
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3893057/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ Η ΟΠΤΜΑΝΝ

#	Article	IF	CITATIONS
1	RNA sequence analysis reveals ITGAL/CD11A as a stromal regulator of murine low-grade glioma growth. Neuro-Oncology, 2022, 24, 14-26.	0.6	17
2	Human induced pluripotent stem cell modeling of neurofibromatosis type 1. , 2022, , 1-30.		0
3	Risk factors for treatment-refractory and relapsed optic pathway glioma in children with neurofibromatosis type 1. Neuro-Oncology, 2022, 24, 1377-1386.	0.6	9
4	Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protocols, 2022, 3, 101173.	0.5	4
5	Children with supratentorial midline pilocytic astrocytomas exhibit multiple progressions and acquisition of neurologic deficits over time. Neuro-Oncology Advances, 2022, 4, vdab187.	0.4	1
6	RAS and beyond: the many faces of the neurofibromatosis type 1 protein. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	11
7	T lymphocytes as dynamic regulators of glioma pathobiology. Neuro-Oncology, 2022, 24, 1647-1657.	0.6	18
8	Immune deconvolution and temporal mapping identifies stromal targets and developmental intervals for abrogating murine low-grade optic glioma formation. Neuro-Oncology Advances, 2022, 4, vdab194.	0.4	5
9	Predictors of patient return to a tertiary neurofibromatosis subspecialty clinic. Journal of Pediatrics, 2022, , .	0.9	0
10	Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nature Communications, 2022, 13, 2785.	5.8	29
11	LINC-08. Neuro-Oncology tumor board – one-year experience of international collaboration. Neuro-Oncology, 2022, 24, i163-i164.	0.6	0
12	Neurofibromatosis-1 Gene Mutational Profiles Differ Between Syndromic Disease and Sporadic Cancers. Neurology: Genetics, 2022, 8, .	0.9	3
13	Temporal, spatial, and genetic constraints contribute to the patterning and penetrance of murine neurofibromatosis-1 optic glioma. Neuro-Oncology, 2021, 23, 625-637.	0.6	7
14	Visual outcomes following everolimus targeted therapy for neurofibromatosis type 1â€associated optic pathway gliomas in children. Pediatric Blood and Cancer, 2021, 68, e28833.	0.8	9
15	Autism in neurofibromatosis type 1: misuse of covariance to dismiss autistic trait burden. Developmental Medicine and Child Neurology, 2021, 63, 233-234.	1.1	4
16	Cognition, ADHD Symptoms, and Functional Impairment in Children and Adolescents With Neurofibromatosis Type 1. Journal of Attention Disorders, 2021, 25, 1177-1186.	1.5	32
17	Immune cell analysis of pilocytic astrocytomas reveals sexually dimorphic brain region-specific differences in T-cell content. Neuro-Oncology Advances, 2021, 3, vdab068.	0.4	2
18	Cabozantinib for neurofibromatosis type 1–related plexiform neurofibromas: a phase 2 trial. Nature Medicine, 2021, 27, 165-173.	15.2	46

#	Article	IF	CITATIONS
19	Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. Journal of Clinical Investigation, 2021, 131, .	3.9	43
20	Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathologica, 2021, 141, 605-617.	3.9	36
21	Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2021, 13, 10.	1.5	5
22	Familial Lipomas Without Classic Neurofibromatosis-1 Caused by a Missense Germline NF1 Mutation. Neurology: Genetics, 2021, 7, e582.	0.9	3
23	Predictive Modeling for Clinical Features Associated With Neurofibromatosis Type 1. Neurology: Clinical Practice, 2021, 11, 497-505.	0.8	6
24	Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genetics in Medicine, 2021, 23, 1506-1513.	1.1	290
25	NF1 mutation drives neuronalÂactivity-dependent initiation of optic glioma. Nature, 2021, 594, 277-282.	13.7	91
26	Reimagining pilocytic astrocytomas in the context of pediatric low-grade gliomas. Neuro-Oncology, 2021, 23, 1634-1646.	0.6	19
27	LGG-06. COMPREHENSIVE GENOMIC CHARACTERIZATION AND INTEGRATED CLINICAL ANALYSIS OF LOW-GRADE GLIOMAS IN CHILDREN WITH NEUROFIBROMATOSIS TYPE 1. Neuro-Oncology, 2021, 23, i32-i32.	0.6	0
28	Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis. Cell Reports, 2021, 36, 109315.	2.9	28
29	SRF Is Required for Maintenance of Astrocytes in Non-Reactive State in the Mammalian Brain. ENeuro, 2021, 8, ENEURO.0447-19.2020.	0.9	6
30	BRAF mutations may identify a clinically distinct subset of glioblastoma. Scientific Reports, 2021, 11, 19999.	1.6	15
31	Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nature Communications, 2021, 12, 7122.	5.8	21
32	Whole exome sequencing reveals the maintained polyclonal nature from primary to metastatic malignant peripheral nerve sheath tumor in two patients with NF1. Neuro-Oncology Advances, 2020, 2, i75-i84.	0.4	1
33	Neurofibromatosis 1 - Mutant microglia exhibit sexually-dimorphic cyclic AMP-dependent purinergic defects. Neurobiology of Disease, 2020, 144, 105030.	2.1	10
34	Junctional Adhesion Molecules in Cancer: A Paradigm for the Diverse Functions of Cell–Cell Interactions in Tumor Progression. Cancer Research, 2020, 80, 4878-4885.	0.4	34
35	Midkine activation of CD8+ T cells establishes a neuron–immune–cancer axis responsible for low-grade glioma growth. Nature Communications, 2020, 11, 2177.	5.8	83
36	Nonoptic pathway tumors in children with neurofibromatosis type 1. Neurology, 2020, 95, e1052-e1059.	1.5	15

#	Article	IF	CITATIONS
37	How Support of Early Career Researchers Can Reset Science in the Post-COVID19 World. Cell, 2020, 181, 1445-1449.	13.5	43
38	The Sociobiology of Brain Tumors. Advances in Experimental Medicine and Biology, 2020, 1225, 115-125.	0.8	4
39	Brain tumors in neurofibromatosis type 1. Neuro-Oncology Advances, 2020, 2, i85-i97.	0.4	23
40	Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro-Oncology, 2020, 22, 773-784.	0.6	44
41	Human iPSC-Derived Neurons and Cerebral Organoids Establish Differential Effects of Germline NF1 Gene Mutations. Stem Cell Reports, 2020, 14, 541-550.	2.3	48
42	A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1–associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro-Oncology, 2020, 22, 1527-1535.	0.6	45
43	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	13.5	182
44	Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29101-29112.	3.3	42
45	NFB-09. ENROLLMENT AND CLINICAL CHARACTERISTICS OF NEWLY DIAGNOSED, NEUROFIBROMATOSIS TYPE 1 ASSOCIATED OPTIC PATHWAY GLIOMA (NF1-OPG): PRELIMINARY RESULTS FROM AN INTERNATIONAL MULTI-CENTER NATURAL HISTORY STUDY. Neuro-Oncology, 2020, 22, iii419-iii419.	0.6	3
46	Visual field outcomes in children treated for neurofibromatosis type 1–associated optic pathway gliomas: a multicenter retrospective study. Journal of AAPOS, 2020, 24, 349.e1-349.e5.	0.2	7
47	Neurofibromatosis type 1. , 2020, , 185-200.		1
48	Neurofibromatosis 2 in children presenting during the first decade of life. Neurology, 2019, 93, e964-e967.	1.5	15
49	Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1. Brain, Behavior, and Immunity, 2019, 81, 470-483.	2.0	36
50	<p>Pain symptomology, functional impact, and treatment of people with Neurofibromatosis type 1</p> . Journal of Pain Research, 2019, Volume 12, 2555-2561.	0.8	13
51	Microglia as Dynamic Cellular Mediators of Brain Function. Trends in Molecular Medicine, 2019, 25, 967-979.	3.5	107
52	Microglia/Brain Macrophages as Central Drivers of Brain Tumor Pathobiology. Neuron, 2019, 104, 442-449.	3.8	190
53	Understanding a complicated Gal-1. Neuro-Oncology, 2019, 21, 1341-1343.	0.6	2
54	Adaptive functioning in children with neurofibromatosis type 1: relationship to cognition, behavior, and magnetic resonance imaging. Developmental Medicine and Child Neurology, 2019, 61, 972-978.	1.1	17

#	Article	IF	CITATIONS
55	Variability of Betweenness Centrality and Its Effect on Identifying Essential Genes. Bulletin of Mathematical Biology, 2019, 81, 3655-3673.	0.9	17
56	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	12.5	0
57	Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell–specific chemokine recruitment of T cells and microglia. Neuro-Oncology, 2019, 21, 1250-1262.	0.6	66
58	Commentary: Identification of Mutation Regions on NF1 Responsible for High- and Low-Risk Development of Optic Pathway Glioma in Neurofibromatosis Type I. Frontiers in Genetics, 2019, 10, 115.	1.1	12
59	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	12.5	540
60	Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathologica Communications, 2019, 7, 20.	2.4	124
61	NF1 glioblastoma clonal profiling reveals <i>KMT2B</i> mutations as potential somatic oncogenic events. Neurology, 2019, 93, 1067-1069.	1.5	11
62	let-7 MicroRNAs Regulate Microglial Function and Suppress Glioma Growth through Toll-Like Receptor 7. Cell Reports, 2019, 29, 3460-3471.e7.	2.9	64
63	Reproducibility of cognitive endpoints in clinical trials: lessons from neurofibromatosis type 1. Annals of Clinical and Translational Neurology, 2019, 6, 2555-2565.	1.7	24
64	KIAA1549-BRAF Expression Establishes a Permissive Tumor Microenvironment Through NFκB-Mediated CCL2 Production. Neoplasia, 2019, 21, 52-60.	2.3	28
65	Neurofibromatosis type 1 (<i>Nf1</i>)â€mutant mice exhibit increased sleep fragmentation. Journal of Sleep Research, 2019, 28, e12816.	1.7	11
66	Clearing the Fog surrounding Chemobrain. Cell, 2019, 176, 2-4.	13.5	18
67	Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1. Journal of Neuroscience Research, 2019, 97, 45-56.	1.3	15
68	Athymic mice reveal a requirement for T-cell–microglia interactions in establishing a microenvironment supportive of <i>Nf1</i> low-grade glioma growth. Genes and Development, 2018, 32, 491-496.	2.7	45
69	A genotype–phenotype correlation for quantitative autistic trait burden in neurofibromatosis 1. Neurology, 2018, 90, 377-379.	1.5	20
70	Optic Pathway Gliomas in Neurofibromatosis Type 1. Journal of Child Neurology, 2018, 33, 73-81.	0.7	116
71	β–III-spectrin immunohistochemistry as a potential diagnostic tool with high sensitivity for malignant peripheral nerve sheath tumors. Neuro-Oncology, 2018, 20, 858-860.	0.6	8
72	A Conserved Circadian Function for the Neurofibromatosis 1 Gene. Cell Reports, 2018, 22, 3416-3426.	2.9	42

