
Hiddo J Lambers Heerspink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3892522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 2019, 380, 2295-2306.	27.0	3,760
2	Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 2020, 383, 1436-1446.	27.0	2,523
3	Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet, The, 2013, 382, 339-352.	13.7	1,613
4	Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet, The, 2012, 380, 1662-1673.	13.7	984
5	Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus. Circulation, 2016, 134, 752-772.	1.6	932
6	Bardoxolone Methyl in Type 2 Diabetes and Stage 4 Chronic Kidney Disease. New England Journal of Medicine, 2013, 369, 2492-2503.	27.0	844
7	KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney International, 2020, 98, S1-S115.	5.2	692
8	Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet, The, 2017, 390, 1888-1917.	13.7	662
9	Dapagliflozin a glucoseâ€regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes, Obesity and Metabolism, 2013, 15, 853-862.	4.4	658
10	Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney International, 2011, 79, 1331-1340.	5.2	609
11	SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes and Endocrinology,the, 2019, 7, 845-854.	11.4	595
12	Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. Journal of the American Society of Nephrology: JASN, 2017, 28, 1023-1039.	6.1	528
13	Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes and Endocrinology,the, 2019, 7, 606-617.	11.4	482
14	Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure. JAMA - Journal of the American Medical Association, 2016, 315, 164.	7.4	450
15	Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet, The, 2019, 393, 1937-1947.	13.7	408
16	Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: a systematic review and meta-analysis of randomised controlled trials. Lancet, The, 2009, 373, 1009-1015.	13.7	384
17	Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2014, 2, 719-729.	11.4	319
18	Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. American Journal of Kidney Diseases, 2020, 75, 84-104.	1.9	311

#	Article	IF	CITATIONS
19	Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes and Endocrinology,the, 2021, 9, 22-31.	11.4	287
20	Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia, 2019, 62, 1154-1166.	6.3	284
21	An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney International, 2011, 80, 282-287.	5.2	282
22	Canagliflozin Slows Progression of Renal Function Decline Independently of Glycemic Effects. Journal of the American Society of Nephrology: JASN, 2017, 28, 368-375.	6.1	280
23	Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney International, 2018, 94, 26-39.	5.2	262
24	Randomized, doubleâ€blind, placeboâ€controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPAâ€RESPONSEâ€AHF). European Journal of Heart Failure, 2020, 22, 713-722.	7.1	260
25	Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney International, 2013, 83, 517-523.	5.2	256
26	Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ: British Medical Journal, 2011, 343, d4366-d4366.	2.3	236
27	First Morning Voids Are More Reliable Than Spot Urine Samples to Assess Microalbuminuria. Journal of the American Society of Nephrology: JASN, 2009, 20, 436-443.	6.1	225
28	Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes and Endocrinology,the, 2019, 7, 128-139.	11.4	223
29	The Endothelin Antagonist Atrasentan Lowers Residual Albuminuria in Patients with Type 2 Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 1083-1093.	6.1	222
30	SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet, The, 2021, 398, 262-276.	13.7	222
31	The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes and Endocrinology,the, 2015, 3, 687-696.	11.4	221
32	Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis. European Heart Journal, 2018, 39, 1535-1542.	2.2	218
33	Albuminuria Assessed From First-Morning-Void Urine Samples Versus 24-Hour Urine Collections as a Predictor of Cardiovascular Morbidity and Mortality. American Journal of Epidemiology, 2008, 168, 897-905.	3.4	215
34	Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes and Endocrinology,the, 2020, 8, 27-35.	11.4	215
35	Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups. Circulation, 2019, 140, 739-750.	1.6	211
36	A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. American Journal of Kidney Diseases, 2015, 66, 602-612.	1.9	210

#	Article	IF	CITATIONS
37	Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney International, 2012, 82, 330-337.	5.2	204
38	Drug-Induced Reduction in Albuminuria Is Associated with Subsequent Renoprotection. Journal of the American Society of Nephrology: JASN, 2015, 26, 2055-2064.	6.1	204
39	Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes and Endocrinology,the, 2019, 7, 115-127.	11.4	199
40	The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study Rationale, Design, and Baseline Characteristics. American Journal of Nephrology, 2017, 46, 462-472.	3.1	194
41	Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment. Kidney International, 2020, 98, 839-848.	5.2	193
42	Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients With Heart Failure With Reduced Ejection Fraction. Circulation, 2021, 143, 298-309.	1.6	193
43	Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and metaâ€analysis. Diabetes, Obesity and Metabolism, 2019, 21, 1237-1250.	4.4	190
44	A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney International, 2021, 100, 215-224.	5.2	182
45	Effects of the SGLTâ€2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes, Obesity and Metabolism, 2018, 20, 1988-1993.	4.4	180
46	Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes and Endocrinology,the, 2018, 6, 859-869.	11.4	179
47	Relative Incidence of ESRD Versus Cardiovascular Mortality in Proteinuric Type 2 Diabetes and Nephropathy: Results From the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency) Tj ETQq1 1 0.784	3119 4 rgBT	/Onzerlock 1
48	Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrology Dialysis Transplantation, 2020, 35, 274-282.	0.7	168
49	Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes and Endocrinology,the, 2020, 8, 301-312.	11.4	166
50	Effect of a Reduction in Uric Acid on Renal Outcomes During Losartan Treatment. Hypertension, 2011, 58, 2-7.	2.7	164
51	GFR Slope as a Surrogate End Point for Kidney Disease Progression in Clinical Trials: A Meta-Analysis of Treatment Effects of Randomized Controlled Trials. Journal of the American Society of Nephrology: JASN, 2019, 30, 1735-1745.	6.1	163
52	Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes and Endocrinology,the, 2020, 8, 582-593.	11.4	155
53	Sulodexide Fails to Demonstrate Renoprotection in Overt Type 2 Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 123-130.	6.1	151
54	Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial. Journal of the American Society of Nephrology: JASN, 2018, 29, 2755-2769.	6.1	148

#	Article	IF	CITATIONS
55	Comparison of Different Measures of Urinary Protein Excretion for Prediction of Renal Events. Journal of the American Society of Nephrology: JASN, 2010, 21, 1355-1360.	6.1	144
56	Conversion of Urine Protein–Creatinine Ratio or Urine Dipstick Protein to Urine Albumin–Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis. Annals of Internal Medicine, 2020, 173, 426-435.	3.9	144
57	A Meta-analysis of the Association of Estimated GFR, Albuminuria, Age, Race, and Sex With Acute Kidney Injury. American Journal of Kidney Diseases, 2015, 66, 591-601.	1.9	138
58	Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes and Endocrinology,the, 2019, 7, 429-441.	11.4	137
59	The effect of RAAS blockade on the progression of diabetic nephropathy. Nature Reviews Nephrology, 2014, 10, 77-87.	9.6	128
60	Albuminuria Is an Appropriate Therapeutic Target in Patients with CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1079-1088.	4.5	126
61	Bardoxolone Methyl Improves Kidney Function in Patients with Chronic Kidney Disease Stage 4 and Type 2 Diabetes: Post-Hoc Analyses from Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes Study. American Journal of Nephrology, 2018, 47, 40-47.	3.1	123
62	Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with TypeÂ2 diabetes mellitus. Diabetic Medicine, 2014, 31, 1138-1147.	2.3	119
63	Albuminuria and blood pressure, independent targets for cardioprotective therapy in patients with diabetes and nephropathy: a post hoc analysis of the combined RENAAL and IDNT trials. European Heart Journal, 2011, 32, 1493-1499.	2.2	115
64	Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes and Endocrinology,the, 2015, 3, 181-190.	11.4	114
65	Differential Effects of Dapagliflozin on Cardiovascular Risk Factors at Varying Degrees of Renal Function. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 751-759.	4.5	114
66	Characterization and implications of the initial estimated glomerular filtration rate â€~dip' upon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. Kidney International, 2021, 99, 750-762.	5.2	111
67	Measures of chronic kidney disease and risk of incident peripheral artery disease: a collaborative meta-analysis of individual participant data. Lancet Diabetes and Endocrinology,the, 2017, 5, 718-728.	11.4	110
68	Diabetes Management in Chronic Kidney Disease: Synopsis of the 2020 KDIGO Clinical Practice Guideline. Annals of Internal Medicine, 2021, 174, 385-394.	3.9	110
69	GFR Decline as an Alternative End Point to Kidney Failure in Clinical Trials: A Meta-analysis of Treatment Effects From 37 Randomized Trials. American Journal of Kidney Diseases, 2014, 64, 848-859.	1.9	109
70	GFR Decline and Subsequent Risk of Established Kidney Outcomes: A Meta-analysis of 37 Randomized Controlled Trials. American Journal of Kidney Diseases, 2014, 64, 860-866.	1.9	108
71	Sulodexide for Kidney Protection in Type 2 Diabetes Patients With Microalbuminuria: A Randomized Controlled Trial. American Journal of Kidney Diseases, 2011, 58, 729-736.	1.9	107
72	The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrology Dialysis Transplantation, 2020, 35, 1700-1711.	0.7	107

