
Richard G Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3894315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bagâ€l mediates glucocorticoid receptor trafficking to mitochondria after corticosterone stimulation: Potential role in regulating affective resilience. Journal of Neurochemistry, 2021, 158, 358-372.	3.9	9
2	A Caretaker Acute Stress Paradigm: Effects on behavior and physiology of caretaker and infant. Developmental Psychobiology, 2021, 63, 237-246.	1.6	7
3	In search of positive mental health: Personality profiles and genetic polymorphisms. Stress and Health, 2021, 37, 310-319.	2.6	4
4	Keeping complexity in mind. , 2021, , xi-xvi.		1
5	From Exaptation to Adaptation: Stress, Transposons, and Functions of the Deep Genome. , 2021, , 119-124.		Ο
6	Epigenetics in posttraumatic stress disorder. , 2021, , 429-450.		0
7	Psychiatric risk and resilience: Plasticity genes and positive mental health. Brain and Behavior, 2021, 11, e02137.	2.2	6
8	Corticosterone dynamically regulates retrotransposable element expression in the rat hippocampus and C6 cells. Neurobiology of Stress, 2021, 15, 100397.	4.0	8
9	Maternal hair cortisol levels as a novel predictor of neonatal abstinence syndrome severity: A pilot feasibility study. Developmental Psychobiology, 2020, 62, 116-122.	1.6	6
10	In search of optimal resilience ratios: Differential influences of neurobehavioral factors contributing to stress-resilience spectra. Frontiers in Neuroendocrinology, 2020, 56, 100802.	5.2	16
11	Early experience alters developmental trajectory of central oxytocin systems involved in hypothalamic-pituitary-adrenal axis regulation in Long-Evans rats. Hormones and Behavior, 2020, 126, 104822.	2.1	13
12	Stress, Adaptation, and the Deep Genome: Why Transposons Matter. Integrative and Comparative Biology, 2020, 60, 1495-1505.	2.0	15
13	Stress and glucocorticoid receptor regulation of mitochondrial gene expression. Journal of Molecular Endocrinology, 2019, 62, R121-R128.	2.5	50
14	Chromatin Immunoprecipitation Techniques in Neuropsychiatric Research. Methods in Molecular Biology, 2019, 2011, 633-645.	0.9	2
15	Seeing a Face in a Crowd of Emotional Voices: Changes in Perception and Cortisol in Response to Emotional Information across the Senses. Brain Sciences, 2019, 9, 176.	2.3	3
16	Epigenetic Mechanisms of the Glucocorticoid Receptor. Trends in Endocrinology and Metabolism, 2019, 30, 807-818.	7.1	57
17	Risk and protective effects of serotonin and BDNF genes on stress-related adult psychiatric symptoms. Neurobiology of Stress, 2019, 11, 100186.	4.0	12
18	Editorial: A brief overview of the 2018 Neurobiology of Stress Workshop. Neurobiology of Stress, 2019, 11, 100193.	4.0	0

