
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3893626/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequential removal of selenate, nitrate and sulfate and recovery of elemental selenium in a multi-stage bioreactor process with redox potential feedback control. Journal of Hazardous Materials, 2022, 424, 127539.	12.4	4
2	Bioleaching rather than chemical conditioning using Fe[III]/CaO or polyacrylamide mitigates antibiotic resistance in sludge composting via pre-removing antibiotic resistance genes and limiting horizontal gene transfer. Waste Management, 2022, 137, 89-99.	7.4	11
3	A collaborative strategy for enhanced anaerobic co-digestion of food waste and waste activated sludge by using zero valent iron and ferrous sulfide. Bioresource Technology, 2022, 347, 126420.	9.6	16
4	Nitrogen removal performance of high ammonium and high salt wastewater by adding carbon source from food waste fermentation with different acidogenic metabolic pathways. Chemosphere, 2022, 292, 133512.	8.2	18
5	Consolidation of hydrogenotrophic methanogenesis by sulfidated nanoscale zero-valent iron in the anaerobic digestion of food waste upon ammonia stress. Science of the Total Environment, 2022, 822, 153531.	8.0	19
6	Acetylacetone promoted high-efficiency coagulation toward arsenite through a synchronous photooxidation process. Environmental Science: Water Research and Technology, 2022, 8, 1048-1058.	2.4	2
7	Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor. Bioresource Technology, 2022, 349, 126855.	9.6	15
8	Free radicals removing extracellular polymeric substances to enhance the degradation of intracellular antibiotic resistance genes in multi-resistant Pseudomonas Putida by UV/H2O2 and UV/peroxydisulfate disinfection processes. Journal of Hazardous Materials, 2022, 430, 128502.	12.4	37
9	Occurrence of bacterial and viral fecal markers in municipal sewage sludge and their removal during sludge conditioning processes. Journal of Environmental Management, 2022, 310, 114802.	7.8	5
10	Acidithiobacillus ferrooxidans mediates morphology evolution of schwertmannite in the presence of Fe2+. Chemical Geology, 2022, 598, 120828.	3.3	8
11	Modified chemical mineralization-alkali neutralization technology: Mineralization behavior at high iron concentrations and its application in sulfur acid spent pickling solution. Water Research, 2022, 218, 118513.	11.3	12
12	Sludge Conditioning Treatments Impact the Fate of Antibiotic Resistance Genes in Agricultural Soils Amended with Sludge Composts. ACS ES&T Engineering, 2022, 2, 1920-1932.	7.6	2
13	Recovering iron and sulfate in the form of mineral from acid mine drainage by a bacteria-driven cyclic biomineralization system. Chemosphere, 2021, 262, 127567.	8.2	16
14	Simultaneously attenuating antibiotic resistance genes and improving the dewaterability of sewage sludge by conditioning with Fenton's reagent: the pivotal role of sludge pre-acidification. Environmental Science and Pollution Research, 2021, 28, 13300-13311.	5.3	12
15	High-efficient elimination of roxarsone by MoS2@Schwertmannite via heterogeneous photo-Fenton oxidation and simultaneous arsenic immobilization. Chemical Engineering Journal, 2021, 405, 126952.	12.7	24
16	Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control. Journal of Hazardous Materials, 2021, 402, 123770.	12.4	10
17	Pre-coagulation with cationic flocculant-composited titanium xerogel coagulant for alleviating subsequent ultrafiltration membrane fouling by algae-related pollutants. Journal of Hazardous Materials, 2021, 407, 124838.	12.4	28
18	The coupling reaction of Fe ²⁺ bio-oxidation and resulting Fe ³⁺ hydrolysis drastically improve the formation of iron hydroxysulfate minerals in AMD. Environmental Technology (United Kingdom), 2021, 42, 2325-2334.	2.2	8