#	Article	IF	CITATIONS
73	Human stem cell modeling in neurofibromatosis type 1 (NF1). Experimental Neurology, 2018, 299, 270-280.	2.0	20
74	Neurofibromatosis type 1 and optic pathway glioma: Molecular interplay and therapeutic insights. Pediatric Blood and Cancer, 2018, 65, e26838.	0.8	27
75	Characterization of early communicative behavior in mouse models of neurofibromatosis type 1. Autism Research, 2018, 11, 44-58.	2.1	32
76	Graph complexity analysis identifies an ETV5 tumor-specific network in human and murine low-grade glioma. PLoS ONE, 2018, 13, e0190001.	1.1	5
77	Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Communications Biology, 2018, 1, 158.	2.0	49
78	Independent <i>NF1</i> mutations underlie café-au-lait macule development in a woman with segmental NF1. Neurology: Genetics, 2018, 4, e261.	0.9	2
79	Height Growth Impairment in Children With Neurofibromatosis Type 1 Is Characterized by Decreased Pubertal Growth Velocity in Both Sexes. Journal of Child Neurology, 2018, 33, 762-766.	0.7	6
80	Increased prevalence of brain tumors classified as T2 hyperintensities in neurofibromatosis 1. Neurology: Clinical Practice, 2018, 8, 283-291.	0.8	23
81	Neurofibromatosis type 1. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 799-811.	1.0	84
82	Defining the temporal course of murine neurofibromatosis-1 optic gliomagenesis reveals a therapeutic window to attenuate retinal dysfunction. Neuro-Oncology, 2017, 19, now267.	0.6	21
83	Dissecting Clinical Heterogeneity in Neurofibromatosis Type 1. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 53-74.	9.6	39
84	Neurofibromatosis type 1. Nature Reviews Disease Primers, 2017, 3, 17004.	18.1	498
85	Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Research, 2017, 77, 2266-2278.	0.4	463
86	MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models. Journal of Neuroscience, 2017, 37, 5574-5586.	1.7	66
87	Using Epigenetic Reprogramming to Treat Pediatric Brain Cancer. Cancer Cell, 2017, 31, 609-611.	7.7	5
88	Increased Tissue Stiffness in Tumors from Mice with Neurofibromatosis-1 Optic Glioma. Biophysical Journal, 2017, 112, 1535-1538.	0.2	19
89	A multi-institutional study of brainstem gliomas in children with neurofibromatosis type 1. Neurology, 2017, 88, 1584-1589.	1.5	53
90	Estrogen activation of microglia underlies the sexually dimorphic differences in <i>Nf1</i> optic glioma–induced retinal pathology. Journal of Experimental Medicine, 2017, 214, 17-25.	4.2	46

#	Article	IF	CITATIONS
91	A Novel Rac1-GSPT1 Signaling Pathway Controls Astrogliosis Following Central Nervous System Injury. Journal of Biological Chemistry, 2017, 292, 1240-1250.	1.6	28
92	Children with 5′-end <i>NF1</i> gene mutations are more likely to have glioma. Neurology: Genetics, 2017, 3, e192.	0.9	24
93	Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an ageâ€dependent manner. Epilepsia, 2017, 58, 2053-2063.	2.6	24
94	The Tropism of Pleiotrophin: Orchestrating Glioma Brain Invasion. Cell, 2017, 170, 821-822.	13.5	6
95	Neurodevelopmental disorders in children with neurofibromatosis type 1. Developmental Medicine and Child Neurology, 2017, 59, 1112-1116.	1.1	61
96	The power of the few. Genes and Development, 2017, 31, 1177-1179.	2.7	8
97	Updated nomenclature for human and mouse neurofibromatosis type 1 genes. Neurology: Genetics, 2017, 3, e169.	0.9	21
98	Tumor suppressor Tsc1 is a new Hsp90 coâ€chaperone that facilitates folding of kinase and nonâ€kinase clients. EMBO Journal, 2017, 36, 3650-3665.	3.5	64
99	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	13.5	738
100	The management of neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors: challenges, progress, and future prospects. Expert Opinion on Orphan Drugs, 2017, 5, 623-631.	0.5	7
101	Caddyshack therapeutics: overcoming glioblastoma adaptation. Neuro-Oncology, 2017, 19, 1429-1431.	0.6	0
102	Clinical genomic profiling identifies <i>TYK2</i> mutation and overexpression in patients with neurofibromatosis type 1â€associated malignant peripheral nerve sheath tumors. Cancer, 2017, 123, 1194-1201.	2.0	25
103	Neurofibromatosis Type 1–Associated MPNST State of the Science: Outlining a Research Agenda for the Future. Journal of the National Cancer Institute, 2017, 109, .	3.0	80
104	Optic Pathway Gliomas in Neurofibromatosis Type 1: An Update: Surveillance, Treatment Indications, and Biomarkers of Vision. Journal of Neuro-Ophthalmology, 2017, 37, S23-S32.	0.4	99
105	CNS Tumors in Neurofibromatosis. Journal of Clinical Oncology, 2017, 35, 2378-2385.	0.8	70
106	Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biology, 2017, 15, e1002605.	2.6	179
107	Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival. Oncotarget, 2017, 8, 32977-32989.	0.8	46
108	Whole tumor RNA-sequencing and deconvolution reveal a clinically-prognostic PTEN/PI3K-regulated glioma transcriptional signature. Oncotarget, 2017, 8, 52474-52487.	0.8	21

#	Article	IF	CITATIONS
109	The cell of origin dictates the temporal course of neurofibromatosis-1 (<i>Nf1</i>) low-grade glioma formation. Oncotarget, 2017, 8, 47206-47215.	0.8	24
110	<i>KIR2DL5</i> mutation and loss underlies sporadic dermal neurofibroma pathogenesis and growth. Oncotarget, 2017, 8, 47574-47585.	0.8	8
111	Pediatric gliomas as neurodevelopmental disorders. Glia, 2016, 64, 879-895.	2.5	51
112	Challenges in Drug Discovery for Neurofibromatosis Type 1-Associated Low-Grade Glioma. Frontiers in Oncology, 2016, 6, 259.	1.3	10
113	Gliosarcomas lack <i>BRAF</i> ^{V600E} mutation, but a subset exhibit βâ€catenin nuclear localization. Neuropathology, 2016, 36, 448-455.	0.7	5
114	Mice with missense and nonsense <i>NF1</i> mutations display divergent phenotypes compared to NF1 patients. DMM Disease Models and Mechanisms, 2016, 9, 759-67.	1.2	23
115	Peri-gestational risk factors for pediatric brain tumors in Neurofibromatosis Type 1. Cancer Epidemiology, 2016, 42, 53-59.	0.8	6
116	De novo development of gliomas in a child with neurofibromatosis type 1, fragile X and previously normal brain magnetic resonance imaging. Radiology Case Reports, 2016, 11, 33-35.	0.2	1
117	Exploring the genetic basis for clinical variation in neurofibromatosis type 1. Expert Review of Neurotherapeutics, 2016, 16, 999-1001.	1.4	3
118	<i>NF1</i> germline mutation differentially dictates optic glioma formation and growth in neurofibromatosis-1. Human Molecular Genetics, 2016, 25, 1703-1713.	1.4	61
119	Macrocephaly Is Not a Predictor of Optic Pathway Glioma Development or Treatment in Neurofibromatosis Type 1. Journal of Child Neurology, 2016, 31, 1540-1545.	0.7	5
120	Randomized placebo-controlled study of lovastatin in children with neurofibromatosis type 1. Neurology, 2016, 87, 2575-2584.	1.5	76
121	Disease Burden and Symptom Structure of Autism in Neurofibromatosis Type 1. JAMA Psychiatry, 2016, 73, 1276.	6.0	90
122	Defining the Research Landscape for Dermal Neurofibromas. Oncology Times, 2016, 38, 14-15.	0.1	4
123	Associations between allergic conditions and pediatric brain tumors in Neurofibromatosis type 1. Familial Cancer, 2016, 15, 301-308.	0.9	11
124	Contextual signaling in cancer. Seminars in Cell and Developmental Biology, 2016, 58, 118-126.	2.3	7
125	Proteomic analysis reveals GIT1 as a novel mTOR complex component critical for mediating astrocyte survival. Genes and Development, 2016, 30, 1383-1388.	2.7	36
126	3-D imaging mass spectrometry of protein distributions in mouse Neurofibromatosis 1 (NF1)-associated optic glioma. Journal of Proteomics, 2016, 149, 77-84.	1.2	17

