John Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895027/publications.pdf

Version: 2024-02-01

430874 454955 3,687 31 18 30 h-index citations g-index papers 31 31 31 4543 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multiple genetic paths including massive gene amplification allow $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$ to overcome loss of ESX-3 secretion system substrates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
2	Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. International Journal of Molecular Sciences, 2021, 22, 735.	4.1	20
3	Sterilization by Adaptive Immunity of a Conditionally Persistent Mutant of Mycobacterium tuberculosis. MBio, 2021, 12, .	4.1	1
4	Dual inhibition of the terminal oxidases eradicates antibioticâ€ŧolerant <i>Mycobacterium tuberculosis</i> . EMBO Molecular Medicine, 2021, 13, e13207.	6.9	47
5	BCG-Prime and boost with Esx-5 secretion system deletion mutant leads to better protection against clinical strains of Mycobacterium tuberculosis. Vaccine, 2020, 38, 7156-7165.	3.8	10
6	Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette–Guà ©rin Vaccination to Improve Antiviral Antibody Responses. Journal of Immunology, 2020, 205, 425-437.	0.8	3
7	Capsular glycan recognition provides antibody-mediated immunity against tuberculosis. Journal of Clinical Investigation, 2020, 130, 1808-1822.	8.2	38
8	Splenic Innate B1 B Cell Plasmablasts Produce Sustained Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-3 Cytokines during Murine Malaria Infections. Infection and Immunity, 2019, 87, .	2.2	15
9	Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Frontiers in Immunology, 2019, 10, 2909.	4.8	50
10	Generation of IL-3–Secreting CD4+ T Cells by Microbial Challenge at Skin and Mucosal Barriers. ImmunoHorizons, 2019, 3, 161-171.	1.8	4
11	Suppression of Th1 Priming by TLR2 Agonists during Cutaneous Immunization Is Mediated by Recruited CCR2+ Monocytes. Journal of Immunology, 2018, 201, 3604-3616.	0.8	5
12	Identification of Mycobacterial Ribosomal Proteins as Targets for CD4 ⁺ T Cells That Enhance Protective Immunity in Tuberculosis. Infection and Immunity, 2018, 86, .	2.2	7
13	Identification of Mycobacterial RplJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4 ⁺ T Cells. Infection and Immunity, 2017, 85, .	2.2	13
14	Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154. Journal of Immunology, 2017, 199, 2596-2606.	0.8	10
15	Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLoS Pathogens, 2017, 13, e1006515.	4.7	46
16	Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathogens, 2017, 13, e1006250.	4.7	74
17	CD4 ⁺ T-cell–independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5636-44.	7.1	123
18	Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nature Microbiology, 2016, 1, 16133.	13.3	133

#	Article	IF	CITATIONS
19	Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. MBio, $2016, 7, .$	4.1	52
20	Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infection and Immunity, 2016, 84, 1301-1311.	2.2	82
21	Differential roles of the hemerythrin-like proteins of Mycobacterium smegmatis in hydrogen peroxide and erythromycin susceptibility. Scientific Reports, 2015, 5, 16130.	3.3	17
22	Essential roles of methionine and $\langle i \rangle S \langle i \rangle$ -adenosylmethionine in the autarkic lifestyle of $\langle i \rangle My$ cobacterium tuberculosis $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10008-10013.	7.1	130
23	Role of B Cells and Antibodies in Acquired Immunity against Mycobacterium tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018432-a018432.	6.2	24
24	Improving Mycobacterium bovis Bacillus Calmette-GuÃ"rin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells. PLoS ONE, 2014, 9, e108383.	2.5	24
25	The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Seminars in Immunology, 2014, 26, 588-600.	5.6	139
26	Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP-Binding: Requirement for Establishing Chronic Persistent Infection. PLoS Pathogens, 2009, 5, e1000460.	4.7	107
27	The immunological aspects of latency in tuberculosis. Clinical Immunology, 2004, 110, 2-12.	3.2	152
28	The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cellular Microbiology, 2003, 5, 637-648.	2.1	178
29	Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Molecular Microbiology, 2002, 36, 630-637.	2.5	270
30	Immunology of Tuberculosis. Annual Review of Immunology, 2001, 19, 93-129.	21.8	1,840
31	Immune Mechanisms of Protection. , 0, , 387-415.		64