Jane Greaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895901/publications.pdf

Version: 2024-02-01

IANE CREAVES

#	Article	IF	CITATIONS
1	Constraints on the Production of Phosphine by Venusian Volcanoes. Universe, 2022, 8, 54.	2.5	7
2	Only extraordinary volcanism can explain the presence of parts per billion phosphine on Venus. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
3	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
4	The Nearby Evolved Stars Survey II: Constructing a volume-limited sample and first results from the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1091-1110.	4.4	5
5	Single-dish 1-cm-band radio photometry of protoplanetary discs: few centimetre-sized dust grains?. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3180-3190.	4.4	2
6	Low levels of sulphur dioxide contamination of Venusian phosphine spectra. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2994-3001.	4.4	10
7	The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. Astrobiology, 2021, 21, 1206-1223.	3.0	69
8	Phosphine gas in the cloud decks of Venus. Nature Astronomy, 2021, 5, 655-664.	10.1	174
9	ALMA imaging of the M-dwarf Fomalhaut C's debris disc. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4497-4510.	4.4	6
10	Submillimetre observations of the two-component magnetic field in M82. Monthly Notices of the Royal Astronomical Society, 2021, 505, 684-688.	4.4	7
11	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
12	Phosphine on Venus Cannot Be Explained by Conventional Processes. Astrobiology, 2021, 21, 1277-1304.	3.0	44
13	Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses. Nature Astronomy, 2021, 5, 636-639.	10.1	24
14	Dust Populations in the Iconic Vega Planetary System Resolved by ALMA. Astrophysical Journal, 2020, 898, 146.	4.5	16
15	The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. Astrophysical Journal, 2020, 899, 28.	4.5	39
16	The nearby evolved stars survey – I. JCMT/SCUBA-2 submillimetre detection of the detached shell of U Antliae. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3218-3231.	4.4	4
17	JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. Astrophysical Journal, 2019, 876, 42.	4.5	42
18	The JCMT BISTRO Survey: The Magnetic Field in the Starless Core <i>ï</i> Ophiuchus C. Astrophysical Journal, 2019, 877, 43.	4.5	38

JANE GREAVES

#	Article	IF	CITATIONS
19	The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region. Astrophysical Journal, 2019, 877, 88.	4.5	37
20	Analysis of the Herschel DEBRIS Sun-like star sample. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3046-3064.	4.4	83
21	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
22	A First Look at BISTRO Observations of the ϕOph-A core. Astrophysical Journal, 2018, 859, 4.	4.5	46
23	A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields. Astrophysical Journal, 2018, 859, 151.	4.5	57
24	Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements. Astrophysical Journal, 2018, 861, 65.	4.5	51
25	The Millimeter Continuum Size–Frequency Relationship in the UZ Tau E Disk. Astrophysical Journal, 2018, 861, 64.	4.5	27
26	Anomalous microwave emission from spinning nanodiamonds around stars. Nature Astronomy, 2018, 2, 662-667.	10.1	22
27	Prestige Bias on Time Allocation Committees?. Research Notes of the AAS, 2018, 2, 203.	0.7	2
28	First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt. Astrophysical Journal, 2017, 842, 66.	4.5	79
29	The Northern arc of ε Eridani's Debris Ring as seen by ALMA. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3200-3212.	4.4	68
30	Diagnostics of circumstellar grains in geometric models I: structure and composition. Monthly Notices of the Royal Astronomical Society, 2017, , stx092.	4.4	0
31	New constraints on the millimetre emission of six debris discs. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2719-2725.	4.4	18
32	Spiral density waves in a young protoplanetary disk. Science, 2016, 353, 1519-1521.	12.6	251
33	Early science with the Large Millimetre Telescope: Deep LMT/AzTEC millimetre observations of ϵ Eridani and its surroundings. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2285-2294.	4.4	31
34	GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25. Astrophysical Journal, 2015, 813, 41.	4.5	100
35	THE AU MIC DEBRIS DISK: FAR-INFRARED AND SUBMILLIMETER RESOLVED IMAGING. Astrophysical Journal, 2015, 811, 100.	4.5	57
36	In Search of Future Earths: Assessing the Possibility of Finding Earth Analogues in the Later Stages of Their Habitable Lifetimes. Astrobiology, 2015, 15, 400-411.	3.0	25

