Maria Angelica Cortez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3894467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews Clinical Oncology, 2011, 8, 467-477.	27.6	1,290
2	Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature Communications, 2014, 5, 5241.	12.8	780
3	PDL1 Regulation by p53 via miR-34. Journal of the National Cancer Institute, 2016, 108, .	6.3	475
4	MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opinion on Biological Therapy, 2009, 9, 703-711.	3.1	372
5	Combining Radiation and Immunotherapy: A New Systemic Therapy for Solid Tumors?. Cancer Immunology Research, 2014, 2, 831-838.	3.4	270
6	Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. Cancer Research, 2017, 77, 839-850.	0.9	195
7	Therapeutic Delivery of miR-200c Enhances Radiosensitivity in Lung Cancer. Molecular Therapy, 2014, 22, 1494-1503.	8.2	172
8	<i>miRâ€29b</i> and <i>miRâ€125a</i> regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes and Cancer, 2010, 49, 981-990.	2.8	125
9	Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes and Cancer, 2019, 58, 244-253.	2.8	105
10	Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. , 2020, 8, e000537.		105
11	Altered cancer metabolism in mechanisms of immunotherapy resistance. , 2019, 195, 162-171.		97
12	Phase II Trial of Ipilimumab with Stereotactic Radiation Therapy for Metastatic Disease: Outcomes, Toxicities, and Low-Dose Radiation–Related Abscopal Responses. Cancer Immunology Research, 2019, 7, 1903-1909.	3.4	86
13	Absolute Lymphocyte Count Predicts Abscopal Responses and Outcomes in Patients Receiving Combined Immunotherapy and Radiation Therapy: Analysis of 3 Phase 1/2 Trials. International Journal of Radiation Oncology Biology Physics, 2020, 108, 196-203.	0.8	77
14	Interaction between lymphopenia, radiotherapy technique, dosimetry, and survival outcomes in lung cancer patients receiving combined immunotherapy and radiotherapy. Radiotherapy and Oncology, 2020, 150, 114-120.	0.6	66
15	In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation. Molecular Therapy - Nucleic Acids, 2015, 4, e270.	5.1	63
16	Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Research, 2018, 28, 432-447.	5.5	58
17	Response and outcomes after anti-CTLA4 versus anti-PD1 combined with stereotactic body radiation therapy for metastatic non-small cell lung cancer: retrospective analysis of two single-institution prospective trials. , 2020, 8, e000492.		55
18	Triple Therapy with MerTK and PD1 Inhibition Plus Radiotherapy Promotes Abscopal Antitumor Immune Responses. Clinical Cancer Research, 2019, 25, 7576-7584.	7.0	51

