Maud C O Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3893283/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disturbance cues function as a background risk cue but not as an associative learning cue in tadpoles. Animal Cognition, 2022, 25, 881-889.	1.8	3
2	Early-life and parental predation risk shape fear acquisition in adult minnows. Animal Cognition, 2021, 24, 471-481.	1.8	3
3	Escape responses to simulated host versus nonhost predators in minnows exposed to a brain-encysting parasite. Animal Behaviour, 2021, 173, 169-176.	1.9	1
4	Coral degradation impairs learning of nonâ€predators by Whitetail damselfish. Functional Ecology, 2021, 35, 1268-1276.	3.6	5
5	Exposure to degraded coral habitat depresses oxygen uptake rate during exercise of a juvenile reef fish. Coral Reefs, 2021, 40, 1361-1367.	2.2	4
6	Reproductive fitness of honey bee queens exposed to thiamethoxam during development. Veterinary Pathology, 2021, 58, 1107-1118.	1.7	3
7	Living in mixed species groups promotes predator learning in degraded habitats. Scientific Reports, 2021, 11, 19335.	3.3	1
8	Disturbance cues facilitate associative learning of predators in a coral reef fish. Behavioral Ecology and Sociobiology, 2021, 75, 1.	1.4	3
9	Paternal care effects outweigh gamete-mediated and personal environment effects during the transgenerational estimation of risk in fathead minnows. Bmc Ecology and Evolution, 2021, 21, 187.	1.6	2
10	An ecological framework of neophobia: from cells to organisms to populations. Biological Reviews, 2020, 95, 218-231.	10.4	46
11	Safety Cues Can Give Prey More Valuable Information Than Danger Cues. American Naturalist, 2020, 195, 636-648.	2.1	18
12	Forget the audience: tadpoles release similar disturbance cues regardless of kinship or familiarity. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	5
13	The fading of fear effects due to coral degradation is modulated by community composition. Functional Ecology, 2020, 34, 2120-2130.	3.6	1
14	Microplastic exposure interacts with habitat degradation to affect behaviour and survival of juvenile fish in the field. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201947.	2.6	26
15	Proportional fitness loss and the timing of defensive investment: a cohesive framework across animals and plants. Oecologia, 2020, 193, 273-283.	2.0	11
16	Exposure to predation risk reduces lateralization in fathead minnows Canadian Journal of Experimental Psychology, 2020, 74, 260-265.	0.8	4
17	Comparative diversity of anemone-associated fishes and decapod crustaceans in a Belizean coral reef and seagrass system. Marine Biodiversity, 2019, 49, 2609-2620.	1.0	11
18	Coral degradation alters predator odour signatures and influences prey learning and survival. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190562.	2.6	6

#	Article	IF	CITATIONS
19	Retention of learned predator recognition in embryonic and juvenile rainbow trout. Behavioral Ecology, 2019, 30, 1575-1582.	2.2	12
20	Evaluating adaptive, carryâ€over, and plastic antipredator responses across a temporal gradient in Pacific chorus frogs. Ecology, 2019, 100, e02825.	3.2	11
21	The cost of carryover effects in a changing environment: context-dependent benefits of a behavioural phenotype in a coral reefÂfish. Animal Behaviour, 2019, 149, 1-5.	1.9	9
22	Survival, behaviour, and morphology of larval wood frogs, Lithobates sylvaticus, under threat from an exotic crayfish predator, Orconectes virilis. Aquatic Ecology, 2019, 53, 383-392.	1.5	1
23	High background risk induces risk allocation rather than generalized neophobia in the fathead minnow. Behavioral Ecology, 2019, 30, 1416-1424.	2.2	13
24	Time-dependent latent inhibition of predator-recognition learning. Biology Letters, 2019, 15, 20190183.	2.3	5
25	A novel alarm signal in aquatic prey: Familiar minnows coordinate group defences against predators through chemical disturbance cues. Journal of Animal Ecology, 2019, 88, 1281-1290.	2.8	23
26	The Effects of Selenomethionine on the Escape Behaviours of Fathead Minnows. Archives of Environmental Contamination and Toxicology, 2019, 77, 62-67.	4.1	1
27	Cognitive resonance: When information carryâ€over constrains cognitive plasticity. Functional Ecology, 2019, 33, 703-711.	3.6	11
28	Predation risk induces age- and sex-specific morphological plastic responses in the fathead minnow Pimephales promelas. Scientific Reports, 2019, 9, 15378.	3.3	19
29	Better the devil you know? How familiarity and kinship affect prey responses to disturbance cues. Behavioral Ecology, 2019, 30, 446-454.	2.2	11
30	Olfactory cues of habitats facilitate learning about landscapes of fear. Behavioral Ecology, 2018, 29, 693-700.	2.2	6
31	A cross-modal effect of noise: the disappearance of the alarm reaction of a freshwater fish. Animal Cognition, 2018, 21, 419-424.	1.8	25
32	School is out on noisy reefs: the effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180033.	2.6	32
33	Never Off the Hook—How Fishing Subverts Predator-Prey Relationships in Marine Teleosts. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	9
34	The socially mediated recovery of a fearful fish paired with periodically replaced calm models. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180739.	2.6	9
35	Maternal Exposure to Dietary Selenium Causes Dopaminergic Hyperfunction and Cognitive Impairment in Zebrafish Offspring. Environmental Science & amp; Technology, 2018, 52, 13574-13583.	10.0	17
36	Embryonic background risk promotes the survival of tadpoles facing surface predators. PLoS ONE, 2018, 13, e0193939.	2.5	12

