironment by Secreting the Serine Protease HGF Activator. Journal of Immunology, 2005, 175, 2807-2813.	0.8	24
71	Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6122-6127.	7.1	293
72	Multiple myeloma cells catalyze hepatocyte growth factor (HGF) activation by secreting the serine protease HGF-activator. Blood, 2004, 104, 2172-2175.	1.4	54

#	Article	IF	CITATIONS
73	Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia, 2003, 17, 2257-2317.	7.2	2,788
74	Primary Follicular Lymphoma of the Small Intestine. American Journal of Pathology, 2003, 162, 105-113.	3.8	96
75	The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia, 2003, 17, 764-774.	7.2	145
76	The B Cell Antigen Receptor Controls Integrin Activity through Btk and PLCÎ ³ 2. Journal of Experimental Medicine, 2003, 198, 1539-1550.	8.5	211
77	R-Ras Alters Ca2+ Homeostasis by Increasing the Ca2+ Leak across the Endoplasmic Reticular Membrane. Journal of Biological Chemistry, 2003, 278, 13672-13679.	3.4	18
78	c-Cbl Is Involved in Met Signaling in B Cells and Mediates Hepatocyte Growth Factor-Induced Receptor Ubiquitination. Journal of Immunology, 2002, 169, 3793-3800.	0.8	57
79	Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood, 2002, 99, 1405-1410.	1.4	235
80	Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications, 2002, 298, 80-86.	2.1	37
81	Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. FEBS Journal, 2002, 269, 2546-2556.	0.2	76
82	Regulation of Cytokine Signaling by B Cell Antigen Receptor and Cd40-Controlled Expression of Heparan Sulfate Proteoglycans. Journal of Experimental Medicine, 2000, 192, 1115-1124.	8.5	46
83	The hepatocyte growth factor/ met pathway in development, tumorigenesis, and B-cell differentiation. Advances in Cancer Research, 2000, 79, 39-90.	5.0	95
84	Factor VIIa/Tissue Factor-induced Signaling via Activation of Src-like Kinases, Phosphatidylinositol 3-Kinase, and Rac. Journal of Biological Chemistry, 2000, 275, 28750-28756.	3.4	85
85	Expression of c-Met and Heparan-Sulfate Proteoglycan Forms of CD44 in Colorectal Cancer. American Journal of Pathology, 2000, 157, 1563-1573.	3.8	75
86	Heparan Sulfate-modified CD44 Promotes Hepatocyte Growth Factor/Scatter Factor-induced Signal Transduction through the Receptor Tyrosine Kinase c-Met. Journal of Biological Chemistry, 1999, 274, 6499-6506.	3.4	198
87	Rab5 Induces Rac-independent Lamellipodia Formation and Cell Migration. Molecular Biology of the Cell, 1999, 10, 3239-3250.	2.1	77
88	Association of RACK1 and PKCβ with the common β-chain of the IL-5/IL-3/GM-CSF receptor. Oncogene, 1999, 18, 5126-5130.	5.9	81
89	Differential Interaction of the Ras Family GTP-binding Proteins H-Ras, Rap1A, and R-Ras with the Putative Effector Molecules Raf Kinase and Ral-Guanine Nucleotide Exchange Factor. Journal of Biological Chemistry, 1996, 271, 6794-6800.	3.4	298
90	Epidermal Growth Factor (EGF) Induces Serine Phosphorylation-Dependent Activation and Calcium-Dependent Translocation of the Cytosolic Phospholipase A2. FEBS Journal, 1995, 231, 593-601.	0.2	53

MARCEL SPAARGAREN

#	Article	IF	CITATIONS
91	The Ras-related protein R-ras interacts directly with Raf-1 in a GTP-dependent manner. Biochemical Journal, 1994, 300, 303-307.	3.7	62
92	Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12609-12613.	7.1	251
93	Characterization and identification of an epidermal-growth-factor-activated phospholipase A2. Biochemical Journal, 1992, 287, 37-43.	3.7	56
94	Dimerization Activates the Epidermal Growth Factor Receptor Tyrosine Kinase. , 1991, , 45-58.		0
95	Interaction of Epidermal growth factor receptors with the cytoskeleton is related to receptor clustering. Journal of Cellular Physiology, 1990, 145, 365-375.	4.1	36
96	Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent. Biochemical and Biophysical Research Communications, 1990, 171, 882-889.	2.1	10
97	General Mechanistic Patterns of Signal Transduction Across Membranes. , 0, , 1-59.		0