#	Article	IF	CITATIONS
73	Renal, Cardiovascular, and Safety Outcomes of Canagliflozin by Baseline Kidney Function: A Secondary Analysis of the CREDENCE Randomized Trial. Journal of the American Society of Nephrology: JASN, 2020, 31, 1128-1139.	6.1	106
74	Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People With Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation, 2022, 145, 1460-1470.	1.6	97
75	Short-term vitamin D3 supplementation lowers plasma renin activity in patients with stable chronic heart failure: An open-label, blinded end point, randomized prospective trial (VitD-CHF trial). American Heart Journal, 2013, 166, 357-364.e2.	2.7	95
76	Evaluating the Effects of Canagliflozin on Cardiovascular and Renal Events in Patients With Type 2 Diabetes Mellitus and Chronic Kidney Disease According to Baseline HbA1c, Including Those With HbA1c <7%. Circulation, 2020, 141, 407-410.	1.6	95
77	Effect of Canagliflozin on Renal and Cardiovascular Outcomes across Different Levels of Albuminuria: Data from the CANVAS Program. Journal of the American Society of Nephrology: JASN, 2019, 30, 2229-2242.	6.1	93
78	Mediators of the Effects of Canagliflozin on HeartÂFailure in Patients With Type 2 Diabetes. JACC: Heart Failure, 2020, 8, 57-66.	4.1	93
79	Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney International, 2021, 99, 999-1009.	5.2	93
80	Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia, 2011, 54, 44-50.	6.3	91
81	The albuminuriaâ€lowering response to dapagliflozin is variable and reproducible among individual patients. Diabetes, Obesity and Metabolism, 2017, 19, 1363-1370.	4.4	88
82	SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. American Journal of Kidney Diseases, 2021, 77, 94-109.	1.9	88
83	Effects of Dapagliflozin in Stage 4 Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 2352-2361.	6.1	88
84	Effects of Canagliflozin in Patients with Baseline eGFR <30 ml/min per 1.73 m2. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1705-1714.	4.5	87
85	Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes and Endocrinology,the, 2021, 9, 743-754.	11.4	87
86	Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes and Endocrinology,the, 2021, 9, 755-766.	11.4	86
87	Effects of a fixed combination of perindopril and indapamide in patients with type 2 diabetes and chronic kidney disease. European Heart Journal, 2010, 31, 2888-2896.	2.2	85
88	High-sensitive troponin T and N-terminal pro-B type natriuretic peptide are associated with cardiovascular events despite the cross-sectional association with albuminuria and glomerular filtration rate. European Heart Journal, 2012, 33, 2272-2281.	2.2	85
89	Effect of Dapagliflozin on Clinical Outcomes in Patients With Chronic Kidney Disease, With and Without Cardiovascular Disease. Circulation, 2021, 143, 438-448.	1.6	85
90	Rationale and Trial Design of Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes: The Occurrence of Renal Events (BEACON). American Journal of Nephrology, 2013, 37, 212-222.	3.1	82

#	Article	IF	CITATIONS
91	Early Change in Albuminuria with Canagliflozin Predicts Kidney and Cardiovascular Outcomes: A Post Hoc Analysis from the CREDENCE Trial. Journal of the American Society of Nephrology: JASN, 2020, 31, 2925-2936.	6.1	82
92	Effects of canagliflozin on serum potassium in people with diabetes and chronic kidney disease: the CREDENCE trial. European Heart Journal, 2021, 42, 4891-4901.	2.2	80
93	Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. European Journal of Heart Failure, 2021, 23, 68-78.	7.1	79
94	Prediction of Chronic Kidney Disease Stage 3 by CKD273, a Urinary Proteomic Biomarker. Kidney International Reports, 2017, 2, 1066-1075.	0.8	77
95	The New Biology of Diabetic Kidney Disease—Mechanisms and Therapeutic Implications. Endocrine Reviews, 2020, 41, 202-231.	20.1	77
96	Pleiotropic effects of type 2 diabetes management strategies on renal risk factors. Lancet Diabetes and Endocrinology,the, 2015, 3, 367-381.	11.4	75
97	Effects of dapagliflozin on mortality in patients with chronic kidney disease: a pre-specified analysis from the DAPA-CKD randomized controlled trial. European Heart Journal, 2021, 42, 1216-1227.	2.2	75
98	A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metabolism, 2021, 33, 732-739.	16.2	75
99	Intensities of Renal Replacement Therapy in Acute Kidney Injury. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 956-963.	4.5	73
100	Effects of the sodiumâ€glucose coâ€ŧransporterâ€2 inhibitor dapagliflozin on estimated plasma volume in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 2667-2673.	4.4	73
101	Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes and Endocrinology,the, 2020, 8, 903-914.	11.4	73
102	Effects of the sodium–glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and Stages 3b–4 chronic kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 2005-2011.	0.7	72
103	Performance of GFR Slope as a Surrogate End Point for Kidney Disease Progression in Clinical Trials: A Statistical Simulation. Journal of the American Society of Nephrology: JASN, 2019, 30, 1756-1769.	6.1	71
104	Natriuretic Effect of Two Weeks of Dapagliflozin Treatment in Patients With Type 2 Diabetes and Preserved Kidney Function During Standardized Sodium Intake: Results of the DAPASALT Trial. Diabetes Care, 2021, 44, 440-447.	8.6	70
105	Early Proteinuria Lowering by Angiotensin-Converting Enzyme Inhibition Predicts Renal Survival in Children with CKD. Journal of the American Society of Nephrology: JASN, 2018, 29, 2225-2233.	6.1	69
106	Mediators of the effects of canagliflozin on kidney protection in patients with type 2 diabetes. Kidney International, 2020, 98, 769-777.	5.2	69
107	Effects of Dapagliflozin on Circulating Markers of Phosphate Homeostasis. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 66-73.	4.5	67
108	Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrology Dialysis Transplantation, 2017, 32, gfw292.	0.7	66

#	Article	IF	CITATIONS
109	The Kidney in Type 2 Diabetes Therapy. Review of Diabetic Studies, 2011, 8, 392-402.	1.3	66
110	Update on microalbuminuria as a biomarker in renal and cardiovascular disease. Current Opinion in Nephrology and Hypertension, 2006, 15, 631-636.	2.0	65
111	Microalbuminuria: target for renoprotective therapy PRO. Kidney International, 2014, 86, 40-49.	5.2	65
112	Visit-to-Visit Variability in Blood Pressure and Kidney and Cardiovascular Outcomes in Patients With Type 2 Diabetes and Nephropathy: A Post Hoc Analysis From the RENAAL Study and the Irbesartan Diabetic Nephropathy Trial. American Journal of Kidney Diseases, 2014, 64, 714-722.	1.9	65
113	International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney International, 2020, 98, 849-859.	5.2	65
114	Clinical Implications of an Acute Dip in eGFR after SGLT2 Inhibitor Initiation. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1278-1280.	4.5	65
115	Albuminuria-Lowering Effect of Dapagliflozin, Eplerenone, and Their Combination in Patients with Chronic Kidney Disease: A Randomized Crossover Clinical Trial. Journal of the American Society of Nephrology: JASN, 2022, 33, 1569-1580.	6.1	65
116	New pharmacological strategies for protecting kidney function in type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2019, 7, 397-412.	11.4	64
117	Kidney and heart failure outcomes associated with SGLT2 inhibitor use. Nature Reviews Nephrology, 2022, 18, 294-306.	9.6	64
118	Sodium Excretion and Risk of Developing Coronary Heart Disease. Circulation, 2014, 129, 1121-1128.	1.6	63
119	Effects of Dapagliflozin on Volume Status When Added to Renin–Angiotensin System Inhibitors. Journal of Clinical Medicine, 2019, 8, 779.	2.4	61
120	Rationale and protocol of the Study Of diabetic Nephropathy with AtRasentan (SONAR) trial: A clinical trial design novel to diabetic nephropathy. Diabetes, Obesity and Metabolism, 2018, 20, 1369-1376.	4.4	60
121	Blood Pressure Effects of Canagliflozin and Clinical Outcomes in Type 2 Diabetes and Chronic Kidney Disease. Circulation, 2021, 143, 1735-1749.	1.6	60
122	Early reninâ€angiotensin system intervention is more beneficial than late intervention in delaying endâ€stage renal disease in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2016, 18, 64-71.	4.4	59
123	Initial Angiotensin Receptor Blockade–Induced Decrease in Albuminuria Is Associated With Long-Term Renal Outcome in Type 2 Diabetic Patients With Microalbuminuria. Diabetes Care, 2011, 34, 2078-2083.	8.6	58
124	Bilirubin and Progression of Nephropathy in Type 2 Diabetes: A Post Hoc Analysis of RENAAL With Independent Replication in IDNT. Diabetes, 2014, 63, 2845-2853.	0.6	57
125	A Panel of Novel Biomarkers Representing Different Disease Pathways Improves Prediction of Renal Function Decline in Type 2 Diabetes. PLoS ONE, 2015, 10, e0120995.	2.5	57
126	Longitudinal Estimated GFR Trajectories in Patients With and Without Type 2 Diabetes and Nephropathy. American Journal of Kidney Diseases, 2018, 71, 91-101.	1.9	57