#	Article	IF	CITATIONS
37	Can Fish Tell Us Anything About Post-Traumatic Stress Disorder?. , 2018, , .		0
38	Mechanisms underlying the control of responses to predator odours in aquatic prey. Journal of Experimental Biology, 2017, 220, 1937-1946.	1.7	79
39	Evidence for risk extrapolation in decision making by tadpoles. Scientific Reports, 2017, 7, 43255.	3.3	17
40	Trust thy neighbour in times of trouble: background risk alters how tadpoles release and respond to disturbance cues. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171465.	2.6	17
41	Daily variation in behavioural lateralization is linked to predation stress in a coral reef fish. Animal Behaviour, 2017, 133, 189-193.	1.9	18
42	Not equal in the face of habitat change: closely related fishes differ in their ability to use predation-related information in degraded coral. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162758.	2.6	17
43	Patterns of predator neophobia: a meta-analytic review. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170583.	2.6	70
44	Predation in High CO2 Waters: Prey Fish from High-Risk Environments are Less Susceptible to Ocean Acidification. Integrative and Comparative Biology, 2017, 57, 55-62.	2.0	11
45	Exposure to a contextually neutral stressor potentiates fear conditioning in juvenile rainbow trout, Oncorhynchus mykiss. Hormones and Behavior, 2017, 94, 124-134.	2.1	4
46	Embryonic learning and developmental carry-over effects in an invasive anuran. Oecologia, 2017, 184, 623-631.	2.0	27
47	Habitat degradation disrupts neophobia in juvenile coral reef fish. Global Change Biology, 2017, 23, 719-727.	9.5	31
48	Duration of Exposure to Elevated Temperature Affects Competitive Interactions in Juvenile Reef Fishes. PLoS ONE, 2016, 11, e0164505.	2.5	13
49	Diet cues alter the development of predator recognition templates in tadpoles. Behavioral Ecology and Sociobiology, 2016, 70, 1707-1713.	1.4	6
50	Risk-induced neophobia: does sensory modality matter?. Animal Cognition, 2016, 19, 1143-1150.	1.8	21
51	Thermal environment and nutritional condition affect the efficacy of chemical alarm cues produced by prey fish. Environmental Biology of Fishes, 2016, 99, 729-739.	1.0	5
52	Making the dead talk: alarm cue-mediated antipredator behaviour and learning are enhanced when injured conspecifics experience high predation risk. Biology Letters, 2016, 12, 20160560.	2.3	18
53	Background Predation Risk and Learned Predator Recognition in Convict Cichlids: Does Risk Allocation Constrain Learning?. Ethology, 2016, 122, 841-849.	1.1	6
54	Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation. Scientific Reports, 2016, 6, 32542.	3.3	22

