Xian Sheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3894052/publications.pdf

Version: 2024-02-01

85 papers

4,083 citations

38 h-index 59 g-index

87 all docs

87 docs citations

times ranked

87

4691 citing authors

#	Article	IF	CITATIONS
1	Pattern of Auxin and Cytokinin Responses for Shoot Meristem Induction Results from the Regulation of Cytokinin Biosynthesis by AUXIN RESPONSE FACTOR3 Â Â. Plant Physiology, 2012, 161, 240-251.	4.8	218
2	DNA Methylation and Histone Modifications Regulate De Novo Shoot Regeneration in Arabidopsis by Modulating WUSCHEL Expression and Auxin Signaling. PLoS Genetics, 2011, 7, e1002243.	3.5	201
3	Type-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of <i>>WUSCHEL</i> >. Plant Cell, 2017, 29, 1357-1372.	6.6	201
4	SHORT HYPOCOTYL UNDER BLUE1 Associates with <i>MINISEED3 </i> hand <i>HAIKU2 </i> Promoters in Vivo to Regulate <i>Arabidopsis </i> Seed Development. Plant Cell, 2009, 21, 106-117.	6.6	180
5	Abscisic Acid Regulates Early Seed Development in <i>Arabidopsis</i> by ABI5-Mediated Transcription of <i>SHORT HYPOCOTYL UNDER BLUE1</i> Plant Cell, 2014, 26, 1053-1068.	6.6	172
6	PHB3 Maintains Root Stem Cell Niche Identity through ROS-Responsive AP2/ERF Transcription Factors in Arabidopsis. Cell Reports, 2018, 22, 1350-1363.	6.4	128
7	The tae-miR408-Mediated Control of <i>TaTOC1</i> Genes Transcription Is Required for the Regulation of Heading Time in Wheat. Plant Physiology, 2016, 170, 1578-1594.	4.8	113
8	Arabidopsis <scp>COBRA</scp> â€ <scp>LIKE</scp> 10, a <scp>GPI</scp> â€anchored protein, mediates directional growth of pollen tubes. Plant Journal, 2013, 74, 486-497.	5.7	105
9	Establishment of embryonic shootââ,¬â€œroot axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Frontiers in Plant Science, 2014, 5, 792.	3.6	104
10	The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog. Plant Molecular Biology, 2005, 58, 53-64.	3.9	97
11	Induction of Somatic Embryos in Arabidopsis Requires Local YUCCA Expression Mediated by the Down-Regulation of Ethylene Biosynthesis. Molecular Plant, 2013, 6, 1247-1260.	8.3	97
12	Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nature Communications, 2017, 8, 15121.	12.8	97
13	Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Research, 2015, 25, 864-876.	12.0	94
14	Synergistic action of auxin and cytokinin mediates aluminumâ€induced root growth inhibition in <i>Arabidopsis</i> . EMBO Reports, 2017, 18, 1213-1230.	4.5	80
15	Plant stem cells and <i>de novo</i> organogenesis. New Phytologist, 2018, 218, 1334-1339.	7.3	78
16	Integration of pluripotency pathways regulates stem cell maintenance in the <i>Arabidopsis</i> shoot meristem. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22561-22571.	7.1	78
17	The Hormonal Control of Regeneration in Plants. Current Topics in Developmental Biology, 2014, 108, 35-69.	2.2	70
18	The Arabidopsis KINÎ 2 Î 3 Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen. PLoS Genetics, 2016, 12, e1006228.	3.5	65