JANE GREAVES

#	Article	IF	CITATIONS
37	ALMA and Herschel observations of the prototype dusty and polluted white dwarf G29-38. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1821-1828.	4.4	19
38	RESOLVED MULTIFREQUENCY RADIO OBSERVATIONS OF GG Tau. Astrophysical Journal, 2014, 787, 148.	4.5	28
39	Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology, 2014, 13, 229-243.	1.6	49
40	On the structure of the transition disk around TW Hydrae. Astronomy and Astrophysics, 2014, 564, A93.	5.1	89
41	PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS. Astrophysical Journal, 2013, 773, 168.	4.5	103
42	Swansong Biospheres: The biosignatures of inhabited earth-like planets nearing the end of their habitable lifetimes. Proceedings of the International Astronomical Union, 2013, 8, 378-379.	0.0	1
43	Subarcsecond high-sensitivity measurements of the DG Tau jet with e-MERLIN. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 436, L64-L68.	3.3	9
44	Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology, 2013, 12, 99-112.	1.6	69
45	Resolved debris discs around A stars in the Herschel DEBRIS survey. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1263-1280.	4.4	144
46	Angular momentum evolution during star and planetary system formation. Proceedings of the International Astronomical Union, 2013, 8, 210-211.	0.0	1
47	Locating the Dust in A Star Debris Discs. Proceedings of the International Astronomical Union, 2013, 8, 330-331.	0.0	0
48	CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK. Astrophysical Journal Letters, 2012, 760, L17.	8.3	192
49	A DEBRIS disk around the planet hosting M-star GJÂ581 spatially resolved with <i>Herschel</i> . Astronomy and Astrophysics, 2012, 548, A86.	5.1	65
50	Coplanar circumbinary debris discs. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2115-2128.	4.4	63
51	<i>Herschel</i> images of Fomalhaut. Astronomy and Astrophysics, 2012, 540, A125.	5.1	95
52	Debris discs at centimetre wavelengths: planetesimal populations in young extrasolar Kuiper belts. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L70-L74.	3.3	29
53	Do all Sun-like stars have planets? Inferences from the disc mass reservoirs of Class 0 protostars. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 412, L88-L92.	3.3	18
54	Forming the first planetary systems: debris around Galactic thick disc stars. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 408, L90-L94.	3.3	26

JANE GREAVES

#	Article	IF	CITATIONS
55	Predicting the incidence of planet and debris discs as a function of stellar mass. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L44-L48.	3.3	29
56	The JCMT Legacy Survey of the Gould Belt: a first look at Serpens with HARP. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1412-1428.	4.4	41
57	The JCMT Legacy Survey of the Gould Belt: a first look at Taurus with HARP. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	7
58	A Spitzer survey of young stellar objects in the Rosette Molecular Cloud. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1249-1262.	4.4	34
59	Radio cyclotron emission from extra-solar planets. Proceedings of the International Astronomical Union, 2008, 4, 456-458.	0.0	0
60	Detecting a rotation in the Eridani debris disc. Monthly Notices of the Royal Astronomical Society, 2006, 372, 53-59.	4.4	40
61	Disks Around Stars and the Growth of Planetary Systems. Science, 2005, 307, 68-71.	12.6	42
62	Debris Around Sun-like Stars. AlP Conference Proceedings, 2004, , .	0.4	0
63	Magnetic field surrounding the starburst nucleus of the galaxy M82 from polarized dust emission. Nature, 2000, 404, 732-733.	27.8	49
64	First Observations of the Magnetic Field Geometry in Prestellar Cores. Astrophysical Journal, 2000, 537, L135-L138.	4.5	146
65	Venusian phosphine: a â€~wow!' signal in chemistry?. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-6.	1.6	8