Adam Charles Sedgwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895373/publications.pdf

Version: 2024-02-01

87 papers

7,419 citations

36 h-index 84 g-index

95 all docs 95 docs citations 95 times ranked 6481 citing authors

#	Article	IF	CITATIONS
1	Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chemical Society Reviews, 2022, 51, 1212-1233.	38.1	107
2	Fluorescent probes for the detection of disease-associated biomarkers. Science Bulletin, 2022, 67, 853-878.	9.0	110
3	Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
4	Solving world problems with pyrrole: 65th birthday tribute to Prof. Jonathan L. Sessler. CheM, 2022, 8, 587-598.	11.7	0
5	A homogeneous high-throughput array for the detection and discrimination of influenza A viruses. CheM, 2022, 8, 1750-1761.	11.7	24
6	2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioactive Materials, 2022, 14, 76-85.	15.6	42
7	Dual-Channel Fluorescent Probe for the Simultaneous Monitoring of Peroxynitrite and Adenosine-5′-triphosphate in Cellular Applications. Journal of the American Chemical Society, 2022, 144, 174-183.	13.7	89
8	Tuning the Solid- and Solution-State Fluorescence of the Iron-Chelator Deferasirox. Journal of the American Chemical Society, 2022, 144, 7382-7390.	13.7	22
9	Indicator displacement assays (IDAs): the past, present and future. Chemical Society Reviews, 2021, 50, 9-38.	38.1	139
10	Fluorescent probes for the imaging of lipid droplets in live cells. Coordination Chemistry Reviews, 2021, 427, 213577.	18.8	123
11	Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coordination Chemistry Reviews, 2021, 428, 213609.	18.8	31
12	Supramolecular fluorescent sensors: An historical overview and update. Coordination Chemistry Reviews, 2021, 427, 213560.	18.8	135
13	TCF-ALP: a fluorescent probe for the selective detection of Staphylococcus bacteria and application in "smart―wound dressings. Biomaterials Science, 2021, 9, 4433-4439.	5.4	14
14	Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chemical Science, 2021, 12, 11089-11097.	7.4	16
15	Expanded porphyrins: functional photoacoustic imaging agents that operate in the NIR-II region. Chemical Science, 2021, 12, 9916-9921.	7.4	34
16	Deferasirox (ExJade): An FDA-Approved AlEgen Platform with Unique Photophysical Properties. Journal of the American Chemical Society, 2021, 143, 1278-1283.	13.7	46
17	<i>In vitro</i> studies of deferasirox derivatives as potential organelle-targeting traceable anti-cancer therapeutics. Chemical Communications, 2021, 57, 5678-5681.	4.1	9
18	The Evaluation of Ester Functionalised TCFâ€Based Fluorescent Probes for the Detection of Bacterial Species. Israel Journal of Chemistry, 2021, 61, 234-238.	2.3	13

#	Article	IF	CITATIONS
19	A Deferasirox Derivative That Acts as a Multifaceted Platform for the Detection and Quantification of Fe3+. Chemosensors, 2021, 9, 68.	3.6	1
20	Development of NIR-II Photoacoustic Probes Tailored for Deep-Tissue Sensing of Nitric Oxide. Journal of the American Chemical Society, 2021, 143, 7196-7202.	13.7	97
21	Fluorescent Chemosensors for Ion and Molecule Recognition: The Next Chapter. Frontiers in Sensors, 2021, 2, .	3.3	15
22	Low-dimensional nanomaterials for antibacterial applications. Journal of Materials Chemistry B, 2021, 9, 3640-3661.	5.8	36
23	Small-molecule fluorescence-based probes for interrogating major organ diseases. Chemical Society Reviews, 2021, 50, 9391-9429.	38.1	176
24	Covalent and non-covalent albumin binding of Au(<scp>i</scp>) bis-NHCs <i>via</i> post-synthetic amide modification. Chemical Science, 2021, 12, 7547-7553.	7.4	8
25	Turn on chemiluminescence-based probes for monitoring tyrosinase activity in conjunction with biological thiols. Chemical Communications, 2021, 57, 11386-11389.	4.1	23
26	A boronic acid-based fluorescent hydrogel for monosaccharide detection. Frontiers of Chemical Science and Engineering, 2020, 14, 112-116.	4.4	27
27	Dual enzyme activated fluorescein based fluorescent probe. Frontiers of Chemical Science and Engineering, 2020, 14, 117-121.	4.4	15
28	A simple, azulene-based colorimetric probe for the detection of nitrite in water. Frontiers of Chemical Science and Engineering, 2020, 14, 90-96.	4.4	21
29	Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chemical Science, 2020, 11, 1107-1113.	7.4	49
30	Cyclodextrin-Based Peptide Self-Assemblies (Spds) That Enhance Peptide-Based Fluorescence Imaging and Antimicrobial Efficacy. Journal of the American Chemical Society, 2020, 142, 1925-1932.	13.7	36
31	Rational design of an "all-in-one―phototheranostic. Chemical Science, 2020, 11, 8204-8213.	7.4	41
32	Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chemical Society Reviews, 2020, 49, 5110-5139.	38.1	516
33	A glycoconjugate-based gold nanoparticle approach for the targeted treatment of <i>Pseudomonas aeruginosa</i> biofilms. Nanoscale, 2020, 12, 23234-23240.	5.6	21
34	Antimicrobial innovation: a current update and perspective on the antibiotic drug development pipeline. Future Medicinal Chemistry, 2020, 12, 2035-2065.	2.3	17
35	Pinkment: a synthetic platform for the development of fluorescent probes for diagnostic and theranostic applications. Chemical Science, 2020, 11, 8567-8571.	7.4	26
36	Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013.	13.7	118