#	Article	IF	CITATIONS
55	Anthropogenic noise increases fish mortality by predation. Nature Communications, 2016, 7, 10544.	12.8	253
56	Juvenile Lake Sturgeon Go To School: Lifeâ€ S kills Training for Hatchery Fish. Transactions of the American Fisheries Society, 2016, 145, 287-294.	1.4	16
57	Dopamine receptors participate in acquisition and consolidation of latent learning of spatial information in zebrafish (Danio rerio). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 21-30.	4.8	35
58	Getting ready for invasions: can background level of risk predict the ability of naÃ ⁻ ve prey to survive novel predators?. Scientific Reports, 2015, 5, 8309.	3.3	34
59	Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation. Scientific Reports, 2015, 5, 13918.	3.3	30
60	Living in a risky world: the onset and ontogeny of an integrated antipredator phenotype in a coral reef fish. Scientific Reports, 2015, 5, 15537.	3.3	40
61	The effects of background risk on behavioural lateralization in a coral reef fish. Functional Ecology, 2015, 29, 1553-1559.	3.6	35
62	Background risk and recent experience influences retention of neophobic responses to predators. Behavioral Ecology and Sociobiology, 2015, 69, 737-745.	1.4	43
63	Phenotypic Plasticity Confers Multiple Fitness Benefits to a Mimic. Current Biology, 2015, 25, 949-954.	3.9	45
64	Error management in plant allocation to herbivore defense. Trends in Ecology and Evolution, 2015, 30, 441-445.	8.7	51
65	Social learning in a high-risk environment: incomplete disregard for the â€~minnow that cried pike' results in culturally transmitted neophobia. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150934.	2.6	17
66	Sub-lethal effects of Roundupâ,,¢ on tadpole anti-predator responses. Ecotoxicology and Environmental Safety, 2015, 111, 281-285.	6.0	27
67	Responses of tadpoles to hybrid predator odours: strong maternal signatures and the potential risk/response mismatch. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150365.	2.6	12
68	Individual vs. social learning of predator information in fish: does group size affect learning efficacy?. Behavioral Ecology and Sociobiology, 2015, 69, 939-949.	1.4	6
69	Retention of neophobic predator recognition in juvenile convict cichlids: effects of background risk and recent experience. Animal Cognition, 2015, 18, 1331-1338.	1.8	20
70	Background level of risk and the survival of predator-naive prey: can neophobia compensate for predator naivety in juvenile coral reef fishes?. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142197.	2.6	68
71	Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Global Change Biology, 2015, 21, 1848-1855.	9.5	71
72	Lake Sturgeon Geographic Range, Distribution, and Migration Patterns in the Saskatchewan River. Transactions of the American Fisheries Society, 2014, 143, 1555-1561.	1.4	14

#	ARTICLE	IF	CITATIONS
73	Impaired learning of predators and lower prey survival under elevated <scp><scp>CO₂</scp></scp> : a consequence of neurotransmitter interference. Global Change Biology, 2014, 20, 515-522.	9.5	180
74	The interactive effects of multiple stressors on physiological stress responses and club cell investment in fathead minnows. Science of the Total Environment, 2014, 476-477, 90-97.	8.0	14
75	Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. Environmental Biology of Fishes, 2014, 97, 79-90.	1.0	53
76	Personality and the response to predation risk: effects of information quantity and quality. Animal Cognition, 2014, 17, 1063-1069.	1.8	25
77	Frugal cannibals: how consuming conspecific tissues can provide conditional benefits to wood frog tadpoles (Lithobates sylvaticus). Die Naturwissenschaften, 2014, 101, 291-303.	1.6	17
78	The Effects of Chronic Exposure to Environmentally Relevant Levels of Waterborne Cadmium on Reproductive Capacity and Behaviour in Fathead Minnows. Archives of Environmental Contamination and Toxicology, 2014, 67, 181-191.	4.1	23
79	Habitat degradation is threatening reef replenishment by making fish fearless. Journal of Animal Ecology, 2014, 83, 1178-1185.	2.8	28
80	Aerobic scope predicts dominance during early life in a tropical damselfish. Functional Ecology, 2014, 28, 1367-1376.	3.6	104
81	Background level of risk determines how prey categorize predators and non-predators. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140355.	2.6	69
82	Temporal constraints on predation risk assessment in a changing world. Science of the Total Environment, 2014, 500-501, 332-338.	8.0	10
83	Short-term environmental variation in predation risk leads to differential performance in predation-related cognitive function. Animal Behaviour, 2014, 95, 9-14.	1.9	33
84	Relative Cost/Benefit Tradeâ€Off Between Cover‧eeking and Escape Behaviour in an Ancestral Fish: The Importance of Structural Habitat Heterogeneity. Ethology, 2014, 120, 973-981.	1.1	19
85	Background level of risk determines the intensity of predator neophobia in juvenile convict cichlids. Behavioral Ecology and Sociobiology, 2014, 68, 127-133.	1.4	48
86	Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish. Science of the Total Environment, 2014, 490, 941-946.	8.0	6
87	Temporal dynamics of information use in learning and retention of predator-related information in tadpoles. Animal Cognition, 2013, 16, 667-676.	1.8	8
88	Phenotypically plastic neophobia: a response to variable predation risk. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122712.	2.6	186
89	Adaptive Responses of Embryonic Amphibians to Predation Risk. , 2013, , 259-268.		3

