
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3892210/publications.pdf Version: 2024-02-01

RDENDALLULY

#	Article	IF	CITATIONS
1	Single-Cell RNA Sequencing Reveals Novel Genes Regulated by Hypoxia in the Lung Vasculature. Journal of Vascular Research, 2022, 59, 163-175.	1.4	4
2	Loss of Jagged1 in mature endothelial cells causes vascular dysfunction with alterations in smooth muscle phenotypes. Vascular Pharmacology, 2022, 145, 107087.	2.1	13
3	Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Science Advances, 2021, 7, .	10.3	43
4	The Notch Pathway: A Link Between COVID-19 Pathophysiology and Its Cardiovascular Complications. Frontiers in Cardiovascular Medicine, 2021, 8, 681948.	2.4	27
5	miRâ€145 transgenic mice develop cardiopulmonary complications leading to postnatal death. Physiological Reports, 2021, 9, e15013.	1.7	1
6	Generation of transgenic mice that conditionally express <scp>microRNA <i>miR</i></scp> <i>″45</i> . Genesis, 2020, 58, e23385.	1.6	2
7	Myoendothelial Junctions of Mature Coronary Vessels Express Notch Signaling Proteins. Frontiers in Physiology, 2020, 11, 29.	2.8	9
8	Myoendothelial Junctions of Mature Coronary Vessels Express Notch Signaling Proteins. FASEB Journal, 2020, 34, 1-1.	0.5	0
9	MicroRNA-145 targets in cancer and the cardiovascular system: evidence for common signaling pathways. Vascular Biology (Bristol, England), 2020, 2, R115-R128.	3.2	1
10	MicroRNA-145 targets in cancer and the cardiovascular system: evidence for common signaling pathways. Vascular Biology (Bristol, England), 2020, 2, R115-R128.	3.2	4
11	Analysis of Uncharacterized mKiaa1211 Expression during Mouse Development and Cardiovascular Morphogenesis. Journal of Cardiovascular Development and Disease, 2019, 6, 24.	1.6	7
12	MicroRNA miRâ€145 Modulates p38 MAP Kinase Pathway in Cardiac Fibroblasts to Suppress Cardiac Fibrosis. FASEB Journal, 2019, 33, 644.2.	0.5	0
13	Evaluation of Notch3 Deficiency in Diabetes-Induced Pericyte Loss in the Retina. Journal of Vascular Research, 2018, 55, 308-318.	1.4	18
14	Endothelial cell-induced cytoglobin expression in vascular smooth muscle cells contributes to modulation of nitric oxide. Vascular Pharmacology, 2018, 110, 7-15.	2.1	11
15	Notch Signaling in Vascular Smooth Muscle Cells. Advances in Pharmacology, 2017, 78, 351-382.	2.0	69
16	Notch1 haploinsufficiency causes ascending aortic aneurysms in mice. JCI Insight, 2017, 2, .	5.0	44
17	Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS ONE, 2017, 12, e0178538.	2.5	39
18	Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus. Genesis, 2015, 53, 738-748.	1.6	27

#	Article	IF	CITATIONS
19	Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background. Journal of Cardiovascular Development and Disease, 2015, 2, 17-30.	1.6	28
20	Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2015, 290, 16226-16237.	3.4	67
21	Potential Molecular Mechanism of Retrograde Aortic Arch Stenosis in the Hybrid Approach toÂHypoplastic Left Heart Syndrome. Annals of Thoracic Surgery, 2015, 100, 1013-1020.	1.3	1
22	Temporal and Embryonic Lineage-Dependent Regulation of Human Vascular SMC Development by NOTCH3. Stem Cells and Development, 2015, 24, 846-856.	2.1	12
23	MicroRNA miR145 Regulates TGFBR2 Expression and Matrix Synthesis in Vascular Smooth Muscle Cells. Circulation Research, 2015, 116, 23-34.	4.5	72
24	We Have Contact: Endothelial Cell-Smooth Muscle Cell Interactions. Physiology, 2014, 29, 234-241.	3.1	101
25	Notch signaling governs phenotypic modulation of smooth muscle cells. Vascular Pharmacology, 2014, 63, 88-96.	2.1	30
26	Endothelial Cells Direct Mesenchymal Stem Cells Toward a Smooth Muscle Cell Fate. Stem Cells and Development, 2014, 23, 2581-2590.	2.1	42
27	Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. Journal of Molecular and Cellular Cardiology, 2013, 60, 27-35.	1.9	142
28	Endothelial Cellâ€Dependent miRâ€145 Expression Regulates TGFβ Signaling in Vascular Smooth Muscle Cells. FASEB Journal, 2013, 27, 526.5.	0.5	0
29	Reciprocal Regulation of Syndecan-2 and Notch Signaling in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2012, 287, 16111-16120.	3.4	41
30	Small molecule inhibitors of arginyltransferase regulate arginylation-dependent protein degradation, cell motility, and angiogenesis. Biochemical Pharmacology, 2012, 83, 866-873.	4.4	31
31	Notch2 and Notch3 Function Together to Regulate Vascular Smooth Muscle Development. PLoS ONE, 2012, 7, e37365.	2.5	55
32	Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H784-H793.	3.2	14
33	Loss of the Serum Response Factor Cofactor, Cysteine-Rich Protein 1, Attenuates Neointima Formation in the Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 694-701.	2.4	26
34	Notch3 Is Critical for Proper Angiogenesis and Mural Cell Investment. Circulation Research, 2010, 107, 860-870.	4.5	149
35	NAD(P)H Oxidase-Dependent Regulation of CCL2 Production during Retinal Inflammation. , 2009, 50, 3033.		33
36	NOTCH3 Expression Is Induced in Mural Cells Through an Autoregulatory Loop That Requires	4.5	246

