
Kazuo Tatebayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO Journal, 2007, 26, 3521-3533.	7.8	204
2	Regulation of the Osmoregulatory HOG MAPK Cascade in Yeast. Journal of Biochemistry, 2004, 136, 267-272.	1.7	200
3	Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta. EMBO Journal, 2002, 21, 6473-6482.	7.8	162
4	Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO Journal, 2006, 25, 3033-3044.	7.8	148
5	Conserved Docking Site Is Essential for Activation of Mammalian MAP Kinase Kinases by Specific MAP Kinase Kinase Kinases. Molecular Cell, 2005, 18, 295-306.	9.7	146
6	Regulation of Initiation of S Phase, Replication Checkpoint Signaling, and Maintenance of Mitotic Chromosome Structures during S Phase by Hsk1 Kinase in the Fission Yeast. Molecular Biology of the Cell, 2001, 12, 1257-1274.	2.1	106
7	Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms. Science Signaling, 2014, 7, ra21.	3.6	92
8	A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO Journal, 2003, 22, 3624-3634.	7.8	91
9	Bloom's syndrome gene suppresses premature ageing caused by Sgs1 deficiency in yeast. Genes To Cells, 1999, 4, 619-625.	1.2	84
10	Dynamic Control of Yeast MAP Kinase Network by Induced Association and Dissociation between the Ste50 Scaffold and the Opy2 Membrane Anchor. Molecular Cell, 2010, 40, 87-98.	9.7	80
11	Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK. EMBO Journal, 2009, 28, 1380-1391.	7.8	73
12	Isolation of a Schizosaccharomyces pombe rad21ts Mutant That Is Aberrant in Chromosome Segregation, Microtubule Function, DNA Repair and Sensitive to Hydroxyurea: Possible Involvement of Rad21 in Ubiquitin-Mediated Proteolysis. Genetics, 1998, 148, 49-57.	2.9	72
13	Phosphorylated Ssk1 Prevents Unphosphorylated Ssk1 from Activating the Ssk2 Mitogen-Activated Protein Kinase Kinase Kinase in the Yeast High-Osmolarity Glycerol Osmoregulatory Pathway. Molecular and Cellular Biology, 2008, 28, 5172-5183.	2.3	56
14	Two Adjacent Docking Sites in the Yeast Hog1 Mitogen-Activated Protein (MAP) Kinase Differentially Interact with the Pbs2 MAP Kinase Kinase and the Ptp2 Protein Tyrosine Phosphatase. Molecular and Cellular Biology, 2008, 28, 2481-2494.	2.3	52
15	Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nature Communications, 2015, 6, 6975.	12.8	46
16	Osmostress enhances activating phosphorylation of Hog1 <scp>MAP</scp> kinase by monoâ€phosphorylated Pbs2 <scp>MAP</scp> 2K. EMBO Journal, 2020, 39, e103444.	7.8	44
17	The dhp1+ gene, encoding a putative nuclear 5'->3' exoribonuclease, is required for proper chromosome segregation in fission yeast. Nucleic Acids Research, 2001, 29, 1326-1333.	14.5	38
18	Yeast recombination pathways triggered by topoisomerase II-mediated DNA breaks. Nucleic Acids Research, 2003, 31, 4373-4384.	14.5	36

#	Article	IF	CITATIONS
19	Scaffold Protein Ahk1, Which Associates with Hkr1, Sho1, Ste11, and Pbs2, Inhibits Cross Talk Signaling from the Hkr1 Osmosensor to the Kss1 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2016, 36, 1109-1123.	2.3	24
20	The RHC21 gene of budding yeast, a homologue of the fission yeast rad21 +gene, is essential for chromosome segregation. Molecular Genetics and Genomics, 1998, 257, 149-156.	2.4	22
21	Binding of the Extracellular Eight-Cysteine Motif of Opy2 to the Putative Osmosensor Msb2 Is Essential for Activation of the Yeast High-Osmolarity Glycerol Pathway. Molecular and Cellular Biology, 2016, 36, 475-487.	2.3	22
22	The budding yeast cohesin gene SCC1 / MCD1 / RHC21 genetically interacts with PKA, CDK and APC. Current Genetics, 1999, 36, 329-338.	1.7	20
23	Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. PLoS ONE, 2019, 14, e0211380.	2.5	18
24	Effect of the DNA topoisomerase II inhibitor VP-16 on illegitimate recombination in yeast chromosomes. Gene, 2002, 291, 251-257.	2.2	17
25	Structural analyses of DNA fragments integrated by illegitimate recombination in Schizosaccharomyces pombe. Molecular Genetics and Genomics, 1994, 244, 111-119.	2.4	11
26	Identification of novel suppressors for Mog1 implies its involvement in RNA metabolism, lipid metabolism and signal transduction. Gene, 2007, 400, 114-121.	2.2	6