#	Article	IF	CITATIONS
127	Effects of sulodexide in patients with type 2 diabetes and persistent albuminuria. Nephrology Dialysis Transplantation, 2008, 23, 1946-1954.	0.7	56
128	Estimated GFR Decline as a Surrogate End Point for Kidney Failure: A Post Hoc Analysis From the Reduction of End Points in Non–Insulin-Dependent Diabetes With the Angiotensin II Antagonist Losartan (RENAAL) Study and Irbesartan Diabetic Nephropathy Trial (IDNT). American Journal of Kidney Diseases, 2014, 63, 244-250.	1.9	55
129	New Diabetes Therapies and Diabetic Kidney Disease Progression: the Role of SGLT-2 Inhibitors. Current Diabetes Reports, 2018, 18, 27.	4.2	54
130	SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Diabetes, 2021, 70, 1-16.	0.6	53
131	A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. Kidney International, 2022, 101, 174-184.	5.2	53
132	Initial Decline (Dip) in Estimated Glomerular Filtration Rate After Initiation of Dapagliflozin in Patients With Heart Failure and Reduced Ejection Fraction: Insights From DAPA-HF. Circulation, 2022, 146, 438-449.	1.6	53
133	Improving the efficacy of RAAS blockade in patients with chronic kidney disease. Nature Reviews Nephrology, 2013, 9, 112-121.	9.6	51
134	Is a reduction in albuminuria associated with renal and cardiovascular protection? A <i>post hoc</i> analysis of the <scp>ALTITUDE</scp> trial. Diabetes, Obesity and Metabolism, 2016, 18, 169-177.	4.4	49
135	The Effect of Dapagliflozin on Albuminuria in DECLARE-TIMI 58. Diabetes Care, 2021, 44, 1805-1815.	8.6	49
136	Effects of Dapagliflozin in Patients With Kidney Disease, With and Without HeartÂFailure. JACC: Heart Failure, 2021, 9, 807-820.	4.1	49
137	Effects of exenatide and open-label SGLT2 inhibitor treatment, given in parallel or sequentially, on mortality and cardiovascular and renal outcomes in type 2 diabetes: insights from the EXSCEL trial. Cardiovascular Diabetology, 2019, 18, 138.	6.8	48
138	Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrology Dialysis Transplantation, 2022, 37, 1647-1656.	0.7	48
139	Design of the COmbinatioN effect of FInerenone anD EmpaglifloziN in participants with chronic kidney disease and type 2 diabetes using a UACR Endpoint study (CONFIDENCE). Nephrology Dialysis Transplantation, 2023, 38, 894-903.	0.7	48
140	The Impact of Sotagliflozin on Renal Function, Albuminuria, Blood Pressure, and Hematocrit in Adults With Type 1 Diabetes. Diabetes Care, 2019, 42, 1921-1929.	8.6	47
141	Efficacy and Safety of Dapagliflozin by Baseline Glycemic Status: A Prespecified Analysis From the DAPA-CKD Trial. Diabetes Care, 2021, 44, 1894-1897.	8.6	47
142	Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial. Diabetologia, 2021, 64, 2147-2158.	6.3	45
143	Monitoring Kidney Function and Albuminuria in Patients With Diabetes. Diabetes Care, 2011, 34, S325-S329.	8.6	42
144	New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction. Kidney International, 2021, 99, 346-349.	5.2	42

#	ARTICLE	IF	CITATIONS
145	Kidney Outcomes Associated With SGLT2 Inhibitors Versus Other Glucose-Lowering Drugs in Real-world Clinical Practice: The Japan Chronic Kidney Disease Database. Diabetes Care, 2021, 44, 2542-2551.	8.6	42
146	Unmet need in diabetic nephropathy: failed drugs or trials?. Lancet Diabetes and Endocrinology,the, 2016, 4, 638-640.	11.4	40
147	Systems Biology–Derived Biomarkers to Predict Progression of Renal Function Decline in Type 2 Diabetes. Diabetes Care, 2017, 40, 391-397.	8.6	40
148	Effects of dapagliflozin on urinary metabolites in people with type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 2422-2428.	4.4	40
149	A metabolomicsâ€based molecular pathway analysis of how the sodiumâ€glucose coâ€transporterâ€2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 1157-1166.	4.4	40
150	<scp>Sodiumâ€glucose coâ€ŧransporterâ€2</scp> inhibitors with and without metformin: A metaâ€analysis of cardiovascular, kidney and mortality outcomes. Diabetes, Obesity and Metabolism, 2021, 23, 382-390.	4.4	40
151	Dapagliflozin and new-onset type 2 diabetes in patients with chronic kidney disease or heart failure: pooled analysis of the DAPA-CKD and DAPA-HF trials. Lancet Diabetes and Endocrinology,the, 2022, 10, 24-34.	11.4	40
152	Assessing the Validity of Surrogate Outcomes for ESRD: A Meta-Analysis. Journal of the American Society of Nephrology: JASN, 2015, 26, 2289-2302.	6.1	39
153	Renal outcomes with aliskiren in patients with type 2 diabetes: a prespecified secondary analysis of the ALTITUDE randomised controlled trial. Lancet Diabetes and Endocrinology,the, 2016, 4, 309-317.	11.4	39
154	Shortâ€Term Changes in Albuminuria and Risk of Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus: A Post Hoc Analysis of the EMPAâ€REG OUTCOME Trial. Journal of the American Heart Association, 2020, 9, e016976.	3.7	39
155	Composite renal endpoints: was ACCOMPLISH accomplished?. Lancet, The, 2010, 375, 1140-1142.	13.7	38
156	Novel drugs and intervention strategies for the treatment of chronic kidney disease. British Journal of Clinical Pharmacology, 2013, 76, 536-550.	2.4	38
157	The renal protective effect of angiotensin receptor blockers depends on intraâ€individual response variation in multiple risk markers. British Journal of Clinical Pharmacology, 2015, 80, 678-686.	2.4	37
158	Serum Bicarbonate and Kidney Disease Progression and Cardiovascular Outcome in Patients With Diabetic Nephropathy: A Post Hoc Analysis of the RENAAL (Reduction of End Points in) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5 1.9	0 <u>3</u> 22 Td (No
159	(Irbesartan Diabetic Nephropathy Trial). American Journal of Kidney Diseases, 2015, 66, 450-458. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrology Dialysis Transplantation, 2015, 31, gfv062.	0.7	37
160	Kidney, Cardiovascular, and Safety Outcomes of Canagliflozin according to Baseline Albuminuria. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 384-395.	4.5	37
161	The effect of ramipril and telmisartan on serum potassium and its association with cardiovascular and renal events: Results from the ONTARGET trial. European Journal of Preventive Cardiology, 2014, 21, 299-309.	1.8	36
162	Effects of Vitamin D Receptor Activation and Dietary Sodium Restriction on Residual Albuminuria in CKD: The ViRTUE-CKD Trial. Journal of the American Society of Nephrology: JASN, 2017, 28, 1296-1305.	6.1	36

#	Article	IF	CITATIONS
163	Validation of Plasma Biomarker Candidates for the Prediction of eGFR Decline in Patients With Type 2 Diabetes. Diabetes Care, 2018, 41, 1947-1954.	8.6	36
164	The Kidney Protective Effects of the Sodium–Glucose Cotransporter-2 Inhibitor, Dapagliflozin, Are Present in Patients With CKD Treated With Mineralocorticoid Receptor Antagonists. Kidney International Reports, 2022, 7, 436-443.	0.8	36
165	Debate: PRO Position. Should Microalbuminuria Ever Be Considered as a Renal Endpoint in Any Clinical Trial. American Journal of Nephrology, 2010, 31, 458-461.	3.1	35
166	Influence of Urine Creatinine on the Relationship between the Albumin-to-Creatinine Ratio and Cardiovascular Events. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 595-603.	4.5	35
167	Estimated Albumin Excretion Rate Versus Urine Albumin-Creatinine Ratio for the Assessment of Albuminuria: AÂDiagnostic Test Study From the Prevention of Renal andÂVascular Endstage Disease (PREVEND) Study. American Journal of Kidney Diseases, 2014, 63, 415-421.	1.9	35
168	Arterial Stiffness Is Positively Associated With 18F-fluorodeoxyglucose Positron Emission Tomography–Assessed Subclinical Vascular Inflammation in People With Early Type 2 Diabetes. Diabetes Care, 2016, 39, 1440-1447.	8.6	34
169	Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. Diabetologia, 2016, 59, 1819-1831.	6.3	34
170	Creatinine Excretion Rate and Mortality in Type 2 Diabetes and Nephropathy. Diabetes Care, 2013, 36, 1489-1494.	8.6	33
171	Prognostic clinical and molecular biomarkers of renal disease in type 2 diabetes. Nephrology Dialysis Transplantation, 2015, 30, iv86-iv95.	0.7	33
172	Effect of linagliptin on pulse wave velocity in early type 2 diabetes: <scp>A</scp> randomized, doubleâ€blind, controlled 26â€week trial (<scp>RELEASE</scp>). Diabetes, Obesity and Metabolism, 2017, 19, 1147-1154.	4.4	33
173	Effects of ertugliflozin on renal function over 104Âweeks of treatment: a post hoc analysis of two randomised controlled trials. Diabetologia, 2020, 63, 1128-1140.	6.3	33
174	Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy. Nature Reviews Nephrology, 2012, 8, 691-699.	9.6	32
175	Predictors of Atrasentan-Associated Fluid Retention and Change in Albuminuria in Patients with Diabetic Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1568-1574.	4.5	32
176	Reclassification of chronic kidney disease patients for end-stage renal disease risk by proteinuria indexed to estimated glomerular filtration rate: multicentre prospective study in nephrology clinics. Nephrology Dialysis Transplantation, 2020, 35, 138-147.	0.7	32
177	Mixedâ€effects models for slopeâ€based endpoints in clinical trials of chronic kidney disease. Statistics in Medicine, 2019, 38, 4218-4239.	1.6	32
178	The Geographical Distribution of Leadership in Globalized Clinical Trials. PLoS ONE, 2012, 7, e45984.	2.5	31
179	Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes and Endocrinology,the, 2018, 6, 925-933.	11.4	30
180	Changes in Albuminuria Predict Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Post Hoc Analysis of the LEADER Trial. Diabetes Care, 2021, 44, 1020-1026.	8.6	30