#	Article	IF	CITATIONS
127	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	13.5	1,695
128	The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience, 2016, 19, 20-27.	7.1	1,148
129	Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor <i>Nf1</i> gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget, 2016, 7, 7403-7414.	0.8	30
130	ABCG1 maintains high-grade glioma survival <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 23416-23424.	0.8	18
131	Activated K-Ras, but Not H-Ras or N-Ras, Regulates Brain Neural Stem Cell Proliferation in a Raf/Rb-Dependent Manner. Stem Cells, 2015, 33, 1998-2010.	1.4	23
132	Neurofibromatosis type 1. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 132, 75-86.	1.0	137
133	Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro-Oncology, 2015, 17, 843-853.	0.6	75
134	Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning. Human Molecular Genetics, 2015, 24, 3518-3528.	1.4	70
135	Whole Exome Sequencing Reveals the Order of Genetic Changes during Malignant Transformation and Metastasis in a Single Patient with NF1-plexiform Neurofibroma. Clinical Cancer Research, 2015, 21, 4201-4211.	3.2	39
136	Validity of participant-reported diagnoses in an online patient registry: A report from the NF1 Patient Registry Initiative. Contemporary Clinical Trials, 2015, 40, 212-217.	0.8	15
137	Improving outcomes for neurofibromatosis 1–associated brain tumors. Expert Review of Anticancer Therapy, 2015, 15, 415-423.	1.1	13
138	Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Modern Pathology, 2015, 28, 187-200.	2.9	134
139	The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nature Communications, 2015, 6, 6122.	5.8	119
140	Neurofibromatosis type 1 and chronic neurological conditions in the United States: an administrative claims analysis. Genetics in Medicine, 2015, 17, 36-42.	1.1	23
141	RNAâ€sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease. Glia, 2015, 63, 531-548.	2.5	44
142	Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a Neurofibromatosis Clinical Trials Consortium phase II study. Neuro-Oncology, 2015, 17, 596-603.	0.6	118
143	The Cyclic AMP Pathway Is a Sex-Specific Modifier of Glioma Risk in Type I Neurofibromatosis Patients. Cancer Research, 2015, 75, 16-21.	0.4	56

144 Neurofibromatoses. , 2015, , 921-933.

#	Article	IF	CITATIONS
145	Racial/Ethnic Differences in Pediatric Brain Tumor Diagnoses in Patients with Neurofibromatosis Type 1. Journal of Pediatrics, 2015, 167, 613-620.e2.	0.9	27
146	HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Molecular Psychiatry, 2015, 20, 1311-1321.	4.1	66
147	Microglia in the tumor microenvironment: taking their TOLL on glioma biology. Neuro-Oncology, 2015, 17, 171-173.	0.6	17
148	Mouse Low-Grade Gliomas Contain Cancer Stem Cells with Unique Molecular and Functional Properties. Cell Reports, 2015, 10, 1899-1912.	2.9	39
149	Parental age and Neurofibromatosis Type 1: a report from the NF1 Patient Registry Initiative. Familial Cancer, 2015, 14, 317-324.	0.9	13
150	A Pilot Study for Evaluation of Hypotonia in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2015, 30, 382-385.	0.7	7
151	Neurofibromatosis-1 regulation of neural stem cell proliferation and multilineage differentiation operates through distinct RAS effector pathways. Genes and Development, 2015, 29, 1677-1682.	2.7	40
152	The impact of coexisting genetic mutations on murine optic glioma biology. Neuro-Oncology, 2015, 17, 670-677.	0.6	18
153	Distribution and Within-Family Specificity of Quantitative Autistic Traits inÂPatients with Neurofibromatosis Type I. Journal of Pediatrics, 2015, 167, 621-626.e1.	0.9	23
154	RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth. Neoplasia, 2015, 17, 776-788.	2.3	75
155	A multidisciplinary approach in neurofibromatosis 1–Authors' reply. Lancet Neurology, The, 2015, 14, 30-31.	4.9	1
156	The mTOR signaling pathway as a treatment target for intracranial neoplasms. Neuro-Oncology, 2015, 17, 189-199.	0.6	44
157	In Vivo Functional Analysis of the Human NF2 Tumor Suppressor Gene in Drosophila. PLoS ONE, 2014, 9, e90853.	1.1	6
158	Nf2/Merlin Controls Spinal Cord Neural Progenitor Function in a Rac1/ErbB2-Dependent Manner. PLoS ONE, 2014, 9, e97320.	1.1	13
159	The taxonomy of brain cancer stem cells: what's in a name?. Oncoscience, 2014, 1, 241-247.	0.9	3
160	Cognitive and behavioral problems in children with neurofibromatosis type 1: challenges and future directions. Expert Review of Neurotherapeutics, 2014, 14, 1139-1152.	1.4	27
161	NG2-cells are not the cell of origin for murine neurofibromatosis-1 (Nf1) optic glioma. Oncogene, 2014, 33, 289-299.	2.6	25
162	Using the Neurofibromatosis Tumor Predisposition Syndromes to Understand Normal Nervous System Development. Scientifica, 2014, 2014, 1-14.	0.6	0

#	Article	IF	CITATIONS
163	Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma. Annals of Neurology, 2014, 75, 799-800.	2.8	38
164	Evaluation of participant recruitment methods to a rare disease online registry. American Journal of Medical Genetics, Part A, 2014, 164, 1686-1694.	0.7	39
165	Reply. Annals of Neurology, 2014, 75, 800-801.	2.8	8
166	Sirolimus for nonâ€progressive NF1â€associated plexiform neurofibromas: An NF clinical trials consortium phase II study. Pediatric Blood and Cancer, 2014, 61, 982-986.	0.8	73
167	Sex Is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Annals of Neurology, 2014, 75, 309-316.	2.8	114
168	Neuronal NF1/RAS regulation of cyclic AMP requires atypical PKC activation. Human Molecular Genetics, 2014, 23, 6712-6721.	1.4	67
169	BRAFV600E mutation in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors. Neuro-Oncology, 2014, 16, 466-467.	0.6	35
170	NF GEMMs Already! The Power and Promise of Mouse Tumor Models. Cancer Cell, 2014, 26, 596-599.	7.7	3
171	Update from the 2013 international neurofibromatosis conference. American Journal of Medical Genetics, Part A, 2014, 164, 2969-2978.	0.7	17
172	Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurology, The, 2014, 13, 834-843.	4.9	405
173	Suppression of MicroRNA-9 by Mutant EGFR Signaling Upregulates FOXP1 to Enhance Glioblastoma Tumorigenicity. Cancer Research, 2014, 74, 1429-1439.	0.4	59
174	BRAF-V600E mutation in pediatric and adult glioblastoma. Neuro-Oncology, 2014, 16, 318-319.	0.6	90
175	Eliminating barriers to personalized medicine. Neurology, 2014, 83, 463-471.	1.5	15
176	cDNA Hybrid Capture Improves Transcriptome Analysis on Low-Input and Archived Samples. Journal of Molecular Diagnostics, 2014, 16, 440-451.	1.2	40
177	Glomus tumors in individuals with neurofibromatosis type 1. Journal of the American Academy of Dermatology, 2014, 71, 44-48.	0.6	36
178	The molecular and cell biology of pediatric low-grade gliomas. Oncogene, 2014, 33, 2019-2026.	2.6	66
179	Transglutaminase 2 Expression Is Increased as a Function of Malignancy Grade and Negatively Regulates Cell Growth in Meningioma. PLoS ONE, 2014, 9, e108228.	1.1	12
180	Optic nerve tortuosity in children with neurofibromatosis type 1. Pediatric Radiology, 2013, 43, 1336-1343.	1.1	25

#	Article	IF	CITATIONS
181	Neurofibromatosis type 1 (NF1). Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 115, 939-955.	1.0	169
182	Advances in the treatment of neurofibromatosis-associated tumours. Nature Reviews Clinical Oncology, 2013, 10, 616-624.	12.5	88
183	BRAFV600E mutation is a negative prognosticator in pediatric ganglioglioma. Acta Neuropathologica, 2013, 125, 901-910.	3.9	149
184	Modeling cognitive dysfunction in neurofibromatosis-1. Trends in Neurosciences, 2013, 36, 237-247.	4.2	82
185	Epilepsy in individuals with neurofibromatosis type 1. Epilepsia, 2013, 54, 1810-1814.	2.6	76
186	Merlin isoform 2 in neurofibromatosis type 2–associated polyneuropathy. Nature Neuroscience, 2013, 16, 426-433.	7.1	51
187	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
188	A Neuropsychological Perspective on Attention Problems in Neurofibromatosis Type 1. Journal of Attention Disorders, 2013, 17, 489-496.	1.5	16
189	Development of an international internet-based neurofibromatosis Type 1 Patient registry. Contemporary Clinical Trials, 2013, 34, 305-311.	0.8	30
190	MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant targets, including PBX3, NFIB, and METAP2. Neuro-Oncology, 2013, 15, 69-82.	0.6	56
191	Corrigendum to "The Learning Disabilities Network (LeaDNet): Using Neurofibromatosis Type 1 [NF1] as a Paradigm for Translational Researchâ€, , 2013, 161, 236-236.		0
192	ABCA1 influences neuroinflammation and neuronal death. Neurobiology of Disease, 2013, 54, 445-455.	2.1	71
193	Assessment of Pain and Itch Behavior in a Mouse Model ofÂNeurofibromatosis Type 1. Journal of Pain, 2013, 14, 628-637.	0.7	30
194	Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opinion on Investigational Drugs, 2013, 22, 443-462.	1.9	77
195	miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene, 2013, 32, 4712-4720.	2.6	60
196	Teaching Neuro <i>Images</i> : T2 hyperintensities in neurofibromatosis type 1. Neurology, 2013, 80, e215-6.	1,5	2
197	Antiangiogenic Agents for Nonmalignant Brain Tumors. Journal of Neurological Surgery, Part B: Skull Base, 2013, 74, 136-141.	0.4	30
198	Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Research, 2013, 23, 431-439.	2.4	99