MARIA ANGELICA CORTEZ

#	Article	IF	CITATIONS
19	Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. , 2020, 8, e000289.		51
20	Indoleamine 2,3-dioxygenase 1 inhibition targets anti-PD1-resistant lung tumors by blocking myeloid-derived suppressor cells. Cancer Letters, 2018, 431, 54-63.	7.2	50
21	Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Frontiers in Immunology, 2020, 11, 573326.	4.8	50
22	Anti-glucocorticoid-induced Tumor Necrosis Factor–Related Protein (GITR) Therapy Overcomes Radiation-Induced Treg Immunosuppression and Drives Abscopal Effects. Frontiers in Immunology, 2018, 9, 2170.	4.8	48
23	Radiation Followed by OX40 Stimulation Drives Local and Abscopal Antitumor Effects in an Anti–PD1-Resistant Lung Tumor Model. Clinical Cancer Research, 2018, 24, 5735-5743.	7.0	48
24	SHP-2 and PD-L1 Inhibition Combined with Radiotherapy Enhances Systemic Antitumor Effects in an Anti–PD-1–Resistant Model of Non–Small Cell Lung Cancer. Cancer Immunology Research, 2020, 8, 883-894.	3.4	48
25	Modulation of câ€Met signaling and cellular sensitivity to radiation. Cancer, 2013, 119, 1768-1775.	4.1	47
26	C-Met Inhibitor MK-8003 Radiosensitizes c-Met–Expressing Non–Small-Cell Lung Cancer Cells With Radiation-Induced c-Met–Expression. Journal of Thoracic Oncology, 2012, 7, 1211-1217.	1.1	45
27	High-dose irradiation in combination with non-ablative low-dose radiation to treat metastatic disease after progression on immunotherapy: Results of a phase II trial. Radiotherapy and Oncology, 2021, 162, 60-67.	0.6	45
28	microRNAs in Cancer. Advances in Cancer Research, 2010, 108, 113-157.	5.0	43
29	IDO1 Inhibition Overcomes Radiation-Induced "Rebound Immune Suppression―by Reducing Numbers of IDO1-Expressing Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. International Journal of Radiation Oncology Biology Physics, 2019, 104, 903-912.	0.8	39
30	Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma. Cancer Research, 2015, 75, 4131-4142.	0.9	38
31	Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nature Communications, 2017, 8, 1801.	12.8	36
32	Use of Multi-Site Radiation Therapy for Systemic Disease Control. International Journal of Radiation Oncology Biology Physics, 2021, 109, 352-364.	0.8	34
33	Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Translational Lung Cancer Research, 2007, 6, 148-158.	2.8	33
34	Radiation Therapy Enhanced by NBTXR3 Nanoparticles Overcomes Anti-PD1 Resistance and Evokes Abscopal Effects. International Journal of Radiation Oncology Biology Physics, 2021, 111, 647-657.	0.8	32
35	Bone morphogenetic protein 7 promotes resistance to immunotherapy. Nature Communications, 2020, 11, 4840.	12.8	25
36	Radiation and Anti-Cancer Vaccines: A Winning Combination. Vaccines, 2018, 6, 9.	4.4	19

MARIA ANGELICA CORTEZ

#	Article	IF	CITATIONS
37	Addition of TLR9 agonist immunotherapy to radiation improves systemic antitumor activity. Translational Oncology, 2021, 14, 100983.	3.7	18
38	A radioenhancing nanoparticle mediated immunoradiation improves survival and generates long-term antitumor immune memory in an anti-PD1-resistant murine lung cancer model. Journal of Nanobiotechnology, 2021, 19, 416.	9.1	16
39	Novel Use of Low-Dose Radiotherapy to Modulate the Tumor Microenvironment of Liver Metastases. Frontiers in Immunology, 2021, 12, 812210.	4.8	13
40	TLE1 as an indicator of adverse prognosis in pediatric acute lymphoblastic leukemia. Leukemia Research, 2018, 74, 42-46.	0.8	11
41	Cryptic SYT/SXX1 fusion gene in high-grade biphasic synovial sarcoma with unique complex rearrangement and extensive BCL2 overexpression. Cancer Genetics and Cytogenetics, 2010, 196, 189-193.	1.0	8
42	Selective and pan-blockade agents in the anti-angiogenic treatment of proliferative diabetic retinopathy: a literature summary. Canadian Journal of Ophthalmology, 2010, 45, 501-508.	0.7	8
43	Galectin-1 and Immune Suppression during Radiotherapy. Clinical Cancer Research, 2014, 20, 6230-6232.	7.0	8
44	Pulsed Radiation Therapy to Improve Systemic Control of Metastatic Cancer. Frontiers in Oncology, 2021, 11, 737425.	2.8	6
45	Cytogenetic heterogeneity in biphasic synovial sarcoma associated with telomere instability. Cancer Genetics and Cytogenetics, 2010, 197, 86-90.	1.0	1
46	Perfluorocarbon liquid left in vitreous cavity after recovery of dropped nuclei by anterior segment surgeons after cataract surgery. Canadian Journal of Ophthalmology, 2007, 42, 617-9.	0.7	1