#	Article	IF	CITATIONS
181	Effects of canagliflozin on cardiovascular, renal, and safety outcomes in participants with type 2 diabetes and chronic kidney disease according to history of heart failure: Results from the CREDENCE trial. American Heart Journal, 2021, 233, 141-148.	2.7	30
182	Prediction of the effect of atrasentan on renal and heart failure outcomes based on short-term changes in multiple risk markers. European Journal of Preventive Cardiology, 2016, 23, 758-768.	1.8	29
183	Predicting albuminuria response to spironolactone treatment with urinary proteomics in patients with type 2 diabetes and hypertension. Nephrology Dialysis Transplantation, 2018, 33, gfw406.	0.7	29
184	Integrative analysis of prognostic biomarkers derived from multiomics panels helps discrimination of chronic kidney disease trajectories in people with type 2 diabetes. Kidney International, 2019, 96, 1381-1388.	5.2	29
185	Machineâ€learning–based early prediction of endâ€stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes, Obesity and Metabolism, 2020, 22, 2479-2486.	4.4	29
186	High urinary sulfate concentration is associated with reduced risk of renal disease progression in type 2 diabetes. Nitric Oxide - Biology and Chemistry, 2016, 55-56, 18-24.	2.7	28
187	Baseline characteristics and enrichment results from the <scp>SONAR</scp> trial. Diabetes, Obesity and Metabolism, 2018, 20, 1829-1835.	4.4	28
188	Efficacy and safety of cotadutide, a dual glucagonâ€like peptideâ€1 and glucagon receptor agonist, in a randomized phase 2a study of patients with type 2 diabetes and chronic kidney disease. Diabetes, Obesity and Metabolism, 2022, 24, 1360-1369.	4.4	28
189	Effect of dapagliflozin on kidney and cardiovascular outcomes by baseline KDIGO risk categories: a post hoc analysis of the DAPA-CKD trial. Diabetologia, 2022, 65, 1085-1097.	6.3	28
190	Renal and cardio-protective effects of direct renin inhibition: a systematic literature review. Journal of Hypertension, 2009, 27, 2321-2331.	0.5	27
191	A Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of Biomarkers (PROVALID) – Study Design and Baseline Characteristics. Kidney and Blood Pressure Research, 2018, 43, 181-190.	2.0	27
192	HDL Particle Subspecies and Their Association With Incident Type 2 Diabetes: The PREVEND Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1761-1772.	3.6	27
193	Fibroblast Growth Factor 23 and the Antiproteinuric Response to Dietary Sodium Restriction During Renin-Angiotensin-Aldosterone System Blockade. American Journal of Kidney Diseases, 2015, 65, 259-266.	1.9	26
194	Competing-Risk Analysis of Death and End Stage Kidney Disease by Hyperkalaemia Status in Non-Dialysis Chronic Kidney Disease Patients Receiving Stable Nephrology Care. Journal of Clinical Medicine, 2018, 7, 499.	2.4	26
195	Effect of bardoxolone methyl on the urine albumin-to-creatinine ratio in patients with type 2 diabetesÂand stage 4 chronic kidney disease. Kidney International, 2019, 96, 1030-1036.	5.2	26
196	Effect of onceâ€weekly exenatide on estimated glomerular filtration rate slope depends on baseline renal risk: A <i>post hoc</i> analysis of the <scp>EXSCEL</scp> trial. Diabetes, Obesity and Metabolism, 2020, 22, 2493-2498.	4.4	26
197	Effect of exenatide twice daily and dapagliflozin, alone and in combination, on markers of kidney function in obese patients with type 2 diabetes: A prespecified secondary analysis of a randomized controlled clinical trial. Diabetes, Obesity and Metabolism, 2021, 23, 1851-1858.	4.4	26
198	Predictors of Congestive Heart Failure after Treatment with an Endothelin Receptor Antagonist. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 490-498.	4.5	24

#	Article	IF	CITATIONS
199	The Importance of Short-Term Off-Target Effects in Estimating the Long-Term Renal and Cardiovascular Protection of Angiotensin Receptor Blockers. Clinical Pharmacology and Therapeutics, 2014, 95, 208-215.	4.7	24
200	Correction of anemia by dapagliflozin in patients with type 2 diabetes. Journal of Diabetes and Its Complications, 2020, 34, 107729.	2.3	24
201	Effect of Frozen Storage on Urinary Concentration of Kidney Damage Markers. American Journal of Kidney Diseases, 2012, 59, 586-589.	1.9	23
202	Reduction of Cardiovascular Risk and Improved Estimated Glomerular Filtration Rate by SGLT2 Inhibitors, Including Dapagliflozin, Is Consistent Across the Class: An Analysis of the Placebo Arm of EXSCEL. Diabetes Care, 2019, 42, 318-326.	8.6	23
203	Canagliflozin and Kidney-Related Adverse Events in Type 2 Diabetes and CKD: Findings From the Randomized CREDENCE Trial. American Journal of Kidney Diseases, 2022, 79, 244-256.e1.	1.9	23
204	Triglyceride-rich lipoprotein and LDL particle subfractions and their association with incident type 2 diabetes: the PREVEND study. Cardiovascular Diabetology, 2021, 20, 156.	6.8	23
205	Does the European Clinical Trials Directive really improve clinical trial approval time?. British Journal of Clinical Pharmacology, 2008, 66, 546-550.	2.4	22
206	The blood pressure lowering potential of sulodexide – a systematic review and metaâ€analysis. British Journal of Clinical Pharmacology, 2015, 80, 1245-1253.	2.4	22
207	Plasma proteomics classifiers improve risk prediction for renal disease in patients with hypertension or type 2 diabetes. Journal of Hypertension, 2015, 33, 2123-2132.	0.5	22
208	Variability in response to albuminuria″owering drugs: true or random?. British Journal of Clinical Pharmacology, 2017, 83, 1197-1204.	2.4	22
209	Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol. BMC Nephrology, 2020, 21, 242.	1.8	22
210	Performance of MDRD study and CKD-EPI equations for long-term follow-up of nondiabetic patients with chronic kidney disease. Nephrology Dialysis Transplantation, 2012, 27, iii89-iii95.	0.7	21
211	Baseline characteristics in the Bardoxolone methyl EvAluation in patients with Chronic kidney disease and type 2 diabetes mellitus: the Occurrence of renal eveNts (BEACON) trial. Nephrology Dialysis Transplantation, 2013, 28, 2841-2850.	0.7	21
212	Number and Frequency of Albuminuria Measurements in Clinical Trials in Diabetic Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 410-416.	4.5	21
213	Novel anti-inflammatory drugs for the treatment of diabetic kidney disease. Diabetologia, 2016, 59, 1621-1623.	6.3	21
214	Sodium Chloride Intake. Journal of the American Society of Nephrology: JASN, 2012, 23, 1136-1139.	6.1	20
215	Will the future lie in multitude? A critical appraisal of biomarker panel studies on prediction of diabetic kidney disease progression. Nephrology Dialysis Transplantation, 2015, 30, iv96-iv104.	0.7	20
216	Visceral adipose tissue volume is associated with premature atherosclerosis in early type 2 diabetes mellitus independent of traditional risk factors. Atherosclerosis, 2019, 290, 87-93.	0.8	20