#	Article	IF	Citations
37	Manganese(II) Texaphyrin: A Paramagnetic Photoacoustic Contrast Agent Activated by Near-IR Light. Journal of the American Chemical Society, 2020, 142, 16156-16160.	13.7	37
38	Convenient decagram scale preparation of ethyl 3,4-diethylpyrrole-2-carboxylate, a versatile precursor for pyrrole-based macrocycles and chromophores. Results in Chemistry, 2020, 2, 100075.	2.0	0
39	Tri-Manganese(III) Salen-Based Cryptands: A Metal Cooperative Antioxidant Strategy that Overcomes Ischemic Stroke Damage <i>In Vivo</i> Iournal of the American Chemical Society, 2020, 142, 10219-10227.	13.7	35
40	Coumarin-based fluorescent probe for the rapid detection of peroxynitrite â€~AND' biological thiols. RSC Advances, 2020, 10, 13496-13499.	3.6	14
41	Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chemical Society Reviews, 2020, 49, 3726-3747.	38.1	115
42	A fluorescent ESIPT-based benzimidazole platform for the ratiometric two-photon imaging of ONOO ^{â°'} <i>in vitro</i> and <i>ex vivo</i> . Chemical Science, 2020, 11, 7329-7334.	7.4	39
43	Protein Encapsulation: A Nanocarrier Approach to the Fluorescence Imaging of an Enzyme-Based Biomarker. Frontiers in Chemistry, 2020, 8, 389.	3.6	22
44	Toward multifunctional anticancer therapeutics: post-synthetic carbonate functionalisation of asymmetric Au(i) bis-N-heterocyclic carbenes. Chemical Communications, 2020, 56, 7877-7880.	4.1	12
45	Enhanced Colorimetric Differentiation between <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> Using a Shape-Encoded Sensor Hydrogel. ACS Applied Bio Materials, 2020, 3, 4398-4407.	4.6	17
46	Metal-based imaging agents: progress towards interrogating neurodegenerative disease. Chemical Society Reviews, 2020, 49, 2886-2915.	38.1	56
47	Special issue on "Fluorescent probes― Frontiers of Chemical Science and Engineering, 2020, 14, 1-3.	4.4	2
48	Boronate ester cross-linked PVA hydrogels for the capture and H ₂ O ₂ -mediated release of active fluorophores. Chemical Communications, 2020, 56, 5516-5519.	4.1	19
49	Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu2(dipyriamethyrin)(\hat{l} 42-1,1-acetato)2]. Molecules, 2020, 25, 1446.	3.8	5
50	Bioâ€Conjugated Advanced Materials for Targeted Disease Theranostics. Advanced Functional Materials, 2020, 30, 1907906.	14.9	51
51	Delivery and quantification of hydrogen peroxide generated via cold atmospheric pressure plasma through biological material. Journal Physics D: Applied Physics, 2019, 52, 505203.	2.8	7
52	Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Accounts of Chemical Research, 2019, 52, 2582-2597.	15.6	442
53	Coumarin-based fluorescent  AND' logic gate probes for the detection of homocysteine and a chosen biological analyte. RSC Advances, 2019, 9, 26425-26428.	3.6	9
54	ESIPT-based fluorescence probe for the ratiometric detection of superoxide. New Journal of Chemistry, 2019, 43, 2875-2877.	2.8	29