#	Article	IF	CITATIONS
19	<i>TaD27â€B</i> gene controls the tiller number in hexaploid wheat. Plant Biotechnology Journal, 2020, 18, 513-525.	8.3	64
20	<scp>FUSCA</scp> 3 interacting with <scp>LEAFY COTYLEDON</scp> 2 controls lateral root formation through regulating <i><scp>YUCCA</scp>4</i> gene expression in <i>Arabidopsis thaliana</i> New Phytologist, 2017, 213, 1740-1754.	7.3	63
21	FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Current Biology, 2021, 31, 3004-3016.e4.	3.9	63
22	Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology, 2021, 63, 228-243.	8.5	61
23	Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006, 223, 698-707.	3.2	60
24	Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. Plant Molecular Biology, 2011, 77, 251-260.	3.9	57
25	MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Molecular Plant, 2021, 14, 285-297.	8.3	57
26	The microRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant Cell, Tissue and Organ Culture, 2016, 124, 405-417.	2.3	54
27	Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regulation, 2013, 69, 167-176.	3.4	52
28	Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum. Plant Science, 2021, 304, 110801.	3.6	52
29	ABNORMAL POLLEN TUBE GUIDANCE1, an Endoplasmic Reticulum-Localized Mannosyltransferase Homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in Yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in Human, Is Required for Arabidopsis Pollen Tube Micropylar Guidance and Embryo Development. Plant Physiology, 2014, 165, 1544-1556.	4.8	51
30	Two-stage cyclic enzymatic amplification method for ultrasensitive electrochemical assay of microRNA-21 in the blood serum of gastric cancer patients. Biosensors and Bioelectronics, 2016, 79, 307-312.	10.1	51
31	Electrochemical biosensor for microRNA detection based on poly(U) polymerase mediated isothermal signal amplification. Biosensors and Bioelectronics, 2016, 79, 79-85.	10.1	51
32	ROS in the Male–Female Interactions During Pollination: Function and Regulation. Frontiers in Plant Science, 2020, 11, 177.	3.6	51
33	Transcriptional Analyses of Natural Leaf Senescence in Maize. PLoS ONE, 2014, 9, e115617.	2.5	51
34	<i><scp>DNA METHYLTRANSFERASE</scp>1</i> i>â€mediated shoot regeneration is regulated by cytokininâ€induced cell cycle in <i>Arabidopsis</i> New Phytologist, 2018, 217, 219-232.	7.3	47
35	Thioredoxin-Mediated ROS Homeostasis Explains Natural Variation in Plant Regeneration. Plant Physiology, 2018, 176, 2231-2250.	4.8	46
36	Local Auxin Biosynthesis Mediates Plant Growth and Development. Trends in Plant Science, 2019, 24, 6-9.	8.8	46

#	Article	IF	CITATIONS
37	Comparative Transcriptome Analysis Reveals New IncRNAs Responding to Salt Stress in Sweet Sorghum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 331.	4.1	46
38	Architecture of Wheat Inflorescence: Insights from Rice. Trends in Plant Science, 2019, 24, 802-809.	8.8	40
39	Genomeâ€wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal, 2020, 18, 185-194.	8.3	39
40	Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L Planta, 2002, 215, 533-540.	3.2	38
41	DEK43 is a Pâ€type pentatricopeptide repeat (PPR) protein responsible for the <i>Cis</i> â€splicing of <i>nad4</i> in maize mitochondria. Journal of Integrative Plant Biology, 2020, 62, 299-313.	8.5	37
42	AtPRMT5 Regulates Shoot Regeneration through Mediating Histone H4R3 Dimethylation on KRPs and Pre-mRNA Splicing of RKP in Arabidopsis. Molecular Plant, 2016, 9, 1634-1646.	8.3	33
43	Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize. Journal of Experimental Botany, 2019, 70, 6163-6179.	4.8	32
44	TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat. Plant Science, 2020, 300, 110624.	3.6	32
45	Distribution of Phenolic Acids and Antioxidant Activities of Different Bran Fractions from Three Pigmented Wheat Varieties. Journal of Chemistry, 2018, 2018, 1-9.	1.9	31
46	The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing <i>AINTEGUMENTA</i> . Plant Cell, 2021, 33, 1907-1926.	6.6	31
47	Functional Implications of Active N6-Methyladenosine in Plants. Frontiers in Cell and Developmental Biology, 2020, 8, 291.	3.7	30
48	Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in common wheat. BMC Plant Biology, 2020, 20, 351.	3.6	29
49	Genetic, hormonal, and environmental control of tillering in wheat. Crop Journal, 2021, 9, 986-991.	5.2	27
50	ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnology Journal, 2022, 20, 526-537.	8.3	27
51	iPSCs: A Comparison between Animals and Plants. Trends in Plant Science, 2018, 23, 660-666.	8.8	26
52	Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nature Plants, 2022, 8, 233-244.	9.3	26
53	The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nature Plants, 2021, 7, 608-618.	9.3	23
54	Genome-Wide Analysis and Expression Patterns of the YUCCA Genes in Maize. Journal of Genetics and Genomics, 2015, 42, 707-710.	3.9	22