#	Article	IF	CITATIONS
217	Cardiovascular and renal outcomes with canagliflozin in patients with peripheral arterial disease: Data from the <scp>CANVAS</scp> Program and <scp>CREDENCE</scp> trial. Diabetes, Obesity and Metabolism, 2022, 24, 1072-1083.	4.4	20
218	A prediction of the renal and cardiovascular efficacy of aliskiren in ALTITUDE using short-term changes in multiple risk markers. European Journal of Preventive Cardiology, 2014, 21, 434-441.	1.8	19
219	Urine Albumin-Creatinine Ratio Versus Albumin Excretion for Albuminuria Staging: A Prospective Longitudinal Cohort Study. American Journal of Kidney Diseases, 2016, 67, 70-78.	1.9	19
220	The effects of atrasentan on urinary metabolites in patients with type 2 diabetes and nephropathy. Diabetes, Obesity and Metabolism, 2017, 19, 749-753.	4.4	19
221	Strategies to improve monitoring disease progression, assessing cardiovascular risk, and defining prognostic biomarkers in chronic kidney disease. Kidney International Supplements, 2017, 7, 107-113.	14.2	19
222	New clinical trial designs for establishing drug efficacy and safety in a precision medicine era. Diabetes, Obesity and Metabolism, 2018, 20, 14-18.	4.4	19
223	Endothelin receptor antagonists for the treatment of diabetic and nondiabetic chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2021, 30, 456-465.	2.0	19
224	Precision medicine approaches for diabetic kidney disease: opportunities and challenges. Nephrology Dialysis Transplantation, 2021, 36, ii3-ii9.	0.7	19
225	Association between TNF Receptors and KIM-1 with Kidney Outcomes in Early-Stage Diabetic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 251-259.	4.5	19
226	Is albuminuria screening and treatment optimal in patients with type 2 diabetes in primary care? Observational data of the GIANTT cohort. Nephrology Dialysis Transplantation, 2013, 28, 706-715.	0.7	18
227	Exenatide once weekly decreases urinary albumin excretion in patients with type 2 diabetes and elevated albuminuria: Pooled analysis of randomized active controlled clinical trials. Diabetes, Obesity and Metabolism, 2020, 22, 1556-1566.	4.4	18
228	Effects of Hydrochlorothiazide and Metformin on Aquaresis and Nephroprotection by a Vasopressin V2 Receptor Antagonist in ADPKD. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 507-517.	4.5	18
229	Alkalinization of urine samples preserves albumin concentrations during prolonged frozen storage in patients with diabetes mellitus. Diabetic Medicine, 2009, 26, 556-559.	2.3	17
230	Isolated microalbuminuria indicates a poor medical prognosis. Nephrology Dialysis Transplantation, 2013, 28, 1794-1801.	0.7	17
231	A novel approach for establishing cardiovascular drug efficacy. Nature Reviews Drug Discovery, 2014, 13, 942-942.	46.4	17
232	Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine. Nephrology Dialysis Transplantation, 2015, 30, iv105-iv112.	0.7	17
233	Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus. Journal of Translational Medicine, 2016, 14, 203.	4.4	17
234	The incretin pathway as a therapeutic target in diabetic kidney disease: a clinical focus on GLP-1 receptor agonists. Therapeutic Advances in Endocrinology and Metabolism, 2019, 10, 204201881986539.	3.2	17

#	Article	IF	CITATIONS
235	Multimarker Panels in Diabetic Kidney Disease: The Way to Improved Clinical Trial Design and Clinical Practice?. Kidney International Reports, 2019, 4, 212-221.	0.8	17
236	Guidelines and clinical practice at the primary level of healthcare in patients with type 2 diabetes mellitus with and without kidney disease in five European countries. Diabetes and Vascular Disease Research, 2019, 16, 47-56.	2.0	17
237	Effects of dapagliflozin and gliclazide on the cardiorenal axis in people with type 2 diabetes. Journal of Hypertension, 2020, 38, 1811-1819.	0.5	17
238	Improving clinical trial efficiency by biomarker-guided patient selection. Trials, 2014, 15, 103.	1.6	16
239	Individual long-term albuminuria exposure during angiotensin receptor blocker therapy is the optimal predictor for renal outcome. Nephrology Dialysis Transplantation, 2016, 31, 1471-1477.	0.7	16
240	Simple, fast and robust LC-MS/MS method for the simultaneous quantification of canagliflozin, dapagliflozin and empagliflozin in human plasma and urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1152, 122257.	2.3	16
241	Longitudinal TNFR1 and TNFR2 and Kidney Outcomes: Results from AASK and VA NEPHRON-D. Journal of the American Society of Nephrology: JASN, 2022, 33, 996-1010.	6.1	16
242	Association Between Circulating GDFâ€15 and Cardioâ€Renal Outcomes and Effect of Canagliflozin: Results From the CANVAS Trial. Journal of the American Heart Association, 2021, 10, e021661.	3.7	16
243	Reâ€examining the widespread policy of stopping sodiumâ€glucose cotransporterâ€2 inhibitors during acute illness: A perspective based on the updated evidence. Diabetes, Obesity and Metabolism, 2022, 24, 2071-2080.	4.4	16
244	Does <scp>SGLT</scp> 2 inhibition with dapagliflozin overcome individual therapy resistance to <scp>RAAS</scp> inhibition?. Diabetes, Obesity and Metabolism, 2018, 20, 224-227.	4.4	15
245	Reduction in albuminuria with dapagliflozin cannot be predicted by baseline clinical characteristics or changes in most other risk markers. Diabetes, Obesity and Metabolism, 2019, 21, 720-725.	4.4	15
246	Intra-individual variability of eGFR trajectories in early diabetic kidney disease and lack of performance of prognostic biomarkers. Scientific Reports, 2020, 10, 19743.	3.3	15
247	Different eGFR Decline Thresholds and Renal Effects of Canagliflozin: Data from the CANVAS Program. Journal of the American Society of Nephrology: JASN, 2020, 31, 2446-2456.	6.1	15
248	Renal outcomes and allâ€cause death associated with sodiumâ€glucose coâ€transporterâ€2 inhibitors versus other glucoseâ€lowering drugs (<scp>CVDâ€REAL</scp> 3 <scp>Korea</scp>). Diabetes, Obesity and Metabolism, 2021, 23, 455-466.	4.4	15
249	Safety and Efficacy of GFB-887, a TRPC5 Channel Inhibitor, in Patients With Focal Segmental Glomerulosclerosis, Treatment-Resistant Minimal Change Disease, or Diabetic Nephropathy: TRACTION-2 Trial Design. Kidney International Reports, 2021, 6, 2575-2584.	0.8	15
250	Omics–Bioinformatics in the Context of Clinical Data. Methods in Molecular Biology, 2011, 719, 479-497.	0.9	14
251	Renoprotective RAAS inhibition does not affect the association between worse renal function and higher plasma aldosterone levels. BMC Nephrology, 2017, 18, 370.	1.8	14
252	Plasma C-Peptide and Risk of Developing Type 2 Diabetes in the General Population. Journal of Clinical Medicine, 2020, 9, 3001.	2.4	14

#	ARTICLE	IF	CITATIONS
253	The Potential Roles of Osmotic and Nonosmotic Sodium Handling in Mediating the Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Heart Failure. Journal of Cardiac Failure, 2021, 27, 1447-1455.	1.7	14
254	Therapeutic Approaches in Lowering Albuminuria: Travels Along the Renin-Angiotensin-Aldosterone-System Pathway. Advances in Chronic Kidney Disease, 2011, 18, 290-299.	1.4	13
255	Determining the optimal dose of atrasentan by evaluating the exposureâ€response relationships of albuminuria and bodyweight. Diabetes, Obesity and Metabolism, 2018, 20, 2019-2022.	4.4	13
256	Clonal Hematopoiesis of Indeterminate Potential and Diabetic Kidney Disease: A Nested Case-Control Study. Kidney International Reports, 2022, 7, 876-888.	0.8	13
257	Cardiovascular disease in patients with chronic kidney disease. Nephrology, 2014, 19, 3-10.	1.6	12
258	The effects of dapagliflozin on cardioâ€renal risk factors in patients with type 2 diabetes with or without reninâ€angiotensin system inhibitor treatment: a post hoc analysis. Diabetes, Obesity and Metabolism, 2020, 22, 549-556.	4.4	12
259	The Adaptive Renal Response for Volume Homeostasis During 2 Weeks of Dapagliflozin Treatment in People WithÂType 2 Diabetes and Preserved Renal Function on a Sodium-Controlled Diet. Kidney International Reports, 2022, 7, 1084-1092.	0.8	12
260	Screening and monitoring for albuminuria: the performance of the HemoCue point-of-care system. Kidney International, 2008, 74, 377-383.	5.2	11
261	Response to angiotensin-converting enzyme inhibition is selectively blunted by high sodium in angiotensin-converting enzyme DD genotype: evidence for gene–environment interaction in healthy volunteers. Journal of Hypertension, 2010, 28, 2414-2421.	0.5	11
262	Proteinuria in Type 2 Diabetic Patients with Renal Impairment: The Changing Face of Diabetic Nephropathy. Nephron Clinical Practice, 2011, 118, c331-c338.	2.3	11
263	Change in albuminuria as a surrogate endpoint in chronic kidney disease – Authors' reply. Lancet Diabetes and Endocrinology,the, 2019, 7, 336-337.	11.4	11
264	Change in albuminuria as a surrogate endpoint. Current Opinion in Nephrology and Hypertension, 2019, 28, 519-526.	2.0	11
265	Dietary Sodium Reduction Reduces Albuminuria: A Cluster Randomized Trial. , 2019, 29, 276-284.		11
266	Prediction of the effect of dapagliflozin on kidney and heart failure outcomes based on short-term changes in multiple risk markers. Nephrology Dialysis Transplantation, 2020, 35, 1570-1576.	0.7	11
267	Prediction and validation of exenatide risk marker effects on progression of renal disease: Insights from EXSCEL. Diabetes, Obesity and Metabolism, 2020, 22, 798-806.	4.4	11
268	Methods and rationale of the DISCOVER CKD global observational study. CKJ: Clinical Kidney Journal, 2021, 14, 1570-1578.	2.9	11
269	Biochemical Urine Testing of Medication Adherence and Its Association With Clinical Markers in an Outpatient Population of Type 2 Diabetes Patients: Analysis in the DIAbetes and LifEstyle Cohort Twente (DIALECT). Diabetes Care, 2021, 44, 1419-1425.	8.6	11
270	The Use of Surrogate Endpoints in Regulating Medicines for Cardio-Renal Disease: Opinions of Stakeholders. PLoS ONE, 2014, 9, e108722.	2.5	11