#	Article	IF	CITATIONS
199	Longitudinal Analysis of Developmental Delays in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2013, 28, 1689-1693.	0.7	24
200	Prevalence of Sleep Disturbances in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2013, 28, 1400-1405.	0.7	51
201	Functional outcome measures for NF1-associated optic pathway glioma clinical trials. Neurology, 2013, 81, S15-24.	1.5	103
202	Height Assessments in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2013, 28, 303-307.	0.7	29
203	Visual Function and Optic Pathway Glioma: A Critical Response. JAMA Ophthalmology, 2013, 131, 120.	1.4	9
204	Reduced microglial <scp>CX3CR1</scp> expression delays neurofibromatosisâ€1 glioma formation. Annals of Neurology, 2013, 73, 303-308.	2.8	91
205	Attention Skills in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2013, 28, 45-49.	0.7	58
206	Conditional <i>KIAA1549:BRAF</i> mice reveal brain region―and cell typeâ€specific effects. Genesis, 2013, 51, 708-716.	0.8	16
207	Dopamine deficiency underlies learning deficits in neurofibromatosisâ€1 mice. Annals of Neurology, 2013, 73, 309-315.	2.8	68
208	The Association Between Hypotonia and Brain Tumors in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2013, 28, 1664-1667.	0.7	5
209	Motivational Disturbances and Effects of L-dopa Administration in Neurofibromatosis-1 Model Mice. PLoS ONE, 2013, 8, e66024.	1.1	21
210	F11R Is a Novel Monocyte Prognostic Biomarker for Malignant Glioma. PLoS ONE, 2013, 8, e77571.	1.1	40
211	Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology, 2012, 14, 790-797.	0.6	248
212	Ku80 functions as a tumor suppressor in hepatocellular carcinoma by inducing S-phase arrest through a p53-dependent pathway. Carcinogenesis, 2012, 33, 538-547.	1.3	34
213	Developmental Delays in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2012, 27, 641-644.	0.7	31
214	Novel <i>BRAF</i> Alteration in a Sporadic Pilocytic Astrocytoma. Case Reports in Medicine, 2012, 2012, 1-4.	0.3	20
215	Highâ€fat diet ameliorates neurological deficits caused by defective astrocyte lipid metabolism. FASEB Journal, 2012, 26, 4302-4315.	0.2	63
216	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development (Cambridge), 2012, 139, 2477-2487.	1.2	112

#	Article	IF	CITATIONS
217	Using Genetically Engineered Mouse Models to Understand Low-Grade Glioma Development and Growth in Children. Neuromethods, 2012, , 203-215.	0.2	0
218	Neurofibromatosis Type 1: Modeling CNS Dysfunction. Journal of Neuroscience, 2012, 32, 14087-14093.	1.7	88
219	Pediatric glioma-associated <i>KIAA1549:BRAF</i> expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes and Development, 2012, 26, 2561-2566.	2.7	84
220	Visual acuity in children with low grade gliomas of the visual pathway: implications for patient care and clinical research. Journal of Neuro-Oncology, 2012, 110, 1-7.	1.4	72
221	Parent-of-origin in individuals with familial neurofibromatosis type 1 and optic pathway gliomas. Familial Cancer, 2012, 11, 653-656.	0.9	7
222	Deconvoluting mTOR biology. Cell Cycle, 2012, 11, 236-248.	1.3	80
223	Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Molecular and Cellular Neurosciences, 2012, 49, 13-22.	1.0	55
224	Neurofibromatosis and other genetic syndromes. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 105, 569-582.	1.0	2
225	Innate Neural Stem Cell Heterogeneity Determines the Patterning of Glioma Formation in Children. Cancer Cell, 2012, 22, 131-138.	7.7	95
226	The Learning Disabilities Network (LeaDNet): Using neurofibromatosis type 1 (NF1) as a paradigm for translational research. American Journal of Medical Genetics, Part A, 2012, 158A, 2225-2232.	0.7	29
227	Lowâ€grade gliomas as neurodevelopmental disorders: insights from mouse models of neurofibromatosisâ€1. Neuropathology and Applied Neurobiology, 2012, 38, 241-253.	1.8	4
228	Pediatric Low-Grade Glioma: The Role of Neurofi bromatosis-1 in Guiding Therapy. Pediatric Cancer, 2012, , 285-294.	0.0	0
229	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord Journal of Cell Science, 2012, 125, e1-e1.	1.2	2
230	Molecular genetics of optic glioma: lessons learned from neurofibromatosis-1 genetically engineered mice. Expert Review of Ophthalmology, 2011, 6, 363-369.	0.3	1
231	Neurofibromatosis-1 Heterozygosity Increases Microglia in a Spatially and Temporally Restricted Pattern Relevant to Mouse Optic Glioma Formation and Growth. Journal of Neuropathology and Experimental Neurology, 2011, 70, 51-62.	0.9	110
232	Comparative Characterization of the Human and Mouse Third Ventricle Germinal Zones. Journal of Neuropathology and Experimental Neurology, 2011, 70, 622-633.	0.9	33
233	Identification of Gene Markers Associated With Aggressive Meningioma by Filtering Across Multiple Sets of Gene Expression Arrays. Journal of Neuropathology and Experimental Neurology, 2011, 70, 1-12.	0.9	40
234	Genome-wide polymorphism analysis demonstrates a monoclonal origin of pilocytic astrocytoma. Neuropathology and Applied Neurobiology, 2011, 37, 321-325.	1.8	5

#	Article	IF	CITATIONS
235	Regulation of mixed lineage kinase 3 is required for Neurofibromatosis-2-mediated growth suppression in human cancer. Oncogene, 2011, 30, 781-789.	2.6	27
236	The ecology of brain tumors: lessons learned from neurofibromatosis-1. Oncogene, 2011, 30, 1135-1146.	2.6	18
237	Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes. Oncogene, 2011, 30, 2333-2344.	2.6	133
238	PET imaging for attention deficit preclinical drug testing in neurofibromatosis-1 mice. Experimental Neurology, 2011, 232, 333-338.	2.0	35
239	Identification of transcriptional regulatory networks specific to pilocytic astrocytoma. BMC Medical Genomics, 2011, 4, 57.	0.7	18
240	Rethinking Pediatric Gliomas as Developmental Brain Abnormalities. Current Topics in Developmental Biology, 2011, 94, 283-308.	1.0	5
241	Interpreting Mammalian Target of Rapamycin and Cell Growth Inhibition in a Genetically Engineered Mouse Model of <i>Nf1</i> -Deficient Astrocytes. Molecular Cancer Therapeutics, 2011, 10, 279-291.	1.9	32
242	Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Human Molecular Genetics, 2011, 20, 286-293.	1.4	161
243	Report from the Fifth National Cancer Institute Mouse Models of Human Cancers Consortium Nervous System Tumors Workshop. Neuro-Oncology, 2011, 13, 692-699.	0.6	7
244	Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of Tuberous Sclerosis Complex. Human Molecular Genetics, 2011, 20, 445-454.	1.4	191
245	Array-Based Comparative Genomic Hybridization Identifies <i>CDK4</i> and <i>FOXM1</i> Alterations as Independent Predictors of Survival in Malignant Peripheral Nerve Sheath Tumor. Clinical Cancer Research, 2011, 17, 1924-1934.	3.2	103
246	Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis. Development (Cambridge), 2011, 138, 4451-4463.	1.2	116
247	Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15996-16001.	3.3	85
248	CXCL12 alone is insufficient for gliomagenesis in Nf1 mutant mice. Journal of Neuroimmunology, 2010, 224, 108-113.	1.1	13
249	Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia, 2010, 58, 1532-1543.	2.5	67
250	Preclinical <i>in vivo</i> evaluation of rapamycin in human malignant peripheral nerve sheath explant xenograft. International Journal of Cancer, 2010, 126, 563-571.	2.3	41
251	Subtypes of medulloblastoma have distinct developmental origins. Nature, 2010, 468, 1095-1099.	13.7	710
252	Reduced Activity of CD13/Aminopeptidase N (APN) in Aggressive Meningiomas Is Associated with Increased Levels of SPARC. Brain Pathology, 2010, 20, 200-210.	2.1	29

#	Article	IF	CITATIONS
253	Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Human Molecular Genetics, 2010, 19, 4515-4528.	1.4	117
254	Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes and Development, 2010, 24, 2317-2329.	2.7	102
255	Oncogenic <i>BRAF</i> Mutation with <i>CDKN2A</i> Inactivation Is Characteristic of a Subset of Pediatric Malignant Astrocytomas. Cancer Research, 2010, 70, 512-519.	0.4	236
256	The Neurofibromatosis Type 1 Tumor Suppressor Controls Cell Growth by Regulating Signal Transducer and Activator of Transcription-3 Activity <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2010, 70, 1356-1366.	0.4	66
257	Defective cAMP Generation Underlies the Sensitivity of CNS Neurons to Neurofibromatosis-1 Heterozygosity. Journal of Neuroscience, 2010, 30, 5579-5589.	1.7	100
258	Fatty acid synthase as a novel target for meningioma therapy. Neuro-Oncology, 2010, 12, 844-854.	0.6	30
259	Defining future directions in spinal cord tumor research. Journal of Neurosurgery: Spine, 2010, 12, 117-121.	0.9	14
260	Cyclic AMP Suppression Is Sufficient to Induce Gliomagenesis in a Mouse Model of Neurofibromatosis-1. Cancer Research, 2010, 70, 5717-5727.	0.4	102
261	Postoperative imaging surveillance in pediatric pilocytic astrocytomas. Journal of Neurosurgery: Pediatrics, 2010, 6, 346-352.	0.8	30
262	Ultrastructural characterization of the optic pathway in a mouse model of neurofibromatosis-1 optic glioma. Neuroscience, 2010, 170, 178-188.	1.1	28
263	Astrocyte-Derived Vascular Endothelial Growth Factor Stabilizes Vessels in the Developing Retinal Vasculature. PLoS ONE, 2010, 5, e11863.	1.1	120
264	Gliomas in patients with neurofibromatosis type 1. Expert Review of Neurotherapeutics, 2009, 9, 535-539.	1.4	52
265	Expression of the Tumor Suppressor Genes <i>NF2</i> , <i>4.1B</i> , and <i>TSLC1</i> in Canine Meningiomas. Veterinary Pathology, 2009, 46, 884-892.	0.8	22
266	The Neurofibromatosis 2 Protein, Merlin, Regulates Glial Cell Growth in an ErbB2- and Src-Dependent Manner. Molecular and Cellular Biology, 2009, 29, 1472-1486.	1.1	70
267	Predictive Value of Café au Lait Macules at Initial Consultation in the Diagnosis of Neurofibromatosis Type 1. Archives of Dermatology, 2009, 145, 883-7.	1.7	95
268	Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)â€regulated glial proliferation. Glia, 2009, 57, 1239-1249.	2.5	108
269	Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathologica, 2009, 117, 657-665.	3.9	75
270	Modeling Human Brain Tumors in Mice. Brain Pathology, 2009, 19, 108-111.	2.1	2