#	Article	IF	CITATIONS
19	Early life exposures, neurodevelopmental disorders, and transposable elements. Neurobiology of Stress, 2019, 11, 100174.	4.0	27
20	Toxic stress history and hypothalamic-pituitary-adrenal axis function in a social stress task: Genetic and epigenetic factors. Neurotoxicology and Teratology, 2019, 71, 41-49.	2.4	28
21	Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biological Psychiatry, 2018, 83, 849-865.	1.3	58
22	Application of Vulnerability Assessment to a Grazed Rangeland: Toward an Integrated Conceptual Framework. Rangelands, 2018, 40, 17-23.	1.9	2
23	The Neuroscience of Resilience. Journal of the Society for Social Work and Research, 2018, 9, 305-339.	1.3	22
24	Transposons, stress and the functions of the deep genome. Frontiers in Neuroendocrinology, 2018, 49, 170-174.	5.2	15
25	Molecular endocrinology of female reproductive behavior. Molecular and Cellular Endocrinology, 2018, 467, 14-20.	3.2	17
26	Relationship between socioeconomic vulnerability and ecological sustainability: The case of Aran-V-Bidgol's rangelands, Iran. Ecological Indicators, 2018, 85, 613-623.	6.3	19
27	Introduction to the Special Section on Social Work and Neuroscience. Journal of the Society for Social Work and Research, 2018, 9, 217-221.	1.3	3
28	Novel Bioinformatics Approach Identifies Transcriptional Profiles of Lineage-Specific Transposable Elements at Distinct Loci in the Human Dorsolateral Prefrontal Cortex. Molecular Biology and Evolution, 2018, 35, 2435-2453.	8.9	43
29	Anxiety and Epigenetics. Advances in Experimental Medicine and Biology, 2017, 978, 145-166.	1.6	63
30	Drivers of local people's participation in sustainable natural resource management: a case study in central Iran. Local Environment, 2017, 22, 880-893.	2.4	6
31	Coping Strategies During Drought: The Case of Rangeland Users in Southwest Iran. Rangelands, 2017, 39, 133-142.	1.9	10
32	Waddington, Dynamic Systems, and Epigenetics. Frontiers in Behavioral Neuroscience, 2016, 10, 107.	2.0	58
33	Stress, Transposons, and the Brain Epigenome. Epigenetics and Human Health, 2016, , 191-205.	0.2	0
34	Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9099-9104.	7.1	118
35	The dynamic genome: transposons and environmental adaptation in the nervous system. Epigenomics, 2016, 8, 237-249.	2.1	36
36	Mammalian Genome Plasticity: Expression Analysis of Transposable Elements. Neuromethods, 2016, , 163-174.	0.3	0

#	Article	IF	CITATIONS
37	Addendum to stress and the dynamic genome: Steroids, epigenetics, and the transposome. Communicative and Integrative Biology, 2015, 8, e1035847.	1.4	Ο
38	Mechanisms of stress in the brain. Nature Neuroscience, 2015, 18, 1353-1363.	14.8	1,056
39	Stress and the dynamic genome: Steroids, epigenetics, and the transposome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6828-6833.	7.1	124
40	Hippocampal gene expression changes underlying stress sensitization and recovery. Molecular Psychiatry, 2014, 19, 1171-1178.	7.9	208
41	Role for NUP62 depletion and PYK2 redistribution in dendritic retraction resulting from chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16130-16135.	7.1	36
42	Epigenetics in Posttraumatic Stress Disorder. , 2014, , 325-341.		0
43	Neuroepigenetics of stress. Neuroscience, 2014, 275, 420-435.	2.3	83
44	Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics, 2013, 5, 177-194.	2.1	116
45	Environmental stress and transposon transcription in the mammalian brain. Mobile Genetic Elements, 2013, 3, e24555.	1.8	47
46	Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17657-17662.	7.1	169
47	Stress and the ?7 Nicotinic Acetylcholine Receptor. Current Drug Targets, 2012, 13, 607-612.	2.1	9
48	Epigenetic effects of stress and corticosteroids in the brain. Frontiers in Cellular Neuroscience, 2012, 6, 18.	3.7	84
49	Glucocorticoids Modulate the mTOR Pathway in the Hippocampus: Differential Effects Depending on Stress History. Endocrinology, 2012, 153, 4317-4327.	2.8	88
50	Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology, 2012, 62, 3-12.	4.1	437
51	Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice. European Journal of Neuroscience, 2011, 34, 469-477.	2.6	89
52	Regulation of the nicotinic receptor alpha7 subunit by chronic stress and corticosteroids. Brain Research, 2010, 1325, 141-146.	2.2	25
53	Hippocampal Kainate Receptors. Vitamins and Hormones, 2010, 82, 167-184.	1.7	31
54	Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20912-20917.	7.1	257