#	Article	IF	CITATIONS
19	High-efficient removal of arsenite by coagulation with titanium xerogel coagulant. Separation and Purification Technology, 2021, 258, 118047.	7.9	38
20	Co-adsorption of As(III) and phenanthrene by schwertmannite and Fenton-like regeneration of spent schwertmannite to realize phenanthrene degradation and As(III) oxidation. Environmental Research, 2021, 195, 110855.	7.5	21
21	Modifying organic carbon in Fe3O4-loaded schwertmannite to improve heterogeneous Fenton activity through accelerating Fe(II) generation. Applied Catalysis B: Environmental, 2021, 285, 119830.	20.2	61
22	Effect of high concentration of ammonium on production of n-caproate: Recovery of a high-value biochemical from food waste via lactate-driven chain elongation. Waste Management, 2021, 128, 25-35.	7.4	10
23	Low-Dose CaO ₂ Enhanced Arsenite Coagulation via Elevating Solution pH and Persistently Oxidizing As(III) into As(V). ACS ES&T Water, 2021, 1, 2119-2127.	4.6	8
24	Rapid initiation of methanogenesis in the anaerobic digestion of food waste by acclimatizing sludge with sulfidated nanoscale zerovalent iron. Bioresource Technology, 2021, 341, 125805.	9.6	11
25	Organic carbon modified Fe3O4/schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation. Separation and Purification Technology, 2021, 276, 119344.	7.9	13
26	Hydroxyl, Fe ²⁺ , and <i>Acidithiobacillus ferrooxidans</i> Jointly Determined the Crystal Growth and Morphology of Schwertmannite in a Sulfate-Rich Acidic Environment. ACS Omega, 2021, 6, 3194-3201.	3.5	15
27	Effect of microbial nutrients supply on coal bio-desulfurization. Journal of Hazardous Materials, 2020, 384, 121324.	12.4	31
28	Conditioning with zero-valent iron or Fe2+ activated peroxydisulfate at an acidic initial sludge pH removed intracellular antibiotic resistance genes but increased extracellular antibiotic resistance genes in sewage sludge. Journal of Hazardous Materials, 2020, 386, 121982.	12.4	42
29	Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction. Chemosphere, 2020, 244, 125523.	8.2	37
30	Fabricating Fe3O4-schwertmannite as a Z-scheme photocatalyst with excellent photocatalysis-Fenton reaction and recyclability. Journal of Environmental Sciences, 2020, 98, 186-195.	6.1	11
31	High-rate microbial selenate reduction in an up-flow anaerobic fluidized bed reactor (FBR). Science of the Total Environment, 2020, 749, 142359.	8.0	6
32	Synthesis and assessment of schwertmannite/few-layer graphene composite for the degradation of sulfamethazine in heterogeneous Fenton-like reaction. Royal Society Open Science, 2020, 7, 191977.	2.4	5
33	Improving solid–liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation. Journal of Hazardous Materials, 2020, 398, 122989.	12.4	40
34	Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. Chemosphere, 2020, 252, 126570.	8.2	35
35	Producing OH, SO4â^' and O2â^' in heterogeneous Fenton reaction induced by Fe3O4-modified schwertmannite. Chemical Engineering Journal, 2020, 393, 124735.	12.7	67
36	Activation of peroxymonosulfate with CuCo2O4@kaolin for the efficient degradation of phenacetin. Chemical Engineering Journal, 2020, 401, 126014.	12.7	69

#	Article	IF	CITATIONS
37	A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. Journal of Hazardous Materials, 2020, 400, 123108.	12.4	32
38	Bioleaching conditioning increased the bioavailability of polycyclic aromatic hydrocarbons to promote their removal during co-composting of industrial and municipal sewage sludges. Science of the Total Environment, 2019, 665, 1073-1082.	8.0	74
39	A novel approach coupling ferrous iron bio-oxidation and ferric iron chemo-reduction to promote biomineralization in simulated acidic mine drainage. RSC Advances, 2019, 9, 5083-5090.	3.6	14
40	Impact of initial sludge pH on enhancing the dewaterability of waste activated sludge by zero-valent iron-activated peroxydisulphate. Environmental Technology (United Kingdom), 2019, 42, 1-14.	2.2	8
41	A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization. Water Research, 2019, 151, 515-522.	11.3	51
42	Importance of sludge conditioning in attenuating antibiotic resistance: Removal of antibiotic resistance genes by bioleaching and chemical conditioning with Fe[III]/CaO. Water Research, 2019, 152, 61-73.	11.3	70
43	Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by <i>Acidithiobacillus ferrooxidans</i> : dewatering rate vs. dewatering extent. Environmental Technology (United Kingdom), 2019, 40, 3176-3189.	2.2	18
44	Significance of jarosite dissolution from the biooxidized pyrite surface on further biooxidation of pyrite. Hydrometallurgy, 2018, 176, 33-41.	4.3	35
45	Evaluation and optimization of a new microbial enhancement plug-flow ditch system for the pretreatment of acid mine drainage: semi-pilot test. RSC Advances, 2018, 8, 1039-1046.	3.6	8
46	Enhanced catalytic performance of β-FeOOH by coupling with single-walled carbon nanotubes in a visible-light-Fenton-like process. Science and Engineering of Composite Materials, 2018, 25, 9-15.	1.4	10
47	Effects of Acid Mine Drainage on Calcareous Soil Characteristics and Lolium perenne L. Germination. International Journal of Environmental Research and Public Health, 2018, 15, 2742.	2.6	13
48	Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	18
49	Migration and Fate of Acid Mine Drainage Pollutants in Calcareous Soil. International Journal of Environmental Research and Public Health, 2018, 15, 1759.	2.6	15
50	Impact of sludge conditioning treatment on the bioavailability of pyrene in sewage sludge. Ecotoxicology and Environmental Safety, 2018, 163, 196-204.	6.0	17
51	Heterogeneous Fenton-like degradation of phenanthrene catalyzed by schwertmannite biosynthesized using Acidithiobacillus ferrooxidans. RSC Advances, 2017, 7, 21638-21648.	3.6	34
52	Application of Green Manure and Pig Manure to Cd-Contaminated Paddy Soil Increases the Risk of Cd Uptake by Rice and Cd Downward Migration into Groundwater: Field Micro-Plot Trials. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	17
53	Schwertmannite Adherence to the Reactor Wall during the Bio-Synthesis Process and Deterioration of Its Structural Characteristics and Arsenic(III) Removal Efficiency. Minerals (Basel, Switzerland), 2017, 7, 64.	2.0	10
54	Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III) Removal Efficiency. Minerals (Basel, Switzerland), 2017, 7, 9.	2.0	17