#	Article	IF	CITATIONS
271	The Effect of Atrasentan on Kidney and Heart Failure Outcomes by Baseline Albuminuria and Kidney Function. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1824-1832.	4.5	11
272	Clinical Utility of KidneyIntelX in Early Stages of Diabetic Kidney Disease in the CANVAS Trial. American Journal of Nephrology, 2022, 53, 21-31.	3.1	11
273	Effects of dapagliflozin on volume status and systemic haemodynamics in patients with chronic kidney disease without diabetes: Results from <scp>DAPASALT</scp> and <scp>DIAMOND</scp> . Diabetes, Obesity and Metabolism, 2022, 24, 1578-1587.	4.4	11
274	Mechanisms of action of the sodiumâ€glucose cotransporterâ€2 (<scp>SGLT2)</scp> inhibitor canagliflozin on tubular inflammation and damage: A <i>post hoc mediation</i> analysis of the <scp>CANVAS</scp> trial. Diabetes, Obesity and Metabolism, 2022, 24, 1950-1956.	4.4	11
275	Urinary pH affects albumin concentrations after prolonged frozen storage. Nephrology Dialysis Transplantation, 2007, 22, 3670-3670.	0.7	10
276	Renal end points in clinical trials of kidney disease. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	2.0	10
277	Blood pressureâ€lowering effects of sulodexide depend on albuminuria severity: post hoc analysis of the sulodexide microalbuminuria and macroalbuminuria studies. British Journal of Clinical Pharmacology, 2016, 82, 1351-1357.	2.4	10
278	Individual variability in response to renin angiotensin aldosterone system inhibition predicts cardiovascular outcome in patients with type 2 diabetes: A primary care cohort study. Diabetes, Obesity and Metabolism, 2018, 20, 1377-1383.	4.4	10
279	Nâ€terminal proâ€brain natriuretic peptide (NTâ€proBNP) predicts the cardioâ€renal response to aliskiren in patients with type 2 diabetes at high renal and cardiovascular risk. Diabetes, Obesity and Metabolism, 2018, 20, 2899-2904.	4.4	10
280	Effects of Sodium–Glucose Co-transporter 2 Inhibition with Empaglifozin on Renal Structure and Function in Non-diabetic Rats with Left Ventricular Dysfunction After Myocardial Infarction. Cardiovascular Drugs and Therapy, 2020, 34, 311-321.	2.6	10
281	Time for clinical decision support systems tailoring individual patient therapy to improve renal and cardiovascular outcomes in diabetes and nephropathy. Nephrology Dialysis Transplantation, 2020, 35, ii38-ii42.	0.7	10
282	Cardiovascular and renal outcomes by baseline albuminuria status and renal function: Results from the <scp>LEADER</scp> randomized trial. Diabetes, Obesity and Metabolism, 2020, 22, 2077-2088.	4.4	10
283	Interâ€individual variability in atrasentan exposure partly explains variability in kidney protection and fluid retention responses: A post hoc analysis of the <scp>SONAR</scp> trial. Diabetes, Obesity and Metabolism, 2021, 23, 561-568.	4.4	10
284	Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression. Journal of the American Society of Nephrology: JASN, 2022, 33, 291-303.	6.1	10
285	Prediction of the Effects of Empagliflozin on Cardiovascular and Kidney Outcomes Based on Short-Term Changes in Multiple Risk Markers. Frontiers in Pharmacology, 2021, 12, 786706.	3.5	10
286	Dapagliflozin and Kidney Outcomes in Hospitalized Patients with COVID-19 Infection. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 643-654.	4.5	10
287	Endothelin Receptor Antagonists for Kidney Protection. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 908-910.	4.5	10
288	Dose–Exposure–Response Analysis of the Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone on UACR and eGFR: An Analysis from FIDELIO-DKD. Clinical Pharmacokinetics, 2022, 61, 1013-1025.	3.5	10

#	Article	IF	CITATIONS
289	Canagliflozin and atrial fibrillation in type 2 diabetes mellitus: A secondary analysis from the CANVAS Program and CREDENCE trial and metaâ€analysis. Diabetes, Obesity and Metabolism, 2022, 24, 1927-1938.	4.4	10
290	Predictors of HbA1c levels in patients initiating metformin. Current Medical Research and Opinion, 2016, 32, 2021-2028.	1.9	9
291	Trial Design Innovations to Accelerate Therapeutic Advances in Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 946-948.	4.5	9
292	Renal trials in diabetes need a platform: time for a global approach?. Lancet Diabetes and Endocrinology,the, 2018, 6, 356-358.	11.4	9
293	Sodium glucose co-transporter 2 inhibition: a new avenue to protect the kidney. Nephrology Dialysis Transplantation, 2019, 34, 2015-2017.	0.7	9
294	High-Density Lipoprotein Particles and Their Relationship to Posttransplantation Diabetes Mellitus in Renal Transplant Recipients. Biomolecules, 2020, 10, 481.	4.0	9
295	Early Response in Albuminuria and Long-Term Kidney Protection during Treatment with an Endothelin Receptor Antagonist: A Prespecified Analysis from the SONAR Trial. Journal of the American Society of Nephrology: JASN, 2021, 32, 2900-2911.	6.1	9
296	Determining the Optimal Protocol for Measuring an Albuminuria Class Transition in Clinical Trials in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 3405-3412.	6.1	8
297	Effect of Linagliptin onÂArterial 18 F-Fluorodeoxyglucose Positron Emission Tomography Uptake. Journal of the American College of Cardiology, 2017, 69, 1097-1098.	2.8	8
298	Precision medicine in diabetes and diabetic kidney disease: Regulatory considerations. Diabetes, Obesity and Metabolism, 2018, 20, 19-23.	4.4	8
299	Proteinuria and cholesterol reduction are independently associated with less renal function decline in statin-treated patients; a post hoc analysis of the PLANET trials. Nephrology Dialysis Transplantation, 2019, 34, 1699-1706.	0.7	8
300	Renal Effects of Dapagliflozin in People with and without Diabetes with Moderate or Severe Renal Dysfunction: Prospective Modeling of an Ongoing Clinical Trial. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 76-91.	2.5	8
301	Baseline urinary metabolites predict albuminuria response to spironolactone in type 2 diabetes. Translational Research, 2020, 222, 17-27.	5.0	8
302	[18F]FDG Uptake in Adipose Tissue Is Not Related to Inflammation in Type 2 Diabetes Mellitus. Molecular Imaging and Biology, 2021, 23, 117-126.	2.6	8
303	Prevalence and progression of chronic kidney disease among patients with type <scp>2</scp> diabetes: Insights from the <scp>DISCOVER</scp> study. Diabetes, Obesity and Metabolism, 2021, 23, 1956-1960.	4.4	8
304	Quételet (body mass) index and effects of dapagliflozin in chronic kidney disease. Diabetes, Obesity and Metabolism, 2022, 24, 827-837.	4.4	8
305	Report from the CVOT Summit 2021: new cardiovascular, renal, and glycemic outcomes. Cardiovascular Diabetology, 2022, 21, 50.	6.8	8
306	Vitamin D receptor activator and dietary sodium restriction to reduce residual urinary albumin excretion in chronic kidney disease (ViRTUE study): rationale and study protocol. Nephrology Dialysis Transplantation, 2016, 31, 1081-1087.	0.7	7