#	Article	IF	CITATIONS
55	Type-B ARRs Control Carpel Regeneration Through Mediating AGAMOUS Expression in Arabidopsis. Plant and Cell Physiology, 2018, 59, 761-769.	3.1	21
56	Wheat D-type cyclin Triae;CYCD2;1 regulate development of transgenic Arabidopsis plants. Planta, 2006, 224, 1129-1140.	3.2	20
57	Rice OsAS2 Gene, a Member of LOB Domain Family, Functions in the Regulation of Shoot Differentiation and Leaf Development. Journal of Plant Biology, 2009, 52, 374-381.	2.1	20
58	Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sacââ,¬â€œpollen tube interaction. Frontiers in Plant Science, 2014, 5, 702.	3.6	20
59	Genome-wide analysis of SSR and ILP markers in trees: diversity profiling, alternate distribution, and applications in duplication. Scientific Reports, 2017, 7, 17902.	3.3	20
60	Differences in capacities of in vitro organ regeneration between two Arabidopsis ecotypes Wassilewskija and Columbia. Plant Cell, Tissue and Organ Culture, 2013, 112, 65-74.	2.3	19
61	Comparative Transcriptome Analysis Revealing the Effect of Light on Anthocyanin Biosynthesis in Purple Grains of Wheat. Journal of Agricultural and Food Chemistry, 2018, 66, 3465-3476.	5.2	19
62	Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement. Plant Journal, 2021, 108, 40-54.	5.7	18
63	Down-expression of TaPIN1s Increases the Tiller Number and Grain Yield in Wheat. BMC Plant Biology, 2021, 21, 443.	3.6	18
64	Endogenous auxin biosynthesis andde novoroot organogenesis. Journal of Experimental Botany, 2016, 67, 4011-4013.	4.8	17
65	Unfolded protein response activation compensates endoplasmic reticulumâ€associated degradation deficiency in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2017, 59, 506-521.	8.5	17
66	The novel E-subgroup pentatricopeptide repeat protein DEK55 is responsible for RNA editing at multiple sites and for the splicing of nad1 and nad4 in maize. BMC Plant Biology, 2020, 20, 553.	3.6	17
67	ARF4 regulates shoot regeneration through coordination with ARF5 and IAA12. Plant Cell Reports, 2021, 40, 315-325.	5.6	17
68	Microfilament Depolymerization Is a Pre-requisite for Stem Cell Formation During In vitro Shoot Regeneration in Arabidopsis. Frontiers in Plant Science, 2017, 8, 158.	3.6	14
69	Stigma factors regulating self-compatible pollination. Frontiers in Biology, 2010, 5, 156-163.	0.7	13
70	Regulation of cell reprogramming by auxin during somatic embryogenesis. ABIOTECH, 2020, 1, 185-193.	3.9	13
71	Initiation and maintenance of plant stem cells in root and shoot apical meristems. ABIOTECH, 2020, 1, 194-204.	3.9	11
72	A nitrate transporter encoded by ZmNPF7.9 is essential for maize seed development. Plant Science, 2021, 308, 110901.	3.6	10

#	Article	IF	Citations
73	Interaction between RNA helicase ROOT INITIATION DEFECTIVE 1 and GAMETOPHYTIC FACTOR 1 is involved in female gametophyte development in Arabidopsis. Journal of Experimental Botany, 2016, 67, 5757-5768.	4.8	9
74	Overexpression of ZmDWF4 improves major agronomic traits and enhances yield in maize. Molecular Breeding, 2020, 40, 1.	2.1	8
75	Knockdown expression of the B-type cyclin gene Orysa;CycB1;1 leads to triploid rice. Journal of Plant Biology, 2014, 57, 43-47.	2.1	7
76	The BIG gene controls size of shoot apical meristems in Arabidopsis thaliana. Plant Cell Reports, 2020, 39, 543-552.	5.6	7
77	AGC protein kinase AGC1-4 mediates seed size in Arabidopsis. Plant Cell Reports, 2020, 39, 825-837.	5.6	7
78	Options for Engineering Apomixis in Plants. Frontiers in Plant Science, 2022, 13, 864987.	3.6	5
79	ldentification of Peanut Aux/IAA Genes and Functional Prediction during Seed Development and Maturation. Plants, 2022, 11 , 472.	3.5	4
80	Pattern analysis of stem cell differentiation during in vitro Arabidopsis organogenesis. Frontiers in Biology, 2010, 5, 464-470.	0.7	3
81	Molecular cloning and expression analysis ofHAG1 in the floral organs ofHyacinthus orientalis L. Science in China Series C: Life Sciences, 2000, 43, 395-401.	1.3	2
82	Single-cell profiling lights different cell trajectories in plants. ABIOTECH, 2021, 2, 64-78.	3.9	2
83	Regulation of WOX11 Expression Represents the Difference Between Direct and Indirect Shoot Regeneration. Frontiers in Plant Science, 2022, 13, 850726.	3.6	1
84	Meristem Biology Flourishes Under Mt. Tai. Molecular Plant, 2016, 9, 1224-1227.	8.3	0
85	Characterization of the <i>ERP</i> gene family in <i>Arabidopsis thaliana</i> Plant Signaling and Behavior, 2021, 16, 1913301.	2.4	O