#	Article	IF	CITATIONS
271	Neurofibromatosis Type 1 Revisited. Pediatrics, 2009, 123, 124-133.	1.0	562
272	Brainstem Glioma Presenting as Pruritus in Children With Neurofibromatosis-1. Journal of Pediatric Hematology/Oncology, 2009, 31, 972-976.	0.3	21
273	Optic Nerve Dysfunction in a Mouse Model of Neurofibromatosis-1 Optic Glioma. Journal of Neuropathology and Experimental Neurology, 2009, 68, 542-551.	0.9	45
274	Using Neurofibromatosis Type 1 Mouse Models to Understand Human Pediatric Low-Grade Gliomas. , 2009, , 45-59.		0
275	Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatric Radiology, 2008, 38, 1293-1299.	1.1	49
276	Generation of a reporter mouse line expressing Akt and EGFP upon Creâ€nediated recombination. Genesis, 2008, 46, 256-264.	0.8	8
277	Frequent promoter hypermethylation and transcriptional downregulation of the <i>NDRG2</i> gene at 14q11.2 in primary glioblastoma. International Journal of Cancer, 2008, 123, 2080-2086.	2.3	83
278	Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Annals of Neurology, 2008, 63, 444-453.	2.8	563
279	High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene, 2008, 27, 4745-4751.	2.6	96
280	Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neuroscience, 2008, 11, 251-253.	7.1	1,015
281	Immunohistochemical Analysis Supports a Role for INI1/SMARCB1 in Hereditary Forms of Schwannomas, but Not in Solitary, Sporadic Schwannomas. Brain Pathology, 2008, 18, 517-519.	2.1	117
282	The Neurofibromatosis 2 Tumor Suppressor Gene Product, Merlin, Regulates Human Meningioma Cell Growth by Signaling through YAP. Neoplasia, 2008, 10, 1204-1212.	2.3	130
283	Expression profiling identifies a molecular signature of reactive astrocytes stimulated by cyclic AMP or proinflammatory cytokines. Experimental Neurology, 2008, 210, 261-267.	2.0	31
284	Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135, 549-560.	13.5	384
285	Preclinical Cancer Therapy in a Mouse Model of Neurofibromatosis-1 Optic Glioma. Cancer Research, 2008, 68, 1520-1528.	0.4	130
286	Neurofibromin regulates somatic growth through the hypothalamic–pituitary axis. Human Molecular Genetics, 2008, 17, 2956-2966.	1.4	49
287	Astrocyte gp130 Expression Is Critical for the Control of <i>Toxoplasma</i> Encephalitis. Journal of Immunology, 2008, 181, 2683-2693.	0.4	126
288	Merlin Is a Potent Inhibitor of Glioma Growth. Cancer Research, 2008, 68, 5733-5742.	0.4	97

#	Article	IF	CITATIONS
289	Using Neurofibromatosis-1 to Better Understand and Treat Pediatric Low-Grade Glioma. Journal of Child Neurology, 2008, 23, 1186-1194.	0.7	30
290	Increased c-Jun-NH2-Kinase Signaling in Neurofibromatosis-1 Heterozygous Microglia Drives Microglia Activation and Promotes Optic Glioma Proliferation. Cancer Research, 2008, 68, 10358-10366.	0.4	105
291	Reduced T-cadherin expression and promoter methylation are associated with the development and progression of hepatocellular carcinoma. International Journal of Oncology, 2008, , .	1.4	6
292	Gliomas in Neurofibromatosis Type 1: A Clinicopathologic Study of 100 Patients. Journal of Neuropathology and Experimental Neurology, 2008, 67, 240-249.	0.9	162
293	Gene Expression Profiling of NF-1-Associated and Sporadic Pilocytic Astrocytoma Identifies Aldehyde Dehydrogenase 1 Family Member L1 (ALDH1L1) as an Underexpressed Candidate Biomarker in Aggressive Subtypes. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1194-1204.	0.9	43
294	Nucleophosmin Mediates Mammalian Target of Rapamycin–Dependent Actin Cytoskeleton Dynamics and Proliferation in Neurofibromin-Deficient Astrocytes. Cancer Research, 2007, 67, 4790-4799.	0.4	61
295	Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Human Molecular Genetics, 2007, 16, 1098-1112.	1.4	169
296	Cancer stem cells and brain tumors: uprooting the bad seeds. Expert Review of Anticancer Therapy, 2007, 7, 1581-1590.	1.1	14
297	Colocalized cellular schwannoma and plexiform neurofibroma in the absence of neurofibromatosis. Journal of Neurosurgery, 2007, 107, 435-439.	0.9	18
298	The Elders of the Kibbutz. International Journal of Aging and Human Development, 2007, 64, 47-65.	1.0	0
299	TSC1 Sets the Rate of Ribosome Export and Protein Synthesis through Nucleophosmin Translation. Cancer Research, 2007, 67, 1609-1617.	0.4	36
300	Nectin-like proteins mediate axon–Schwann cell interactions along the internode and are essential for myelination. Journal of Cell Biology, 2007, 178, 861-874.	2.3	158
301	Spatiotemporal Differences in CXCL12 Expression and Cyclic AMP Underlie the Unique Pattern of Optic Glioma Growth in Neurofibromatosis Type 1. Cancer Research, 2007, 67, 8588-8595.	0.4	105
302	Tumorigenesis in the Brain: Location, Location, Location: Figure 1 Cancer Research, 2007, 67, 5579-5582.	0.4	62
303	The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling. Developmental Biology, 2007, 311, 238-250.	0.9	48
304	Neurofibromatosis-1 Regulates Neuronal and Glial Cell Differentiation from Neuroglial Progenitors InÂVivo by Both cAMP- and Ras-Dependent Mechanisms. Cell Stem Cell, 2007, 1, 443-457.	5.2	180
305	Detection and measurement of neurofibromatosis-1 mouse optic glioma in vivo. NeuroImage, 2007, 35, 1434-1437.	2.1	26
306	Distinct Genetic Signatures among Pilocytic Astrocytomas Relate to Their Brain Region Origin. Cancer Research, 2007, 67, 890-900.	0.4	164

0

#	Article	IF	CITATIONS
307	Optic pathway gliomas in neurofibromatosis-1: Controversies and recommendations. Annals of Neurology, 2007, 61, 189-198.	2.8	531
308	All in the family: Using inherited cancer syndromes to understand deâ€regulated cell signaling in brain tumors. Journal of Cellular Biochemistry, 2007, 102, 811-819.	1.2	9
309	Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging. Glia, 2007, 55, 723-733.	2.5	3
310	Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nature Cell Biology, 2007, 9, 1199-1207.	4.6	82
311	The Natural History and Treatment of Epilepsy in a Murine Model of Tuberous Sclerosis. Epilepsia, 2007, 48, 1470-1476.	2.6	58
312	Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 2007, 28, 184-196.	2.1	116
313	Neurofibromatosis 1. , 2007, , 413-423.		0
314	Tslc1 (Nectin-Like Molecule-2) Is Essential for Spermatozoa Motility and Male Fertility. Journal of Andrology, 2006, 27, 816-825.	2.0	31
315	Meningothelial Hyperplasia: A Detailed Clinicopathologic, Immunohistochemical and Genetic Study of 11 Cases. Brain Pathology, 2006, 15, 109-115.	2.1	30
316	Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Oncogene, 2006, 25, 735-745.	2.6	74
317	Promoter hypermethylation of the potential tumor suppressorDAL-1/4.1Bgene in renal clear cell carcinoma. International Journal of Cancer, 2006, 118, 916-923.	2.3	71
318	The neurobiology of neurooncology. Annals of Neurology, 2006, 60, 3-11.	2.8	54
319	Large-Scale Molecular Comparison of Human Schwann Cells to Malignant Peripheral Nerve Sheath Tumor Cell Lines and Tissues. Cancer Research, 2006, 66, 2584-2591.	0.4	191
320	Protein 4.1B/Differentially Expressed in Adenocarcinoma of the Lung-1 Functions as a Growth Suppressor in Meningioma Cells by Activating Rac1-Dependent c-Jun-NH2-kinase Signaling. Cancer Research, 2006, 66, 5295-5303.	0.4	32
321	High-Grade Glioma Formation Results from Postnatal Pten Loss or Mutant Epidermal Growth Factor Receptor Expression in a Transgenic Mouse Glioma Model. Cancer Research, 2006, 66, 7429-7437.	0.4	101
322	Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4463-4468.	3.3	84
323	Harnessing preclinical mouse models to inform human clinical cancer trials. Journal of Clinical Investigation, 2006, 116, 847-852.	3.9	59