#	Article	IF	CITATIONS
55	Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions. Separation and Purification Technology, 2017, 185, 83-93.	7.9	33
56	Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid. Materials Chemistry and Physics, 2016, 171, 386-393.	4.0	29
57	Enhancement of sludge dewaterability by sequential inoculation of filamentous fungus Mucor circinelloides ZG-3 and Acidithiobacillus ferrooxidans LX5. Chemical Engineering Journal, 2016, 284, 216-223.	12.7	23
58	Significance of Oxygen Supply in Jarosite Biosynthesis Promoted by Acidithiobacillus ferrooxidans. PLoS ONE, 2015, 10, e0120966.	2.5	9
59	Microwave–ultrasound assisted synthesis of β-FeOOH and its catalytic property in a photo-Fenton-like process. Ultrasonics Sonochemistry, 2015, 27, 287-295.	8.2	46
60	Impregnation synthesis of TiO 2 /hydroniumjarosite composite with enhanced property in photocatalytic reduction of Cr(VI). Materials Chemistry and Physics, 2015, 152, 4-8.	4.0	17
61	Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment. Journal of Hazardous Materials, 2015, 299, 404-411.	12.4	31
62	Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study. Waste Management, 2015, 44, 55-62.	7.4	36
63	Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1. Bioresource Technology, 2015, 192, 514-521.	9.6	25
64	Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater. PLoS ONE, 2015, 10, e0138891.	2.5	27
65	Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching. PLoS ONE, 2014, 9, e102688.	2.5	33
66	Extracellular polymeric substances and bound water drastically affect bioleached sludge dewaterability at low temperature. Environmental Technology (United Kingdom), 2014, 35, 2538-2545.	2.2	9
67	High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation. Hydrometallurgy, 2014, 143, 23-27.	4.3	31
68	Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content. Bioresource Technology, 2014, 168, 190-197.	9.6	68
69	Photo-Fenton-like degradation of azo dye methyl orange using synthetic ammonium and hydronium jarosite. Journal of Alloys and Compounds, 2013, 546, 112-118.	5.5	68
70	Antibacterial potency of housefly larvae extract from sewage sludge through bioconversion. Journal of Environmental Sciences, 2013, 25, 1897-1905.	6.1	10
71	The role of heterotrophic microorganismGalactomycessp. Z3 in improving pig slurry bioleaching. Environmental Technology (United Kingdom), 2013, 34, 35-43.	2.2	9
	Transformation of heavy motals and the formation of accordance iron minerals during hig manura		

Transformation of heavy metals and the formation of secondary iron minerals during pig manure bioleaching by the co-inoculation acidophilic thiobacillus. Environmental Technology (United) Tj ETQq0 0 0 rgBT /O**ver**lock 10sTf 50 57 T

#	Article	IF	CITATIONS
73	Simultaneous oxidation and precipitation of iron using jarosite immobilized Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Hydrometallurgy, 2012, 125-126, 152-156.	4.3	37
74	Both initial concentrations of Fe(II) and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments. Materials Science and Engineering C, 2012, 32, 2323-2329.	7.3	32
75	H ⁺ /phenanthrene Symporter and Aquaglyceroporin Are Implicated in Phenanthrene Uptake by Wheat (<i>Triticum aestivum</i> L.) Roots. Journal of Environmental Quality, 2012, 41, 188-196.	2.0	55
76	Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresource Technology, 2012, 104, 65-72.	9.6	163
77	Isolation and characterization of a nitrobenzene-degrading bacterium Klebsiella ornithinolytica NB1 from aerobic granular sludge. Bioresource Technology, 2012, 110, 91-96.	9.6	21
78	Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage. Materials Science and Engineering C, 2012, 32, 916-921.	7.3	22
79	Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH. Journal of Hazardous Materials, 2012, 221-222, 170-177.	12.4	85
80	Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere, 2011, 83, 295-301.	8.2	98
81	Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities. Journal of Environmental Sciences, 2010, 22, 607-614.	6.1	54
82	Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil. Chemosphere, 2010, 80, 837-844.	8.2	31
83	Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Water Research, 2010, 44, 5423-5431.	11.3	45
84	Occurrence of biogenic schwertmannite in sludge bioleaching environments and its adverse effect on solubilization of sludge-borne metals. Applied Geochemistry, 2009, 24, 1739-1746.	3.0	48
85	Removal of Cr from tannery sludge by bioleaching method. Journal of Environmental Sciences, 2006, 18, 885-890.	6.1	41
86	Isolation and characterisation of Fe(II)-oxidising bacteria and their application in the removal of arsenic in an aqueous solution. Environmental Technology (United Kingdom), 0, , 1-11.	2.2	1