Jakub Jurysek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3894475/publications.pdf

Version: 2024-02-01

			394421]	82427
	54	4,374	19		51
	papers	citations	h-index		g-index
Ξ					
	55	55	55		8612
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
2	Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 $\tilde{A}-10$ ¹⁸ eV. Science, 2017, 357, 1266-1270.	12.6	261
3	An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources [*] . Astrophysical Journal Letters, 2018, 853, L29.	8.3	165
4	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
5	Measurement of the cosmic-ray energy spectrum above <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2.5</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:rrusing 102<="" 2020.="" auger="" d.="" observatory.="" physical="" pierre="" review="" td="" the=""><td>nn;18<td>98 ml:mn></td></td></mml:rrusing></mml:msup></mml:math>	nn;18 <td>98 ml:mn></td>	98 ml:mn>
6	Inferences on mass composition and tests of hadronic interactions from 0.3 to 100ÂEeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Physical Review D, 2017, 96, .	4.7	82
7	Features of the Energy Spectrum of Cosmic Rays above <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2.5</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><td>n758<td>ml:mn></td></td></mml:msup></mml:math>	n 7 58 <td>ml:mn></td>	ml:mn>
8	Large-scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory. Astrophysical Journal, 2018, 868, 4.	4.5	77
9	Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 022-022.	5.4	64
10	Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 057-057.	5.4	46
11	The energy spectrum of cosmic rays beyond the turn-down around $\$$ varvec $\{10^{17}\}$ \$ÂeV as measured with the surface detector of the Pierre Auger Observatory. European Physical Journal C, 2021, 81, 1.	3.9	44
12	Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 048-048.	5.4	41
13	Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory. Astrophysical Journal, 2020, 891, 142.	4.5	39
14	Direct measurement of the muonic content of extensive air showers between $\$$ mathbf { 2imes 10^{17} } and $\$$ mathbf {2imes 10^{18} }~ $\$$ eV at the Pierre Auger Observatory. European Physical Journal C, 2020, 80, 1.	3.9	36
15	Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout. Astroparticle Physics, 2019, 111, 35-53.	4.3	35
16	Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory. Physical Review Letters, 2021, 126, 152002.	7.8	34
17	Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 026-026.	5.4	30
18	Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory. Physical Review D, 2019, 100, .	4.7	20

#	Article	IF	CITATIONS
19	Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmospheric Environment, 2019, 202, 190-211.	4.1	20
20	Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory. Journal of Instrumentation, 2020, 15, P10021-P10021.	1.2	20
21	Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 004-004.	5.4	18
22	TEN <i>KEPLER</i> ECLIPSING BINARIES CONTAINING THE THIRD COMPONENTS. Astronomical Journal, 2015, 149, 197.	4.7	16
23	Deep-learning based reconstruction of the shower maximum X _{max} using the water-Cherenkov detectors of the Pierre Auger Observatory. Journal of Instrumentation, 2021, 16, P07019.	1.2	16
24	The first study of the light-travel time effect in massive LMC eclipsing binaries. Astronomy and Astrophysics, 2016, 590, A85.	5.1	13
25	New inclination changing eclipsing binaries in the Magellanic Clouds. Astronomy and Astrophysics, 2018, 609, A46.	5.1	13
26	Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory. Journal of Instrumentation, 2021, 16, P01026-P01026.	1.2	13
27	A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory. Astrophysical Journal, 2020, 902, 105.	4.5	13
28	CONSTRAINING MODELS OF TWIN-PEAK QUASI-PERIODIC OSCILLATIONS WITH REALISTIC NEUTRON STAR EQUATIONS OF STATE. Astrophysical Journal, 2016, 833, 273.	4.5	12
29	Physical properties of $\langle i \rangle \hat{l}^2 \langle i \rangle$ Lyrae A and its opaque accretion disk. Astronomy and Astrophysics, 2018, 618, A112.	5.1	11
30	Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks. Journal of Instrumentation, 2021, 16, P07016.	1.2	11
31	Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 018-018.	5.4	10
32	Search for magnetically-induced signatures in the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 017-017.	5.4	10
33	A 3‥ear Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmicâ€Ray Observatory. Earth and Space Science, 2020, 7, e2019EA000582.	2.6	9
34	Spectral calibration of the fluorescence telescopes of the Pierre Auger Observatory. Astroparticle Physics, 2017, 95, 44-56.	4.3	7
35	The first study of 54 new eccentric eclipsing binaries in our Galaxy. Astronomy and Astrophysics, 2018, 619, A85.	5.1	7
36	FRAM telescopes and their measurements of aerosol content at the Pierre Auger Observatory and at future sites of the Cherenkov Telescope Array. EPJ Web of Conferences, 2019, 197, 02008.	0.3	7

#	Article	IF	CITATIONS
37	A New Method for Aerosol Measurement Using Wide-field Photometry. Astronomical Journal, 2021, 162, 6.	4.7	6
38	The search for roAp stars: null results and new candidates from Strömgren-Crawford photometry. Research in Astronomy and Astrophysics, 2018, 18, 135.	1.7	5
39	Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope. Journal of Instrumentation, 2020, 15, P09002-P09002.	1.2	5
40	Calibration of the underground muon detector of the Pierre Auger Observatory. Journal of Instrumentation, 2021, 16, P04003.	1.2	5
41	Large scale characterization and calibration strategy of a SiPM-based camera for gamma-ray astronomy. Journal of Instrumentation, 2020, 15, P11010-P11010.	1.2	5
42	Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 023.	5.4	5
43	V346 Centauri: Early-type eclipsing binary with apsidal motion and abrupt change of orbital period. Astronomy and Astrophysics, 2016, 591, A129.	5.1	4
44	Aerosol Measurements with the FRAM Telescope. EPJ Web of Conferences, 2017, 144, 01011.	0.3	3
45	Design and implementation of the AMIGA embedded system for data acquisition. Journal of Instrumentation, 2021, 16, T07008.	1.2	3
46	A Survey of Novae in M83. Astrophysical Journal, 2021, 923, 239.	4.5	3
47	V773 Cas, QS Aql, AND BR Ind: ECLIPSING BINARIES AS PARTS OF MULTIPLE SYSTEMS*. Astronomical Journal, 2017, 153, 36.	4.7	2
48	Improved model of the triple system V746 Cassiopeiae that has a bipolar magnetic field associated with the tertiary. Astronomy and Astrophysics, 2018, 609, A5.	5.1	2
49	New developments in aerosol measurements using stellar photometry. EPJ Web of Conferences, 2019, 197, 02007.	0.3	2
50	The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory. Journal of Instrumentation, 2021, 16, P06027.	1.2	2
51	The SST-1M project for the Cherenkov Telescope Array. , 2019, , .		2
52	Prototype operations of atmospheric calibration devices for the Cherenkov Telescope Array., 2019,,.		2
53	Possible companions in low-mass eclipsing binaries: V380 Dra, BX Tri, and V642 Vir. Contributions of the Astronomical Observatory Skalnate Pleso, 2020, 50, .	0.1	1
54	V348 And and V572 Per: Bright Triple Systems with Eccentric Eclipsing Binaries*. Astronomical Journal, 2019, 158, 95.	4.7	0