324 Neurofibromatosis 1 and 2. , 2006, , 1160-1164.

#	Article	IF	CITATIONS
325	Expression and Function of Somatostatin Receptors in Peripheral Nerve Sheath Tumors. Journal of Neuropathology and Experimental Neurology, 2005, 64, 1080-1088.	0.9	23
326	Epileptogenesis and Reduced Inward Rectifier Potassium Current in Tuberous Sclerosis Complex-1-Deficient Astrocytes. Epilepsia, 2005, 46, 1871-1880.	2.6	113
327	Neurofibromatosis type 1 — a model for nervous system tumour formation?. Nature Reviews Cancer, 2005, 5, 557-564.	12.8	81
328	Membrane localization of the U2 domain of Protein 4.1B is necessary and sufficient for meningioma growth suppression. Oncogene, 2005, 24, 1946-1957.	2.6	27
329	Protein 4.1B expression is induced in mammary epithelial cells during pregnancy and regulates their proliferation. Oncogene, 2005, 24, 6502-6515.	2.6	19
330	Alterations of protein 4.1 family members in ependymomas: a study of 84 cases. Modern Pathology, 2005, 18, 991-997.	2.9	45
331	Diethylstilbestrol effects and lymphomagenesis in Mlh1 â€deficient mice. International Journal of Cancer, 2005, 115, 666-669.	2.3	10
332	Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Annals of Neurology, 2005, 57, 119-127.	2.8	67
333	Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology, 2005, 64, 1446-1449.	1.5	52
334	Integrative Genomic Analysis Identifies NDRG2 as a Candidate Tumor Suppressor Gene Frequently Inactivated in Clinically Aggressive Meningioma. Cancer Research, 2005, 65, 7121-7126.	0.4	187
335	Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development (Cambridge), 2005, 132, 5577-5588.	1.2	166
336	Akt-Dependent Cell Size Regulation by the Adhesion Molecule on Glia Occurs Independently of Phosphatidylinositol 3-Kinase and Rheb Signaling. Molecular and Cellular Biology, 2005, 25, 3151-3162.	1.1	27
337	RAS pathway activation and an oncogenic RAS mutation in sporadic pilocytic astrocytoma. Neurology, 2005, 65, 1335-1336.	1.5	75
338	Cerebrospinal Fluid Proteomic Analysis Reveals Dysregulation of Methionine Aminopeptidase-2 Expression in Human and Mouse Neurofibromatosis 1–Associated Glioma. Cancer Research, 2005, 65, 9843-9850.	0.4	58
339	Proteomic Analysis Reveals Hyperactivation of the Mammalian Target of Rapamycin Pathway in Neurofibromatosis 1–Associated Human and Mouse Brain Tumors. Cancer Research, 2005, 65, 2755-2760.	0.4	283
340	Neurofibromin Regulates Neural Stem Cell Proliferation, Survival, and Astroglial Differentiation In Vitro and In Vivo. Journal of Neuroscience, 2005, 25, 5584-5594.	1.7	120
341	Transcriptional Repression of the Neurofibromatosis-1 Tumor Suppressor by the t(8;21) Fusion Protein. Molecular and Cellular Biology, 2005, 25, 5869-5879.	1.1	42
342	HRS inhibits EGF receptor signaling in the RT4 rat schwannoma cell line. Biochemical and Biophysical Research Communications, 2005, 335, 385-392.	1.0	21

#	Article	IF	CITATIONS
343	Pathological and Molecular Progression of Astrocytomas in a GFAP:12V-Ha-Ras Mouse Astrocytoma Model. American Journal of Pathology, 2005, 167, 859-867.	1.9	53
344	Neurofibromatosis 1: From lab bench to clinic. Pediatric Neurology, 2005, 32, 221-228.	1.0	87
345	Insights into Meningioangiomatosis with and without Meningioma: A Clinicopathologic and Genetic Series of 24 Cases with Review of the Literature. Brain Pathology, 2005, 15, 55-65.	2.1	62
346	Clioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Research, 2005, 65, 236-45.	0.4	83
347	Neurofibromatosis type 1. , 2004, , 42-49.		2
348	Mouse Models of Tuberous Sclerosis Complex. Journal of Child Neurology, 2004, 19, 726-733.	0.7	23
349	Pten Loss Causes Hypertrophy and Increased Proliferation of Astrocytes In vivo. Cancer Research, 2004, 64, 7773-7779.	0.4	204
350	Loss of Tumor Suppressor in Lung Cancer-1 (TSLC1) Expression in Meningioma Correlates with Increased Malignancy Grade and Reduced Patient Survival. Journal of Neuropathology and Experimental Neurology, 2004, 63, 1015-1027.	0.9	61
351	Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18200-18205.	3.3	134
352	Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene, 2004, 23, 580-587.	2.6	91
353	Disruption of 14-3-3 binding does not impair Protein 4.1B growth suppression. Oncogene, 2004, 23, 3589-3596.	2.6	17
354	Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene, 2004, 23, 8447-8454.	2.6	110
355	DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene, 2004, 23, 7761-7771.	2.6	99
356	Molecular pathogenesis of meningiomas. Journal of Neuro-Oncology, 2004, 70, 183-202.	1.4	252
357	Piebaldism and Neurofibromatosis Type 1: Horses of Very Different Colors. Journal of Investigative Dermatology, 2004, 122, xxxiv-xxxv.	0.3	12
358	Functional significance of S6K overexpression in meningioma progression. Annals of Neurology, 2004, 56, 295-298.	2.8	35
359	Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia, 2004, 46, 28-40.	2.5	45
360	CD44-independent hepatocyte growth factor/c-Met autocrine loop promotes malignant peripheral nerve sheath tumor cell invasion in vitro. Glia, 2004, 45, 297-306.	2.5	36

#	Article	IF	CITATIONS
361	Loss of tuberous sclerosis complex 1 (Tsc1) expression results in increased Rheb/S6K pathway signaling important for astrocyte cell size regulation. Glia, 2004, 47, 180-188.	2.5	69
362	Glioneuronal tumours in neurofibromatosis type 1: MRI-pathological study. Journal of Clinical Neuroscience, 2004, 11, 745-747.	0.8	24
363	Recent advances in neurofibromatosis type 1. Current Opinion in Neurology, 2004, 17, 101-105.	1.8	114
364	Meningioma: an update. Current Opinion in Neurology, 2004, 17, 687-692.	1.8	76
365	Gene Expression Profiling Reveals Unique Molecular Subtypes of Neurofibromatosis Type lâ€associated and Sporadic Malignant Peripheral Nerve Sheath Tumors. Brain Pathology, 2004, 14, 297-303.	2.1	72
366	Role of the Rap1 GTPase in astrocyte growth regulation. Glia, 2003, 42, 225-234.	2.5	22
367	Genetic heterogeneity of stably transfected cell lines revealed by expression profiling with oligonucleotide microarrays. Journal of Cellular Biochemistry, 2003, 90, 1068-1078.	1.2	14
368	Optic pathway gliomas in neurofibromatosis type 1: The effect of presenting symptoms on outcome. American Journal of Medical Genetics Part A, 2003, 122A, 95-99.	2.4	137
369	Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Annals of Neurology, 2003, 54, 251-256.	2.8	176
370	Mlh1 deficiency accelerates myeloid leukemogenesis in neurofibromatosis 1 (Nf1) heterozygous mice. Oncogene, 2003, 22, 4581-4585.	2.6	23
371	Neurofibromatosis 1: closing the GAP between mice and men. Current Opinion in Genetics and Development, 2003, 13, 20-27.	1.5	91
372	Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis. Neurobiology of Disease, 2003, 13, 191-202.	2.1	78
373	Expression of ICAM-1, TNF-α, NFκB, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiology of Disease, 2003, 14, 279-290.	2.1	134
374	Identification of Dominant Negative Mutants of Rheb GTPase and Their Use to Implicate the Involvement of Human Rheb in the Activation of p70S6K. Journal of Biological Chemistry, 2003, 278, 39921-39930.	1.6	105
375	Molecular analysis of astrocytomas presenting after age 10 in individuals with NF1. Neurology, 2003, 61, 1397-1400.	1.5	85
376	T-Cadherin-Mediated Cell Growth Regulation Involves G 2 Phase Arrest and Requires p21 CIP1/WAF1 Expression. Molecular and Cellular Biology, 2003, 23, 566-578.	1.1	78
377	Rap1 activity is elevated in malignant astrocytomas independent of tuberous sclerosis complex-2 gene expression. International Journal of Oncology, 2003, 22, 195.	1.4	5
378	Neurofibromatosis 2. Current Opinion in Neurology, 2003, 16, 27-33.	1.8	106