#	Article	IF	CITATIONS
37	Differential gene expression in a coculture model of angiogenesis reveals modulation of select pathways and a role for Notch signaling. Physiological Genomics, 2009, 36, 69-78.	2.3	45
38	Defining the role of Notch3 in smooth muscle differentiation and blood vessel formation. FASEB Journal, 2009, 23, 116.1.	0.5	0
39	Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis, 2008, 11, 223-234.	7.2	84
40	Generation and characterization of <i>Csrp1</i> enhancerâ€driven tissueâ€restricted Creâ€recombinase mice. Genesis, 2008, 46, 167-176.	1.6	10
41	Generation and characterization ofCsrp1enhancer-driven tissue-restricted Cre-recombinase mice. Genesis, 2008, 46, spcone-spcone.	1.6	0
42	Transforming Growth Factor-β (TGF-β1) Down-regulates Notch3 in Fibroblasts to Promote Smooth Muscle Gene Expression. Journal of Biological Chemistry, 2008, 283, 1324-1333.	3.4	97
43	Endothelial cells induce expression of Notch3 in vascular support cells. FASEB Journal, 2008, 22, 49.4.	0.5	0
44	Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Developmental Biology, 2007, 307, 340-355.	2.0	95
45	TGFâ€beta downregulates Notch3 to promote differentiation of smooth muscle cells. FASEB Journal, 2007, 21, A67.	0.5	0
46	Fibroblasts potentiate blood vessel formation partially through secreted factor TIMPâ€1. FASEB Journal, 2007, 21, A13.	0.5	0
47	Protein kinase C and downstream signaling pathways in a three-dimensional model of phorbol ester-induced angiogenesis. Angiogenesis, 2006, 9, 39-51.	7.2	26
48	Dissecting the regulatory pathways that govern Angiopoietinâ€2 expression in angiogenesis. FASEB Journal, 2006, 20, A1100.	0.5	0
49	Hypoxiaâ€inducible factor 1α modulates adhesion, migration, and FAK phosphorylation in vascular smooth muscle cells. Journal of Cellular Biochemistry, 2005, 96, 971-985.	2.6	42
50	Ca2+/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements. American Journal of Physiology - Cell Physiology, 2005, 289, C785-C793.	4.6	20
51	Identification of a CArG Box-Dependent Enhancer within the Cysteine-Rich Protein 1 Gene That Directs Expression in Arterial but Not Venous or Visceral Smooth Muscle Cells. Developmental Biology, 2001, 240, 531-547.	2.0	43
52	Muscle LIM Proteins Are Associated with Muscle Sarcomeres and Require dMEF2 for Their Expression during <i>Drosophila</i> Myogenesis. Molecular Biology of the Cell, 1999, 10, 2329-2342.	2.1	58
53	The LIM homeodomain protein dLim1 defines a subclass of neurons within the embryonic ventral nerve cord of Drosophila. Mechanisms of Development, 1999, 88, 195-205.	1.7	29
54	Independent Regulatory Elements in the Upstream Region of theDrosophila β3 tubulinGene (βTub60D) Guide Expression in the Dorsal Vessel and the Somatic Muscles. Developmental Biology, 1998, 199, 138-149.	2.0	37

#	Article	IF	CITATIONS
55	A Novel A/T-Rich Element Mediates ANF Gene Expression During Cardiac Myocyte Hypertrophy. Journal of Molecular and Cellular Cardiology, 1997, 29, 515-525.	1.9	17
56	Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science, 1995, 267, 688-693.	12.6	480
57	The Expression Pattern of the Chick Homeobox Gene gMHox Suggests a Role in Patterning of the Limbs and Face and in Compartmentalization of Somites. Developmental Biology, 1994, 161, 357-369.	2.0	120
58	D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5662-5666.	7.1	207
59	Carbonic Anhydrase II Gene Expression in Cell Lines from Human Pancreatic Adenocarcinoma. Pancreas, 1990, 5, 507-514.	1.1	33