#	Article	IF	CITATIONS
55	Dynamic regulation of mitochondrial function by glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3543-3548.	7.1	392
56	Chronic stress differentially regulates cannabinoid CB1 receptor binding in distinct hippocampal subfields. European Journal of Pharmacology, 2009, 614, 66-69.	3.5	36
57	Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience, 2009, 164, 798-808.	2.3	284
58	Regulation of Kainate Receptor Subunit mRNA by Stress and Corticosteroids in the Rat Hippocampus. PLoS ONE, 2009, 4, e4328.	2.5	35
59	Behavioral and biological effects of chronic S18986, a positive AMPA receptor modulator, during aging. Experimental Neurology, 2008, 210, 109-117.	4.1	42
60	Regulation of CART mRNA by stress and corticosteroids in the hippocampus and amygdala. Brain Research, 2007, 1152, 234-240.	2.2	51
61	The role of CART in body weight homeostasis. Peptides, 2006, 27, 1981-1986.	2.4	37
62	Regulation of CART mRNA in the rat nucleus accumbens via D3 dopamine receptors. Neuropharmacology, 2006, 50, 858-864.	4.1	39
63	The effects of cocaine on CART expression in the rat nucleus accumbens: A possible role for corticosterone. European Journal of Pharmacology, 2005, 517, 45-50.	3.5	45
64	CART peptide diurnal rhythm in brain and effect of fasting. Brain Research, 2005, 1032, 111-115.	2.2	28
65	Species differences in brain distribution of CART mRNA and CART peptide between prairie and meadow voles. Brain Research, 2005, 1048, 12-23.	2.2	19
66	Effect of corticosterone on CART peptide levels in rat blood. Peptides, 2005, 26, 531-533.	2.4	15
67	Cocaine- and Amphetamine-Regulated Transcript Peptide Levels in Blood Exhibit a Diurnal Rhythm: Regulation by Glucocorticoids. Endocrinology, 2004, 145, 4119-4124.	2.8	57
68	Intrathecal CART (55-102) enhances the spinal analgesic actions of morphine in mice. Brain Research, 2004, 1024, 146-149.	2.2	34
69	CART Peptides: Modulators of Mesolimbic Dopamine, Feeding, and Stress. Annals of the New York Academy of Sciences, 2004, 1025, 363-369.	3.8	38
70	CART in feeding and obesity. Trends in Endocrinology and Metabolism, 2004, 15, 454-459.	7.1	94
71	CART peptides are modulators of mesolimbic dopamine and psychostimulants. Life Sciences, 2003, 73, 741-747.	4.3	77
72	CART Peptides as Targets for CNS Drug Development. CNS and Neurological Disorders, 2003, 2, 201-205.	4.3	68

5

#	Article	IF	CITATIONS
73	Actions of cocaine- and amphetamine-regulated transcript (CART) peptide on regulation of appetite and hypothalamo–pituitary axes in vitro and in vivo in male rats. Brain Research, 2001, 893, 186-194.	2.2	181
74	Quantification and synthesis of cocaine- and amphetamine-regulated transcript peptide (79-102)-like immunoreactivity and mRNA in rat tissues. Journal of Endocrinology, 2000, 166, 659-668.	2.6	69
75	CART peptides. Regulatory Peptides, 2000, 89, 1-6.	1.9	110
76	Intra-ventral tegmental area injection of rat cocaine and amphetamine-regulated transcript peptide 55-102 induces locomotor activity and promotes conditioned place preference. Journal of Pharmacology and Experimental Therapeutics, 2000, 294, 784-92.	2.5	138
77	CART: from gene to function. Brain Research, 1999, 848, 137-140.	2.2	74
78	Studies of selected phenyltropanes at monoamine transporters. Drug and Alcohol Dependence, 1999, 56, 9-15.	3.2	39
79	Hormones and allostasis in brain disease and repair. , 0, , 62-78.		Ο
80	Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Frontiers in Genetics, 0, 13, .	2.3	6
81	The Role of Transposable Elements in Sexual Development. Frontiers in Behavioral Neuroscience, 0, 16,	2.0	5