#	ARTICLE	IF	CITATIONS
379	The Neurofibromatosis 1 Gene Product Neurofibromin Regulates Pituitary Adenylate Cyclase-Activating Polypeptide-Mediated Signaling in Astrocytes. Journal of Neuroscience, 2003, 23, 8949-8954.	1.7	139
380	Neurofibromatosis 2. Current Opinion in Neurology, 2003, 16, 27-33.	1.8	31
381	Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Research, 2003, 63, 1106-13.	0.4	109
382	The 43000 growth-associated protein functions as a negative growth regulator in glioma. Cancer Research, 2003, 63, 2933-9.	0.4	9
383	Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Research, 2003, 63, 8573-7.	0.4	221
384	Neurofibromatosis 2 (NF2) tumor suppressor schwannomin and its interacting protein HRS regulate STAT signaling. Human Molecular Genetics, 2002, 11, 3179-3189.	1.4	57
385	Astrocyte-Specific Inactivation of the Neurofibromatosis 1 Gene (NF1) Is Insufficient for Astrocytoma Formation. Molecular and Cellular Biology, 2002, 22, 5100-5113.	1.1	266
386	Differential <i>NF1</i> , <i>p16</i> , and <i>EGFR</i> Patterns by Interphase Cytogenetics (FISH) in Malignant Peripheral Nerve Sheath Tumor (MPNST) and Morphologically Similar Spindle Cell Neoplasms. Journal of Neuropathology and Experimental Neurology, 2002, 61, 702-709.	0.9	108
387	Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology, 2002, 59, 759-761.	1.5	139
388	Aberrant G protein signaling in nervous system tumors. Journal of Neurosurgery, 2002, 97, 627-642.	0.9	28
389	Differential Involvement of Protein 4.1 Family Members DAL-1 and NF2 in Intracranial and Intraspinal Ependymomas. Modern Pathology, 2002, 15, 526-531.	2.9	58
390	Functional analysis of the relationship between the neurofibromatosis 2 tumor suppressor and its binding partner, hepatocyte growth factor-regulated tyrosine kinase substrate. Human Molecular Genetics, 2002, 11, 3167-3178.	1.4	29
391	Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes and Development, 2002, 16, 1060-1065.	2.7	201
392	Review Article : Neurofibromin in the Brain. Journal of Child Neurology, 2002, 17, 592-601.	0.7	22
393	Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. Journal of Cell Science, 2002, 115, 3991-4000.	1.2	161
394	The 4.1/ezrin/radixin/moesin domain of the DAL-1/Protein 4.1B tumour suppressor interacts with 14-3-3 proteins. Biochemical Journal, 2002, 365, 783-789.	1.7	37
395	Cardiovascular disease in neurofibromatosis 1: Report of the NF1 Cardiovascular Task Force. Genetics in Medicine, 2002, 4, 105-111.	1.1	330
396	Molecular Characterization of Human Meningiomas by Gene Expression Profiling Using High-Density Oligonucleotide Microarrays. American Journal of Pathology, 2002, 161, 665-672.	1.9	110

#	Article	lF	CITATIONS
397	Neurofibromatosis 1. Neurologic Clinics, 2002, 20, 841-865.	0.8	95
398	Mouse Models of Neurofibromatosis 1 and 2. Neoplasia, 2002, 4, 279-290.	2.3	56
399	Mouse glioma gene expression profiling identifies novel human glioma-associated genes. Annals of Neurology, 2002, 51, 393-405.	2.8	21
400	Astrocyte-specificTSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Annals of Neurology, 2002, 52, 285-296.	2.8	330
401	Loss of heterozygosity for theNF2gene in retinal and optic nerve lesions of patients with neurofibromatosis 2. Journal of Pathology, 2002, 198, 14-20.	2.1	31
402	Astrocyte-specific expression of CDK4 is not sufficient for tumor formation, but cooperates with p53 heterozygosity to provide a growth advantage for astrocytes in vivo. Oncogene, 2002, 21, 1325-1334.	2.6	22
403	Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/â° cells. Oncogene, 2002, 21, 4050-4059.	2.6	74
404	International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Research, 2002, 62, 1573-7.	0.4	438
405	Comparative gene expression profile analysis of neurofibromatosis 1-associated and sporadic pilocytic astrocytomas. Cancer Research, 2002, 62, 2085-91.	0.4	67
406	The Protein 4.1 Tumor Suppressor, DAL-1, Impairs Cell Motility, But Regulates Proliferation in a Cell-Type-Specific Fashion. Neurobiology of Disease, 2001, 8, 266-278.	2.1	64
407	NF1 Deletions in S-100 Protein-Positive and Negative Cells of Sporadic and Neurofibromatosis 1 (NF1)-Associated Plexiform Neurofibromas and Malignant Peripheral Nerve Sheath Tumors. American Journal of Pathology, 2001, 159, 57-61.	1.9	124
408	The Generation and Characterization of a Cell Line Derived from a Sporadic Renal Angiomyolipoma. American Journal of Pathology, 2001, 159, 483-491.	1.9	37
409	Differential Cellular Expression of Neurotrophins in Cortical Tubers of the Tuberous Sclerosis Complex. American Journal of Pathology, 2001, 159, 1541-1554.	1.9	38
410	Tumorigenesis in neurofibromatosis: new insights and potential therapies. Trends in Molecular Medicine, 2001, 7, 157-162.	3.5	70
411	The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes and Development, 2001, 15, 968-980.	2.7	468
412	Ezrin, radixin, and moesin are components of Schwann cell microvilli. Journal of Neuroscience Research, 2001, 65, 150-164.	1.3	73
413	Comments on neurofibromatosis 1 and optic pathway tumors. American Journal of Medical Genetics Part A, 2001, 102, 105-105.	2.4	13
414	Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Clia, 2001, 33, 314-323.	2.5	68

#	Article	IF	CITATIONS
415	Tumor Suppressor Gene Regulation of Cell Growth: Recent Insights into Neurofibromatosis 1 and 2 Gene Function. Cell Biochemistry and Biophysics, 2001, 34, 61-78.	0.9	7
416	Merlin: hanging tumor suppression on the Rac. Trends in Cell Biology, 2001, 11, 442-444.	3.6	25
417	Merlin: hanging tumor suppression on the Rac. Trends in Cell Biology, 2001, 11, 442-444.	3.6	38
418	Aggressive Phenotypic and Genotypic Features in Pediatric and NF2-Associated Meningiomas: A Clinicopathologic Study of 53 Cases. Journal of Neuropathology and Experimental Neurology, 2001, 60, 994-1003.	0.9	194
419	Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Human Molecular Genetics, 2001, 10, 3009-3016.	1.4	51
420	The neurofibromatoses: when less is more. Human Molecular Genetics, 2001, 10, 747-755.	1.4	105
421	The NF2 interactor, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), associates with merlin in the 'open' conformation and suppresses cell growth and motility. Human Molecular Genetics, 2001, 10, 825-834.	1.4	43
422	Functional analysis of neurofibromatosis 2 (NF2) missense mutations. Human Molecular Genetics, 2001, 10, 1519-1529.	1.4	49
423	762 Overexpression of EGFRvIII Potentiates the Development and Aggressiveness of Astrocytomas in an Activated Ras Transgenic Mouse Astrocytoma Model. Neurosurgery, 2001, 49, 525.	0.6	2
424	Loss of Neurofibromin Is Associated with Activation of RAS/MAPK and PI3-K/AKT Signaling in a Neurofibromatosis 1 Astrocytoma. Journal of Neuropathology and Experimental Neurology, 2000, 59, 759-767.	0.9	133
425	Advances in Neurofibromatosis 2 (NF2): A Workshop Report. Journal of Neurogenetics, 2000, 14, 63-106.	0.6	33
426	Clinic-based study of plexiform neurofibromas in neurofibromatosis 1. American Journal of Medical Genetics Part A, 2000, 92, 132-135.	2.4	118
427	Malignant peripheral nerve sheath tumors in neurofibromatosis 1. American Journal of Medical Genetics Part A, 2000, 93, 388-392.	2.4	182
428	Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathology and Applied Neurobiology, 2000, 26, 361-367.	1.8	142
429	Expression of the tuberous sclerosis complex gene products, hamartin and tuberin, in central nervous system tissues. Acta Neuropathologica, 2000, 99, 223-230.	3.9	51
430	Merlin, DAL-1, and Progesterone Receptor Expression in Clinicopathologic Subsets of Meningioma: A Correlative Immunohistochemical Study of 175 Cases. Journal of Neuropathology and Experimental Neurology, 2000, 59, 872-879.	0.9	150
431	Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Human Molecular Genetics, 2000, 9, 1495-1500.	1.4	160
432	A review of astrocytoma models. Neurosurgical Focus, 2000, 8, 1-8.	1.0	56

#	Article	IF	CITATIONS
433	Clinic-based study of plexiform neurofibromas in neurofibromatosis 1. American Journal of Medical Genetics Part A, 2000, 92, 132.	2.4	1
434	Overexpression of bax in human glioma cell lines. Journal of Neurosurgery, 1999, 91, 483-489.	0.9	35
435	Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesionand spreading. Human Molecular Genetics, 1999, 8, 267-275.	1.4	108
436	Learning Disabilities in Neurofibromatosis 1. Archives of Neurology, 1999, 56, 1322.	4.9	21
437	Differential Effects of cAMP in Neurons and Astrocytes. Journal of Biological Chemistry, 1999, 274, 25842-25848.	1.6	201
438	Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation. Oncogene, 1999, 18, 4450-4459.	2.6	113
439	Developmental regulation of a neuron-specific neurofibromatosis 1 isoform. Annals of Neurology, 1999, 46, 777-782.	2.8	59
440	Neurofibromatosis 2 tumor suppressor protein, merlin, forms two functionally important intramolecular associations. , 1999, 58, 706-716.		51
441	Intracranial gliomas in neurofibromatosis type 1. , 1999, 89, 38-44.		146
442	Molecular analysis of malignant triton tumors. Human Pathology, 1999, 30, 984-988.	1.1	21
443	Neurofibroma and Cellular Neurofibroma with Atypia: A report of 14 tumors. American Journal of Surgical Pathology, 1999, 23, 1156.	2.1	9
444	Neurofibromatosis 2 tumor suppressor protein, merlin, forms two functionally important intramolecular associations. Journal of Neuroscience Research, 1999, 58, 706-16.	1.3	21
445	Parallels between tuberous sclerosis complex and neurofibromatosis 1: Common threads in the same tapestry. Seminars in Pediatric Neurology, 1998, 5, 276-286.	1.0	15
446	Merlin differentially associates with the microtubule and actin cytoskeleton. , 1998, 51, 403-415.		146
447	Defects in neurofibromatosis 2 protein function can arise at multiple levels. Human Molecular Genetics, 1998, 7, 335-345.	1.4	82
448	Transfection of C6 glioma cells with the bax gene and increased sensitivity to treatment with cytosine arabinoside. Journal of Neurosurgery, 1998, 88, 99-105.	0.9	15
449	Recent Insights Into Neurofibromatosis TypeÂ1. Archives of Neurology, 1998, 55, 778.	4.9	60
450	THE DIAGNOSIS AND MANAGEMENT OF NEUROFIBROMATOSIS 1. Neurologist, 1998, 4, 313-326.	0.4	1

