Qing Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3891908/publications.pdf

Version: 2024-02-01

186265 168389 2,914 61 28 53 citations h-index g-index papers 61 61 61 4698 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO Journal, 2008, 27, 1932-1943.	7.8	482
2	Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metabolism, 2007, 6, 446-457.	16.2	253
3	A new role for Nogo as a regulator of vascular remodeling. Nature Medicine, 2004, 10, 382-388.	30.7	220
4	Kallistatin is a new inhibitor of angiogenesis and tumor growth. Blood, 2002, 100, 3245-3252.	1.4	164
5	A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood, 2010, 115, 133-139.	1.4	145
6	Gdâ€Hybridized Plasmonic Auâ€Nanocomposites Enhanced Tumorâ€Interior Drug Permeability in Multimodal Imagingâ€Guided Therapy. Advanced Materials, 2016, 28, 8950-8958.	21.0	138
7	Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10997-11002.	7.1	128
8	Inhibition of ERK1/2 and Activation of LXR Synergistically Reduce Atherosclerotic Lesions in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 948-959.	2.4	88
9	Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle–Cell Membrane Interface. Nano Letters, 2019, 19, 8-18.	9.1	84
10	Nogo-B Receptor Stabilizes Niemann-Pick Type C2 Protein and Regulates Intracellular Cholesterol Trafficking. Cell Metabolism, 2009, 10, 208-218.	16.2	68
11	Bradykinin B 1 Receptor Mediates Inhibition of Neointima Formation in Rat Artery After Balloon Angioplasty. Hypertension, 2000, 36, 364-370.	2.7	56
12	Dominant-Negative Hsp90 Reduces VEGF-Stimulated Nitric Oxide Release and Migration in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 105-111.	2.4	55
13	Kallikrein Gene Delivery Inhibits Vascular Smooth Muscle Cell Growth and Neointima Formation in the Rat Artery After Balloon Angioplasty. Hypertension, 1999, 34, 164-170.	2.7	54
14	25-Hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism. Journal of Lipid Research, 2018, 59, 439-451.	4.2	54
15	Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression. Biomaterials, 2018, 175, 110-122.	11.4	49
16	Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 945-954.	3.3	46
17	Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood, 2010, 116, 5423-5433.	1.4	45
18	Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1290-1300.	2.4	42

#	Article	IF	CITATIONS
19	Functional interplay between liver X receptor and AMPâ€activated protein kinase α inhibits atherosclerosis in apolipoprotein Eâ€deficient mice â° a new antiâ€atherogenic strategy. British Journal of Pharmacology, 2018, 175, 1486-1503.	5.4	39
20	Endothelial cell–specific chemotaxis receptor (ecscr) promotes angioblast migration during vasculogenesis and enhances VEGF receptor sensitivity. Blood, 2010, 115, 4614-4622.	1.4	37
21	Nogo-B receptor promotes epithelial–mesenchymal transition in non-small cell lung cancer cells through the Ras/ERK/Snail1 pathway. Cancer Letters, 2018, 418, 135-146.	7.2	33
22	Sema3E/PlexinD1 inhibition is a therapeutic strategy for improving cerebral perfusion and restoring functional loss after stroke in agedÂrats. Neurobiology of Aging, 2018, 70, 102-116.	3.1	33
23	Comprehensive proteome quantification reveals NgBR as a new regulator for epithelial–mesenchymal transition of breast tumor cells. Journal of Proteomics, 2015, 112, 38-52.	2.4	32
24	Nogo-B receptor promotes the chemoresistance of human hepatocellular carcinoma via the ubiquitination of p53 protein. Oncotarget, 2016, 7, 8850-8865.	1.8	32
25	Expression of NgBR Is Highly Associated with Estrogen Receptor Alpha and Survivin in Breast Cancer. PLoS ONE, 2013, 8, e78083.	2.5	32
26	Kallistatin Stimulates Vascular Smooth Muscle Cell Proliferation and Migration In Vitro and Neointima Formation in Balloon-Injured Rat Artery. Circulation Research, 2000, 86, 418-424.	4.5	31
27	Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials, 2018, 158, 44-55.	11.4	29
28	Epigenetically Down-Regulated Acetyltransferase PCAF Increases the Resistance of Colorectal Cancer to 5-Fluorouracil. Neoplasia, 2019, 21, 557-570.	5.3	28
29	Nogoâ€B receptor deficiency increases liver X receptor alpha nuclear translocation and hepatic lipogenesis through an adenosine monophosphate–activated protein kinase alpha–dependent pathway. Hepatology, 2016, 64, 1559-1576.	7.3	26
30	Molecular mechanism of Gd@C 82 (OH) 22 increasing collagen expression: Implication for encaging tumor. Biomaterials, 2018, 152, 24-36.	11.4	26
31	The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene, 2017, 36, 3406-3416.	5.9	25
32	MEK1/2 inhibitors activate macrophage ABCG1 expression and reverse cholesterol transportâ€"An anti-atherogenic function of ERK1/2 inhibition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1180-1191.	2.4	24
33	Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity. Journal of Hepatology, 2020, 73, 1482-1495.	3.7	24
34	<i>Sucrose non-fermenting related kinase</i> enzyme is essential for cardiac metabolism. Biology Open, 2015, 4, 48-61.	1.2	20
35	Adenovirus-mediated kallikrein gene transfer inhibits neointima formation via increased production of nitric oxide in rat artery. Immunopharmacology, 1999, 44, 137-143.	2.0	18
36	Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice. Developmental Biology, 2016, 410, 190-201.	2.0	18