#	Article	IF	Citations
55	Voltammetric characterisation of diferrocenylborinic acid in organic solution and in aqueous media when immobilised into a titanate nanosheet film. Dalton Transactions, 2019, 48, 11200-11207.	3.3	2
56	Diketopyrrolopyrrole-based fluorescence probes for the imaging of lysosomal Zn ²⁺ and identification of prostate cancer in human tissue. Chemical Science, 2019, 10, 5699-5704.	7.4	54
57	UO ₂ ²⁺ -mediated ring contraction of pyrihexaphyrin: synthesis of a contracted expanded porphyrin-uranyl complex. Chemical Science, 2019, 10, 5596-5602.	7.4	17
58	Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Frontiers in Chemistry, 2019, 7, 255.	3.6	30
59	Sensors, Imaging Agents, and Theranostics to Help Understand and Treat Reactive Oxygen Species Related Diseases. Small Methods, 2019, 3, 1900013.	8.6	72
60	Multiphoton fluorescence lifetime imaging microscopy (FLIM) and super-resolution fluorescence imaging with a supramolecular biopolymer for the controlled tagging of polysaccharides. Nanoscale, 2019, 11, 9498-9507.	5.6	8
61	Peroxynitrite Activated Drug Conjugate Systems Based on a Coumarin Scaffold Toward the Application of Theranostics. Frontiers in Chemistry, 2019, 7, 775.	3.6	11
62	A Simple Nearâ€Infrared Fluorescent Probe for the Detection of Peroxynitrite. ChemistryOpen, 2019, 8, 1407-1409.	1.9	14
63	Reaction-based indicator displacement assay (RIA) for the development of a triggered release system capable of biofilm inhibition. Chemical Communications, 2019, 55, 15129-15132.	4.1	12
64	Molecular logic gates: the past, present and future. Chemical Society Reviews, 2018, 47, 2228-2248.	38.1	468
65	Dye Displacement Assay for Saccharides using Benzoxaborole Hydrogels. ChemistryOpen, 2018, 7, 266-268.	1.9	9
66	Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols. Chemical Communications, 2018, 54, 4786-4789.	4.1	68
67	Boronateâ€Based Fluorescence Probes for the Detection of Hydrogen Peroxide. ChemistryOpen, 2018, 7, 262-265.	1.9	30
68	A simple umbelliferone based fluorescent probe for the detection of nitroreductase. Frontiers of Chemical Science and Engineering, 2018, 12, 311-314.	4.4	13
69	The development of a novel AND logic based fluorescence probe for the detection of peroxynitrite and GSH. Chemical Science, 2018, 9, 3672-3676.	7.4	136
70	Virtual Issue: Chemosensors. ChemistryOpen, 2018, 7, 215-216.	1.9	2
71	Dual-function cellulose composites for fluorescence detection and removal of fluoride. Dyes and Pigments, 2018, 149, 669-675.	3.7	37
72	Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews, 2018, 47, 8842-8880.	38.1	993

#	Article	IF	CITATIONS
73	Limiting Pseudomonas aeruginosa Biofilm Formation Using Cold Atmospheric Pressure Plasma. Plasma Medicine, 2018, 8, 269-277.	0.6	12
74	An ESIPT Probe for the Ratiometric Imaging of Peroxynitrite Facilitated by Binding to $A\hat{l}^2$ -Aggregates. Journal of the American Chemical Society, 2018, 140, 14267-14271.	13.7	155
75	ESIPT-based fluorescence probe for the rapid detection of peroxynitrite †AND†biological thiols. Chemical Communications, 2018, 54, 11336-11339.	4.1	64
76	â€~AND'-based fluorescence scaffold for the detection of ROS/RNS and a second analyte. Chemical Communications, 2018, 54, 8466-8469.	4.1	47
77	ESIPT-based fluorescence probe for the rapid detection of hypochlorite (HOCl/ClO ^{â^'}). Chemical Communications, 2018, 54, 8522-8525.	4.1	101
78	ESIPT-based ratiometric fluorescence probe for the intracellular imaging of peroxynitrite. Chemical Communications, 2018, 54, 9953-9956.	4.1	96
79	Reaction-based indicator displacement assay (RIA) for the colorimetric and fluorometric detection of hydrogen peroxide. Organic Chemistry Frontiers, 2017, 4, 1058-1062.	4.5	25
80	Fluorescent chemosensors: the past, present and future. Chemical Society Reviews, 2017, 46, 7105-7123.	38.1	1,436
81	A bodipy based hydroxylamine sensor. Chemical Communications, 2017, 53, 10441-10443.	4.1	32
82	Azulene–boronate esters: colorimetric indicators for fluoride in drinking water. Chemical Communications, 2017, 53, 12580-12583.	4.1	65
83	Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite. Chemical Communications, 2017, 53, 12822-12825.	4.1	112
84	Orthogonally Protected Schöllkopf's Bis-lactim Ethers for the Asymmetric Synthesis of α-Amino Acid Derivatives and Dipeptide Esters. Synthesis, 2016, 48, 2036-2049.	2.3	9
85	Selective electrochemiluminescent sensing of saccharides using boronic acid-modified coreactant. Chemical Communications, 2016, 52, 12845-12848.	4.1	20
86	Boronate based fluorescence (ESIPT) probe for peroxynitrite. Chemical Communications, 2016, 52, 12350-12352.	4.1	108
87	Simple Aza-Conjugate Addition Methodology for the Synthesis of Isoindole Nitrones and 3,4-Dihydroisoquinoline Nitrones. Organic Letters, 2015, 17, 994-997.	4.6	24