#	Article	IF	CITATIONS
451	Neurofibromatosis Type 1: Piecing the Puzzle Together. Canadian Journal of Neurological Sciences, 1998, 25, 181-191.	0.3	67
452	The Psychoimmune System in Later Life. , 1998, , 281-295.		4
453	The Diagnostic Evaluation and Multidisciplinary Management of Neurofibromatosis 1 and Neurofibromatosis 2. JAMA - Journal of the American Medical Association, 1997, 278, 51.	3.8	1,030
454	Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology, 1997, 49, 267-270.	1.5	156
455	Molecular Insights into Neurofibromatosis 2. Neurobiology of Disease, 1997, 3, 247-261.	2.1	38
456	Ammonium Acetate Protocol for the Preparation of Plasmid DNA Suitable for Mammalian Cell Transfections. BioTechniques, 1997, 23, 424-427.	0.8	19
457	Alterations in the rap1 signaling pathway are common in human gliomas. Oncogene, 1997, 15, 1611-1616.	2.6	47
458	Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene, 1997, 15, 2505-2509.	2.6	212
459	Mutations in the GAP-related domain impair the ability of neurofibromin to associate with microtubules. Brain Research, 1997, 759, 149-152.	1.1	64
460	Optic pathway gliomas in children with neurofibromatosis 1: Consensus statement from the nf1 optic pathway glioma task force. Annals of Neurology, 1997, 41, 143-149.	2.8	434
461	ReducedTSC2 RNA and protein in sporadic astrocytomas and ependymomas. Annals of Neurology, 1997, 42, 230-235.	2.8	39
462	The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA - Journal of the American Medical Association, 1997, 278, 51-7.	3.8	375
463	Expression of a developmentally-regulated neuron-specific isoform of the neurofibromatosis 1 (NF1) gene. Neuroscience Letters, 1996, 211, 85-88.	1.0	48
464	Expression of the Tuberous Sclerosis 2 Gene Product, Tuberin, in Adult and Developing Nervous System Tissues. Neurobiology of Disease, 1996, 3, 111-120.	2.1	33
465	Expression of the neurofibromatosis 1 (NF1) gene during growth arrest. NeuroReport, 1996, 7, 601-604.	0.6	10
466	Expression of the neurofibromatosis 2 tumor suppressor gene product, merlin, in Schwann cells. Journal of Neuroscience Research, 1996, 46, 595-605.	1.3	76
467	Pseudocervical Cord Syndrome: A Deceptive Flumazenil Reversible Manifestation of Hepatic Encephalopathy. Archives of Neurology, 1996, 53, 956-956.	4.9	6
468	Acute presentation of a neurogenic sarcoma in a patient with neurofibromatosis type 1: a pathological and molecular explanation. Journal of Neurosurgery, 1996, 84, 867-873.	0.9	33

#	Article	IF	CITATIONS
469	Juvenile xanthogranuloma, neurofibromatosis 1, and juvenile chronic myeloid leukemia. Archives of Dermatology, 1996, 132, 1390-1391.	1.7	35
470	Expression of the neurofibromatosis 1 (NF1) gene in reactive astrocytes in vitro. NeuroReport, 1995, 6, 1565-1568.	0.6	23
471	Chapter 33 Expression of the neurofibromatosis type 1 (NF1) gene during mouse embryonic development. Progress in Brain Research, 1995, 105, 327-335.	0.9	23
472	Oculodentodigital dysplasia with cerebral white matter abnormalities in a two-generation family. American Journal of Medical Genetics Part A, 1995, 57, 458-461.	2.4	41
473	Loss of neurofibromatosis type I (NFI) gene expression in pheochromocytomas from patients without NFI. Genes Chromosomes and Cancer, 1995, 13, 104-109.	1.5	51
474	Lack ofNF1 expression in a sporadic schwannoma from a patient without neurofibromatosis. Journal of Neuro-Oncology, 1995, 25, 103-111.	1.4	12
475	Expression of the neurofibromatosis 2 (NF2) gene isoforms during rat embryonic development. Human Molecular Genetics, 1995, 4, 471-478.	1.4	45
476	Expression of the neurofibromatosis I gene product, neurofibromin, in blood vessel endothelial cells and smooth muscle. Neurobiology of Disease, 1995, 2, 13-21.	2.1	87
477	Expression of two new protein isoforms of the neurofibromatosis type 1 gene product, neurofibromin, in muscle tissues. Developmental Dynamics, 1995, 202, 302-311.	0.8	59
478	Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis type I. Genes Chromosomes and Cancer, 1994, 10, 55-58.	1.5	67
479	Limitations of magnetic resonance spectroscopy in patients with white matter disease. Annals of Neurology, 1994, 36, 932-932.	2.8	Ο
480	New insights into the neurofibromatoses. Current Opinion in Neurology, 1994, 7, 166-171.	1.8	16
481	Modulation of the neurofibromatosis type 1 gene product, neurofibromin, during Schwann cell differentiation. Journal of Neuroscience Research, 1993, 36, 216-223.	1.3	45
482	Mutations in the neurofibromatosis 1 gene in sporadic malignant melanoma cell lines. Nature Genetics, 1993, 3, 118-121.	9.4	147
483	Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules. Somatic Cell and Molecular Genetics, 1993, 19, 265-274.	0.7	123
484	Reduction in the effectiveness of social systems as a defense against anxiety. Journal of Career Development, 1993, 20, 85-89.	1.6	1
485	The neurofibromatosis type 1 gene and its protein product, neurofibromin. Neuron, 1993, 10, 335-343.	3.8	151
486	Neurofibromatosis Type 1. Archives of Neurology, 1993, 50, 1185.	4.9	30

#	Article	IF	CITATIONS
487	An alternatively-spliced mRNA in the carboxy terminus of the neurofibromatosis type 1 (NF1) gene is expressed in muscle. Human Molecular Genetics, 1993, 2, 989-992.	1.4	74
488	Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature, 1992, 356, 713-715.	13.7	653
489	Congenital nystagmus in a [46,XX/45,X] Mosaic woman from a damily with X-linked congenital nystagmus. American Journal of Medical Genetics Part A, 1992, 43, 897-897.	2.4	Ο
490	Recent progress toward understanding the molecular biology of von Recklinghausen neurofibromatosis. Annals of Neurology, 1992, 31, 555-561.	2.8	51
491	cDNA cloning of the type 1 neurofibromatosis gene: Complete sequence of the NF1 gene product. Genomics, 1991, 11, 931-940.	1.3	384
492	Congenital nystagmus in a (46, XX/45,X) mosaic woman from a family with X-linked congenital nystagmus. American Journal of Medical Genetics Part A, 1991, 39, 167-169.	2.4	9
493	Chromosome 11q23.3-qter deletion and Alexander disease. American Journal of Medical Genetics Part A, 1991, 39, 226-226.	2.4	9
494	Oculodentodigital dysplasia syndrome associated with abnormal cerebral white matter. American Journal of Medical Genetics Part A, 1991, 41, 18-20.	2.4	55
495	An alternative apnea test for the evaluation of brain death. Annals of Neurology, 1991, 30, 852-853.	2.8	7
496	Identification of the neurofibromatosis type 1 gene product Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9658-9662.	3.3	264
497	Cerebral vasculopathy and infarction in a woman with carcinomatous meningitis. Journal of Neuro-Oncology, 1990, 9, 183-185.	1.4	13
498	Personality changes associated with thalamic infiltration. Journal of Neuro-Oncology, 1990, 8, 263-7.	1.4	7
499	Complicated hereditary spastic paraparesis with cerebral white matter lesions. American Journal of Medical Genetics Part A, 1990, 36, 251-257.	2.4	25
500	Symptomatic hydrocephalus and reversible spinal cord compression in Listeria monocytogenes meningitis. Journal of Neurosurgery, 1989, 71, 620-622.	0.9	9
501	Hereditary retinal vasculopathy with cerebral white matter lesions. American Journal of Medical Genetics Part A, 1989, 34, 217-220.	2.4	37
502	Molecular biology of duchenne and Becker's muscular dystrophy: Clinical applications. Annals of Neurology, 1989, 26, 189-194.	2.8	20
503	Magnetic resonance imaging of ataxic hemiparesis localized to the corona radiata Stroke, 1989, 20, 1571-1573.	1.0	13
504	SEPARATION OF THE IMMUNE RESPONSE GENES FOR LDH-B AND MOPC-173. Transplantation, 1985, 40, 556-562.	0.5	0

#	Article	IF	CITATIONS
505	Major histocompatibility complex regulation of the immune response. Journal of Surgical Research, 1985, 39, 172-181.	0.8	3
506	Characterization of three new intra-I region recombinant mouse strains, B10.ASR7 (H-2 as3), B10.BAR4 (H-2 h6), and B10.BASR1 (H-2 as4). Immunogenetics, 1984, 19, 175-178.	1.2	1
507	IN-VITRO-DERIVED BONE MARROW MACROPHAGES. Transplantation, 1984, 37, 585-589.	0.5	10
508	Age and leadership: Cross ultural observations. Psychoanalytic Inquiry, 1982, 2, 109-120.	0.0	0
509	Characterization and expression of H-2I region gene products on bone marrow-derived macrophages. European Journal of Immunology, 1982, 12, 991-997.	1.6	18
510	Lipid composition and in vitro biosynthetic rates of neutral lipids and phosphatidylcholine in anterior and posterior chambers of the goldfish swimbladder. Comparative Biochemistry and Physiology A, Comparative Physiology, 1981, 69, 291-295.	0.7	6
511	Neurofibromatosis type I. , 0, , 679-685.		Ο