#	Article	IF	CITATIONS
307	Pooled Analysis of Multiple Crossover Trials To Optimize Individual Therapy Response to Renin-Angiotensin-Aldosterone System Intervention. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1804-1813.	4.5	7
308	Treating diabetic complications; from large randomized clinical trials to precision medicine. Diabetes, Obesity and Metabolism, 2018, 20, 3-5.	4.4	7
309	Angiogenic T cells are decreased in people with type 2 diabetes mellitus and recruited by the dipeptidyl peptidaseâ€4 inhibitor Linagliptin: A subanalysis from a randomized, placeboâ€controlled trial (RELEASE) Tj ETQq1	4.0.7843	1⁄4 rgBT /⊖∖
310	Exposure–response relationships of dapagliflozin on cardiorenal risk markers and adverse events: A pooled analysis of 13 phase II/III trials. British Journal of Clinical Pharmacology, 2020, 86, 2192-2203.	2.4	7
311	Design of FLAIR: a Phase 2b Study of the 5-Lipoxygenase Activating Protein Inhibitor AZD5718 in Patients With Proteinuric CKD. Kidney International Reports, 2021, 6, 2803-2810.	0.8	7
312	Epidemiology of the diabetes-cardio-renal spectrum: a cross-sectional report of 1.4 million adults. Cardiovascular Diabetology, 2022, 21, .	6.8	7
313	Defining the optimal dose of a new drug: a crucial decision. Nature Reviews Nephrology, 2009, 5, 498-500.	9.6	6
314	Surrogate endpoints in clinical trials of chronic kidney disease progression. Current Opinion in Nephrology and Hypertension, 2015, 24, 492-497.	2.0	6
315	Association of Skin Autofluorescence Levels With Kidney Function Decline in Patients With Peripheral Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1709-1714.	2.4	6
316	Longitudinal Assessment of the Effect of Atrasentan on Thoracic Bioimpedance in Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. Drugs in R and D, 2017, 17, 441-448.	2.2	6
317	SGLT2 inhibition: a new era in renoprotective medicine?. Lancet Diabetes and Endocrinology,the, 2017, 5, 569-571.	11.4	6
318	Evaluation of the Pharmacokinetics and Exposure–Response Relationship of Dapagliflozin in Patients without Diabetes and with Chronic Kidney Disease. Clinical Pharmacokinetics, 2021, 60, 517-525.	3.5	6
319	The effects of canagliflozin on heart failure and cardiovascular death by baseline participant characteristics: Analysis of the <scp>CREDENCE</scp> trial. Diabetes, Obesity and Metabolism, 2021, 23, 1652-1659.	4.4	6
320	Large Between-Patient Variability in eGFR Decline before Clinical Trial Enrollment and Impact on Atrasentan's Efficacy: A Post Hoc Analysis from the SONAR Trial. Journal of the American Society of Nephrology: JASN, 2021, 32, 2731-2734.	6.1	6
321	Effects of canagliflozin compared with placebo on major adverse cardiovascular and kidney events in patient groups with different baseline levels of HbA1c, disease duration and treatment intensity: results from the CANVAS Program. Diabetologia, 2021, 64, 2402-2414.	6.3	6
322	Efficacy and Safety of Dapagliflozin in Patients With CKD Across Major Geographic Regions. Kidney International Reports, 2022, 7, 699-707.	0.8	6
323	Is the randomized controlled drug trial in Europe lagging behind the USA?. British Journal of Clinical Pharmacology, 2008, 66, 774-780.	2.4	5
324	High serum potassium levels after losartan can reflect more severe renal disease. Reply to Gonçalves AR, El Nahas AM [letter]. Diabetologia, 2011, 54, 2965-2967.	6.3	5

#	Article	IF	CITATIONS
325	Evaluation of Surrogate End Points for Progression to ESKD: Necessary and Challenging. American Journal of Kidney Diseases, 2018, 72, 771-773.	1.9	5
326	Personalized medicine in diabetic kidney disease. Current Opinion in Nephrology and Hypertension, 2018, 27, 426-432.	2.0	5
327	ACCORDION: Ensuring That We Hear the Music Clearly. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1621-1623.	4.5	5
328	No significant association of type 2 diabetesâ€related genetic risk scores with glycated haemoglobin levels after initiating metformin or sulphonylurea derivatives. Diabetes, Obesity and Metabolism, 2019, 21, 2267-2273.	4.4	5
329	Predicting kidney failure from longitudinal kidney function trajectory: A comparison of models. PLoS ONE, 2019, 14, e0216559.	2.5	5
330	Renal outcomes of SGLT2 inhibitors and GLP1 agonists in clinical practice. Nature Reviews Nephrology, 2020, 16, 433-434.	9.6	5
331	Exposure–response relationships for the sodiumâ€glucose coâ€ŧransporterâ€2 inhibitor dapagliflozin with regard to renal risk markers. Diabetes, Obesity and Metabolism, 2020, 22, 916-921.	4.4	5
332	Individual Atrasentan Exposure is Associated With Longâ€ŧerm Kidney and Heart Failure Outcomes in Patients With Type 2 Diabetes and Chronic Kidney Disease. Clinical Pharmacology and Therapeutics, 2021, 109, 1631-1638.	4.7	5
333	Renal haemodynamic response to sodiumâ€glucose cotransporterâ€2 inhibition does not depend on protein intake: An analysis of three randomized controlled trials. Diabetes, Obesity and Metabolism, 2021, 23, 1961-1967.	4.4	5
334	Impact of random variation in albuminuria and estimated glomerular filtration rate on patient enrolment and duration of clinical trials in nephrology. Diabetes, Obesity and Metabolism, 2022, 24, 983-990.	4.4	5
335	Treating Early-Stage CKD With New Medication Therapies: Results of a CKD Patient Survey Informing the 2020 NKF-FDA Scientific Workshop on Clinical Trial Considerations for Developing Treatments for Early Stages of Common, Chronic Kidney Diseases. Kidney Medicine, 2022, 4, 100442.	2.0	5
336	Dual RAAS blockade has dual effects on outcome. Nature Reviews Endocrinology, 2013, 9, 261-263.	9.6	4
337	Comparison of exposure response relationship of atrasentan between <scp>N</scp> orth <scp>A</scp> merican and <scp>A</scp> sian populations. Diabetes, Obesity and Metabolism, 2017, 19, 545-552.	4.4	4
338	Is Chronic Dialysis the Right Hard Renal End Point To Evaluate Renoprotective Drug Effects?. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1595-1600.	4.5	4
339	When drug treatments bias genetic studies: Mediation and interaction. PLoS ONE, 2019, 14, e0221209.	2.5	4
340	Exposure and response analysis of aleglitazar on cardiovascular risk markers and safety outcomes: An analysis of the AleCardio trial. Diabetes, Obesity and Metabolism, 2020, 22, 30-38.	4.4	4
341	Rationale, design, demographics and baseline characteristics of the randomized, controlled, Phase 2b SAPPHIRE study of verinurad plus allopurinol in patients with chronic kidney disease and hyperuricaemia. Nephrology Dialysis Transplantation, 2022, 37, 1461-1471.	0.7	4
342	Lipoprotein particle sizes and incident type 2 diabetes: the PREVEND cohort study. Diabetologia, 2022, 65, 402-405.	6.3	4

#	Article	IF	CITATIONS
343	Increase in BNP in Response to Endothelin-Receptor Antagonist Atrasentan Is Associated With IncidentÂHeartÂFailure. JACC: Heart Failure, 2022, 10, 498-507.	4.1	4
344	New nonabsorbable potassium-exchange resins in hyperkalaemia. Nature Reviews Nephrology, 2015, 11, 205-206.	9.6	3
345	Predicting individual treatment response in diabetes. Lancet Diabetes and Endocrinology,the, 2019, 7, 415-417.	11.4	3
346	Future and Novel Compounds in theÂTreatment of Diabetic Nephropathy. , 2019, , 515-539.		3
347	UHPLC–MS/MS method for iohexol determination in human EDTA and lithium-heparin plasma, human urine and in goat-Âand pig EDTA plasma. Bioanalysis, 2020, 12, 981-990.	1.5	3
348	Variability in estimated glomerular filtration rate and the risk of major clinical outcomes in diabetes: Post hoc analysis from the <scp>ADVANCE</scp> trial. Diabetes, Obesity and Metabolism, 2021, 23, 1420-1425.	4.4	3
349	Design and rationale of DISCOVER global registry in type 2 diabetes: Real-world insights of treatment patterns and its relationship with cardiovascular, renal, and metabolic multimorbidities. Journal of Diabetes and Its Complications, 2021, 35, 108077.	2.3	3
350	Association of diuretic use with increased risk for long-term post-transplantation diabetes mellitus in kidney transplant recipients. Nephrology Dialysis Transplantation, 2022, , .	0.7	3
351	Inhibition of the Renin-Angiotensin-Aldosterone System for Cerebrorenal Protection. Contributions To Nephrology, 2013, 179, 7-14.	1.1	2
352	Diseases of Renal Microcirculation: Diabetic Nephropathy. , 2014, , 1-34.		2
353	Do diabetic kidneys deserve a lifestyle change?. Lancet Diabetes and Endocrinology,the, 2014, 2, 769-770.	11.4	2
354	Are Post-Trial Observational Studies Useful?. Journal of the American Society of Nephrology: JASN, 2014, 25, 2148-2150.	6.1	2
355	Albuminuria. , 2015, , 663-673.		2
356	MP427BASELINE DATA FROM THE MULTINATIONAL PROSPECTIVE COHORT STUDY FOR VALIDATION OF BIOMARKERS (PROVALID). Nephrology Dialysis Transplantation, 2016, 31, i482-i482.	0.7	2
357	P1003STUDY DESIGN OF THE ROTATION FOR OPTIMAL TARGETING OF ALBUMINURIA AND TREATMENT EVALUATION (ROTATE-3): A ROTATION STUDY OF DIFFERENT ALBUMINURIA LOWERING DRUGS CLASSES TO STUDY INDIVIDUAL DRUG RESPONSE IN DIABETIC AND NON-DIABETIC CKD. Nephrology Dialysis Transplantation, 2020, 35	0.7	2
358	A novel drug response score more accurately predicts renoprotective drug effects than existing renal risk scores. Therapeutic Advances in Endocrinology and Metabolism, 2021, 12, 204201882097419.	3.2	2
359	SGLT2 inhibitors: expanding their Empire beyond diabetes. Lancet Diabetes and Endocrinology,the, 2021, 9, 59-61.	11.4	2
360	Effects of sodium–glucose coâ€ŧransporter 2 inhibition with empagliflozin on potassium handling in patients with acute heart failure. European Journal of Heart Failure, 2021, 23, 1049-1052.	7.1	2