#	Article	IF	CITATIONS
37	Nogo-B Receptor Modulates Angiogenesis Response of Pulmonary Artery Endothelial Cells Through eNOS Coupling. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 169-177.	2.9	16
38	Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1879-1890.	3.3	16
39	Adherence to endocrine therapy among Chinese patients with breast cancer: current status and recommendations for improvement. Patient Preference and Adherence, 2018, Volume 12, 887-897.	1.8	16
40	Sema3E/PlexinD1 signaling inhibits postischemic angiogenesis by regulating endothelial DLL4 and filopodia formation in a rat model of ischemic stroke. FASEB Journal, 2019, 33, 4947-4961.	0.5	16
41	Rosiglitazone alleviates intrahepatic cholestasis induced by αâ€naphthylisothiocyanate in mice: The role of circulating 15â€deoxyâ€î" ^{12,14} â€PGJ ₂ and Nogo. British Journal of Pharmacology, 2020, 177, 1041-1060.	5.4	16
42	Endothelial Cell-specific Chemotaxis Receptor (ECSCR) Enhances Vascular Endothelial Growth Factor (VEGF) Receptor-2/Kinase Insert Domain Receptor (KDR) Activation and Promotes Proteolysis of Internalized KDR*. Journal of Biological Chemistry, 2013, 288, 10265-10274.	3.4	15
43	Nogo-B receptor increases the resistance of estrogen receptor positive breast cancer to paclitaxel. Cancer Letters, 2018, 419, 233-244.	7.2	13
44	Activation of hepatic Nogo-B receptor expressionâ€"A new anti-liver steatosis mechanism of statins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 177-190.	2.4	13
45	Inhibition of tumor growth by U0126 is associated with induction of interferonâ $\hat{\epsilon^{j_3}}$ production. International Journal of Cancer, 2015, 136, 771-783.	5.1	12
46	Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. Journal of Materials Chemistry B, 2018, 6, 5802-5811.	5.8	12
47	Nogo-B Receptor Modulates Pulmonary Artery Smooth Muscle Cell Function in Developing Lungs. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 892-900.	2.9	10
48	Quantitative proteomic and phosphoproteomic studies reveal novel 5-fluorouracil resistant targets in hepatocellular carcinoma. Journal of Proteomics, 2019, 208, 103501.	2.4	10
49	Cellular Responses to Exposure to Outdoor Air from the Chinese Spring Festival at the Air–Liquid Interface. Environmental Science & Environmental S	10.0	9
50	NOGOB receptor–mediated RAS signaling pathway is a target for suppressing proliferating hemangioma. JCI Insight, 2021, 6, .	5.0	9
51	NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. Journal of Biological Chemistry, 2021, 296, 100624.	3.4	9
52	Nogo-B receptor increases the resistance to tamoxifen in estrogen receptor-positive breast cancer cells. Breast Cancer Research, 2018, 20, 112.	5.0	8
53	NIR-II window tracking of hyperglycemia induced intracerebral hemorrhage in cerebral cavernous malformation deficient mice. Biomaterials Science, 2020, 8, 5133-5144.	5.4	8
54	SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains. PLoS ONE, 2018, 13, e0191371.	2.5	6

#	Article	IF	CITATION
55	The Nogoâ€B receptor promotes human hepatocellular carcinoma cell growth via the Akt signal pathway. Journal of Cellular Biochemistry, 2018, 119, 7738-7746.	2.6	5
56	NOGOB receptor deficiency increases cerebrovascular permeability and hemorrhage via impairing histone acetylation–mediated CCM1/2 expression. Journal of Clinical Investigation, 2022, 132, .	8.2	5
57	Gd-Metallofullerenol nanoparticles cause intracellular accumulation of PDGFR-α and morphology alteration of fibroblasts. Nanoscale, 2019, 11, 4743-4750.	5.6	4
58	Nogo-B receptor is required for stabilizing TGF- \hat{l}^2 type Ireceptor and promotes the TGF- \hat{l}^2 1-induced epithelial-to-mesenchymal transition of non-small cell lung cancer. Journal of Cancer, 2021, 12, 717-725.	2.5	3
59	Chapter 1 Approaches for Studying Angiogenesisâ€Related Signal Transduction. Methods in Enzymology, 2008, 443, 1-23.	1.0	2
60	Peroxisome Proliferator-Activated Receptor-Gamma Reduces ER Stress and Inflammation via Targeting NGBR Expression. Frontiers in Pharmacology, 2021, 12, 817784.	3.5	2
61	Comparative proteomic analysis of protein methylation provides insight into the resistance of hepatocellular carcinoma to 5-fluorouracil. Journal of Proteomics, 2020, 219, 103738.	2.4	1