90 The Sophistication of Predator Odour Recognition by Minnows. , 2013, , 247-257.

2

#	Article	IF	CITATIONS
91	Adaptive Forgetting: Why Predator Recognition Training Might Not Enhance Poststocking Survival. Fisheries, 2013, 38, 16-25.	0.8	35
92	The effect of turbidity on recognition and generalization of predators and nonâ€predators in aquatic ecosystems. Ecology and Evolution, 2013, 3, 268-277.	1.9	31
93	Degradation of chemical alarm cues and assessment of risk throughout the day. Ecology and Evolution, 2013, 3, 3925-3934.	1.9	51
94	Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120447.	4.0	106
95	Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated <scp>CO</scp> ₂ on fish?. Ecology and Evolution, 2013, 3, 3565-3575.	1.9	26
96	Generalization of learned predator recognition in coral reef ecosystems: how cautious are damselfish?. Functional Ecology, 2013, 27, 299-304.	3.6	43
97	Within and between Population Variation in Epidermal Club Cell Investment in a Freshwater Prey Fish: A Cautionary Tale for Evolutionary Ecologists. PLoS ONE, 2013, 8, e56689.	2.5	10
98	A Comparison of Measures of Boldness and Their Relationships to Survival in Young Fish. PLoS ONE, 2013, 8, e68900.	2.5	60
99	Learn and live: predator experience and feeding history determines prey behaviour and survival. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2091-2098.	2.6	113
100	Understanding the role of uncertainty on learning and retention of predator information. Animal Cognition, 2012, 15, 807-813.	1.8	36
101	Understanding the importance of episodic acidification on fish predator–prey interactions: Does weak acidification impair predator recognition?. Science of the Total Environment, 2012, 439, 62-66.	8.0	16
102	Behavioural trait variants in a habitatâ€forming species dictate the nature of its interactions with and among heterospecifics. Functional Ecology, 2012, 26, 29-36.	3.6	28
103	Effects of ocean acidification on visual risk assessment in coral reef fishes. Functional Ecology, 2012, 26, 553-558.	3.6	107
104	The effects of ultraviolet radiation on a freshwater prey fish: physiological stress response, club cell investment, and alarm cue production. Biological Journal of the Linnean Society, 2012, 105, 832-841.	1.6	26
105	Effects of Ocean Acidification on Learning in Coral Reef Fishes. PLoS ONE, 2012, 7, e31478.	2.5	111
106	Learning Temporal Patterns of Risk in a Predator-Diverse Environment. PLoS ONE, 2012, 7, e34535.	2.5	28
107	Temperature-Mediated Changes in Rates of Predator Forgetting in Woodfrog Tadpoles. PLoS ONE, 2012, 7, e51143.	2.5	4
108	Coral Reef Fish Rapidly Learn to Identify Multiple Unknown Predators upon Recruitment to the Reef. PLoS ONE, 2011, 6, e15764.	2.5	64