#	Article	IF	CITATIONS
361	Plasma Nitrate Levels Are Related to Metabolic Syndrome and Are Not Altered by Treatment with DPP-4 Inhibitor Linagliptin: A Randomised, Placebo-Controlled Trial in Patients with Early Type 2 Diabetes Mellitus. Antioxidants, 2021, 10, 1548.	5.1	2
362	Editorial: The role of sodium-glucose cotransporter 2 inhibitors in the management of chronic kidney disease. Nephrology Dialysis Transplantation, 2020, 35, i1-i2.	0.7	2
363	GMP Compliant Synthesis of [¹⁸ F]Canagliflozin, a Novel PET Tracer for the Sodium–Glucose Cotransporter 2. Journal of Medicinal Chemistry, 2021, 64, 16641-16649.	6.4	2
364	Prediction of the Effects of Liraglutide on Kidney and Cardiovascular Outcomes Based on Short-Term Changes in Multiple Risk Markers. Frontiers in Pharmacology, 2022, 13, 786767.	3.5	2
365	The interplay between sacubitril/valsartan, heart failure with preserved ejection fraction, diabetes and kidney function. European Journal of Heart Failure, 2022, 24, 804-806.	7.1	2
366	A Post Hoc Analysis of KidneyIntelX and Cardiorenal Outcomes in Diabetic Kidney Disease. Kidney360, 2022, 3, 1599-1602.	2.1	2
367	Immune-unreactive urinary albumin as a predictor of cardiovascular events: the Hortega Study. Nephrology Dialysis Transplantation, 2019, 34, 633-641.	0.7	1
368	Association between individual cholesterol and proteinuria response and exposure to atorvastatin or rosuvastatin. Diabetes, Obesity and Metabolism, 2019, 21, 2635-2642.	4.4	1
369	LB005KIDNEY IMPLICATIONS OF THE INITIAL EGFR RESPONSE TO SGLT2 INHIBITION WITH EMPAGLIFLOZIN: THE â€~EGFR DIP' IN EMPA-REG OUTCOME. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	1
370	Atrasentan in patients with diabetes and chronic kidney disease – Authors' reply. Lancet, The, 2020, 395, 270.	13.7	1
371	FC 063DAPAGLIFLOZIN DECREASES ALBUMINURIA IN PATIENTS WITH CHRONIC KIDNEY DISEASE WITH AND WITHOUT TYPE 2 DIABETES: INSIGHTS FROM THE DAPA-CKD TRIAL. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	1
372	MO516A STRUCTURED EXPERT ELICITATION TO INFORM AND VALIDATE MORTALITY EXTRAPOLATIONS FOR A COST-EFFECTIVENESS ANALYSIS OF DAPAGLIFLOZIN. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	1
373	Perspectives on a Way Forward to Implementation of Precision Medicine in Patients With Diabetic Kidney Disease; Results of a Stakeholder Consensus-Building Meeting. Frontiers in Pharmacology, 2021, 12, 662642.	3.5	1
374	Letter by Inker et al Regarding Article, "Pitfalls in Using Estimated Glomerular Filtration Rate Slope as a Surrogate for the Effect of Drugs on the Risk of Serious Adverse Renal Outcomes in Clinical Trials of Patients With Heart Failure― Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008983.	3.9	1
375	Rationale, Design and Baseline Characteristics of the Effect of Canagliflozin in Type 2 Diabetic Patients with Microalbuminuria in Japanese Population (<scp>CANPIONE</scp>) study. Diabetes, Obesity and Metabolism, 2022, , .	4.4	1
376	Platform Clinical Trials Within Nephrology—Interpreting the Evidence. American Journal of Kidney Diseases, 2022, , .	1.9	1
377	Adherence to Statin Therapy and Attainment of LDL Cholesterol Targets in an Outpatient Population of Type 2 Diabetes Patients: Analysis in the DIAbetes and LifEstyle Cohort Twente (DIALECT). Frontiers in Pharmacology, 0, 13, .	3.5	1
378	Fasting Proinsulin Independently Predicts Incident Type 2 Diabetes in the General Population. Journal of Personalized Medicine, 2022, 12, 1131.	2.5	1

#	Article	IF	CITATIONS
379	PS12 Cont'd - 62. Prescribing of aliskiren in practice: findings from the GIANTT diabetes. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 142-143.	0.0	0
380	PS11 - 1. Longitudinal eGFR trajectories in patients with type 2 diabetes. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 162-162.	0.0	0
381	FP272A PANEL OF NOVEL BIOMARKERS REPRESENTING DIFFERENT DISEASE PATHWAYS IMPROVES PREDICTION OF RENAL FUNCTION DECLINE IN TYPE 2 DIABETES. Nephrology Dialysis Transplantation, 2015, 30, iii158-iii158.	0.7	0
382	FP348EVIDENCE BASED LEVEL OF THE CKD273 PEPTIDE CLASSIFIER'S UTILITY IN PREDICTING CHRONIC KIDNI DISEASE PROGRESSION. Nephrology Dialysis Transplantation, 2015, 30, iii184-iii185.	- 0.7	0
383	FP485EFFECTS OF ERTUGLIFLOZIN TREATMENT OVER 2 YEARS ON MEASURES OF RENAL FUNCTION. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
384	Pathophysiology of Proteinuria: Albuminuria as a Target for Treatment. , 2020, , 211-224.		0
385	P1019CANAGLIFLOZIN AND RISK OF SKIN AND SOFT TISSUE INFECTIONS IN PEOPLE WITH DIABETES MELLITUS AND KIDNEY DISEASE - A POST-HOC ANALYSIS OF THE CREDENCE TRIAL. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
386	P0816CLINICAL CHARACTERISTICS AND EGFR AND UACR DISTRIBUTION ACCORDING TO THE 2012 KDIGO CKD CLASSIFICATION: A REPORT FROM THE US DISCOVER CKD COHORT. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
387	SO001BOTH HYDROCHLOROTHIAZIDE AND METFORMIN AMELIORATE AQUARETIC SIDE-EFFECTS IN ADPKD PATIENTS THAT ARE TREATED WITH TOLVAPTAN. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
388	P1650HIGH-DENSITY LIPOPROTEIN PARTICLES AND THEIR RELATIONSHIP TO POSTTRANSPLANTATION DIABETES IN RENAL TRANSPLANT RECIPIENTS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
389	Reply. JACC: Heart Failure, 2020, 8, 427.	4.1	0
390	A Review of the Dose Justification of Phase 3 Trials to Regulatory Authorities for Drugs Intended for the Treatment of Type 2 Diabetes in Europe. Frontiers in Pharmacology, 2021, 12, 626766.	3.5	0
391	FC 111THE SOCIETAL IMPACT OF DELAYED DIALYSIS INITIATION ASSOCIATED WITH DAPAGLIFLOZIN BASED ON THE RESULTS OF DAPA-CKD. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
392	MO514CARDIORENAL OUTCOMES AND MORTALITY IN PATIENTS WITH TYPE 2 DIABETES MELLITUS: A MULTINATIONAL PROSPECTIVE COHORT STUDY (PROVALID). Nephrology Dialysis Transplantation, 2021, 36,	0.7	0
393	FC 125DIURETIC USE IS ÂASSOCIATED WITH INCREASED RISK FOR POSTTRANSPLANTATION DIABETES MELLITUS IN RENAL TRANSPLANT RECIPIENTS. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
394	MO230A PHASE 3, RANDOMIZED, DOUBLE-BLIND, PLACEBO CONTROLLED STUDY OF ATRASENTAN IN PATIENTS WITH IGA NEPHROPATHY (THE ALIGN STUDY). Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
395	Increased Levels of Urinary Albumin: A Cardiovascular Risk Factor and a Target for Treatment. , 2010, , 105-116.		0

Diseases of Renal Microcirculation: Diabetic Nephropathy. , 2015, , 3739-3768.

0

#	Article	IF	CITATIONS
397	(Clinical) Trial and Error in Diabetic Nephropathy. , 2019, , 415-431.		Ο
398	FC082: Effects of Dapagliflozin in Patients with Chronic Kidney Disease According to Background Angiotensin-Converting Enzyme Inhibitor and Angiotensin Receptor Blocker Dose. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
399	Editorial: Sodium Glucose Co-Transporter 2 Inhibitors and Kidney Function. Frontiers in Pharmacology, 2022, 13, 915713.	3.5	0