#	Article	IF	CITATIONS
109	Putting prey and predator into the CO2 equation - qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecology Letters, 2011, 14, 1143-1148.	6.4	150
110	Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Global Change Biology, 2011, 17, 2980-2986.	9.5	161
111	Evolution and behavioural responses to humanâ€induced rapid environmental change. Evolutionary Applications, 2011, 4, 367-387.	3.1	892
112	Learning about non-predators and safe places: the forgotten elements of risk assessment. Animal Cognition, 2011, 14, 309-316.	1.8	47
113	Friend or foe? The role of latent inhibition in predator and non-predator labelling by coral reef fishes. Animal Cognition, 2011, 14, 707-714.	1.8	50
114	Prey behaviour across antipredator adaptation types: how does growth trajectory influence learning of predators?. Animal Cognition, 2011, 14, 809-816.	1.8	9
115	Growth rate and retention of learned predator cues by juvenile rainbow trout: faster-growing fish forget sooner. Behavioral Ecology and Sociobiology, 2011, 65, 1267-1276.	1.4	37
116	Intraspecific trait variants determine the nature of interspecific interactions in a habitat-forming species. Ecology, 2011, 92, 1902-1908.	3.2	75
117	To fear or to feed: the effects of turbidity on perception of risk by a marine fish. Biology Letters, 2011, 7, 811-813.	2.3	77
118	The ghost of predation future: threat-sensitive and temporal assessment of risk by embryonic woodfrogs. Behavioral Ecology and Sociobiology, 2010, 64, 549-555.	1.4	48
119	Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2205-2210.	2.6	81
120	Temporal learning of predation risk by embryonic amphibians. Biology Letters, 2010, 6, 308-310.	2.3	37
121	Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12930-12934.	7.1	399
122	Differential retention of predator recognition by juvenile rainbow trout. Behaviour, 2010, 147, 1791-1802.	0.8	16
123	Temporal variability, threat sensitivity and conflicting information about the nature of risk: understanding the dynamics of tadpole antipredator behaviour. Animal Behaviour, 2009, 78, 11-16.	1.9	77
124	The paradox of risk allocation: a review and prospectus. Animal Behaviour, 2009, 78, 579-585.	1.9	250
125	Threat-sensitive generalization of predator recognition by larval amphibians. Behavioral Ecology and Sociobiology, 2009, 63, 1369-1375.	1.4	67
126	Latent inhibition of predator recognition by embryonic amphibians. Biology Letters, 2009, 5, 160-162.	2.3	52

8

#	Article	IF	CITATIONS
127	Predator-induced changes in morphology of a prey fish: the effects of food level and temporal frequency of predation risk. Evolutionary Ecology, 2008, 22, 561-574.	1.2	101
128	Threat-sensitive learning of predators by larval mosquitoes Culex restuans. Behavioral Ecology and Sociobiology, 2008, 62, 1079-1083.	1.4	59
129	Sensory complementation and the acquisition of predator recognition by salmonid fishes. Behavioral Ecology and Sociobiology, 2008, 63, 113-121.	1.4	60
130	Fixed vs. Random Temporal Predictability of Predation Risk: An Extension of the Risk Allocation Hypothesis. Ethology, 2008, 114, 238-244.	1.1	27
131	Learning by embryos and the ghost of predation future. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2603-2607.	2.6	113
132	Can prey exhibit threat-sensitive generalization of predator recognition? Extending the Predator Recognition Continuum Hypothesis. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1811-1816.	2.6	90
133	Epidermal †alarm substance' cells of fishes maintained by non-alarm functions: possible defence against pathogens, parasites and UVB radiation. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2611-2619.	2.6	129
134	Generalization of learned predator recognition: an experimental test and framework for future studies. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1853-1859.	2.6	189
135	Linking Morphological and Behavioural Defences: Prey Fish Detect the Morphology of Conspecifics in the Odour Signature of their Predators. Ethology, 2007, 113, 733-739.	1.1	30
136	First Documentation of Cultural Transmission of Predator Recognition by Larval Amphibians. Ethology, 2007, 113, 621-627.	1.1	50
137	The paradox of risk assessment: comparing responses of fathead minnows to capture-released and diet-released alarm cues from two different predators. Chemoecology, 2007, 17, 157-161.	1.1	30
138	Variable predation risk and the dynamic nature of mosquito antipredator responses to chemical alarm cues. Chemoecology, 2007, 17, 223-229.	1.1	43
139	Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. Chemoecology, 2007, 17, 263-266.	1.1	69
140	The role of learning in the acquisition of threat-sensitive responses to predator odours. Behavioral Ecology and Sociobiology, 2006, 60, 522-527.	1.4	58
141	The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behavioral Ecology and Sociobiology, 2006, 61, 9-16.	1.4	150
142	Learning threat-sensitive predator avoidance: how do fathead minnows incorporate conflicting information?. Animal Behaviour, 2006, 71, 19-26.	1.9	72
143	The nose knows: minnows determine predator proximity and density through detection of predator odours. Animal Behaviour, 2006, 72, 927-932.	1.9	65
144	Microhabitat complexity influences fear acquisition in fathead minnows. Behavioral Ecology, 0, , .	2.2	3