A William Rutherford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3891476/publications.pdf

Version: 2024-02-01

222 papers 16,162 citations

77 h-index

7561

20343

238 all docs

238 docs citations

238 times ranked

6753 citing authors

g-index

#	Article	IF	CITATIONS
1	Bicarbonate-controlled reduction of oxygen by the Q $<$ sub $>$ A $<$ /sub $>$ semiquinone in Photosystem II in membranes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
2	Molecular Principles of Redox-Coupled Protonation Dynamics in Photosystem II. Journal of the American Chemical Society, 2022, 144, 7171-7180.	6.6	35
3	Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. Science Advances, 2022, 8, eabj4437.	4.7	9
4	Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148400.	0.5	44
5	Femtosecond visible transient absorption spectroscopy of chlorophyll- <i>f</i> -containing photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23158-23164.	3.3	15
6	The primary donor of far-red photosystem II: ChlD1 or PD2?. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148248.	0.5	19
7	Bicarbonate-Mediated CO ₂ Formation on Both Sides of PhotosystemÂll. Biochemistry, 2020, 59, 2442-2449.	1.2	28
8	Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage. Nature Energy, 2020, 5, 720-728.	19.8	54
9	Proton-coupled electron transfer from an interfacial phenol monolayer. Journal of Electroanalytical Chemistry, 2020, 859, 113856.	1.9	2
10	Evolution of Photochemical Reaction Centres: More Twists?. Trends in Plant Science, 2019, 24, 1008-1021.	4.3	40
11	Energetics of the exchangeable quinone, Q $<$ sub $>$ B $<$ /sub $>$, in Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19458-19463.	3.3	48
12	Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I. Physical Chemistry Chemical Physics, 2019, 21, 1224-1234.	1.3	25
13	A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium Azotobacter vinelandii. Journal of Biological Chemistry, 2019, 294, 9367-9376.	1.6	20
14	New insights on ChlD1 function in Photosystem II from site-directed mutants of D1/T179 in Thermosynechococcus elongatus. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 297-309.	0.5	13
15	Early Archean origin of Photosystem <scp>II</scp> . Geobiology, 2019, 17, 127-150.	1.1	95
16	The low spin - high spin equilibrium in the S2-state of the water oxidizing enzyme. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 342-356.	0.5	77
17	Photoelectrochemistry of Photosystem II <i>in Vitro</i> vs <i>in Vivo</i> . Journal of the American Chemical Society, 2018, 140, 6-9.	6.6	98
18	Oxygenic Photoreactivity in Photosystem II Studied by Rotating Ring Disk Electrochemistry. Journal of the American Chemical Society, 2018, 140, 17923-17931.	6.6	18

#	Article	IF	CITATIONS
19	Glycolate Induces Redox Tuning Of Photosystem II in Vivo: Study of a Photorespiration Mutant. Plant Physiology, 2018, 177, 1277-1285.	2.3	22
20	Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science, 2018, 360, 1210-1213.	6.0	216
21	Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f -Containing Photosystem I. Biophysical Journal, 2017, 112, 234-249.	0.2	34
22	Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Î" <i>Ï'</i> and Î"pH. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160381.	1.8	60
23	The First State in the Catalytic Cycle of the Water-Oxidizing Enzyme: Identification of a Water-Derived $\hat{1}$ /4-Hydroxo Bridge. Journal of the American Chemical Society, 2017, 139, 14412-14424.	6.6	63
24	Bicarbonate-induced redox tuning in Photosystem II for regulation and protection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12144-12149.	3.3	107
25	Streptomyces thermoautotrophicus does not fix nitrogen. Scientific Reports, 2016, 6, 20086.	1.6	31
26	Redox-coupled substrate water reorganization in the active site of Photosystem IIâ€"The role of calcium in substrate water delivery. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 740-748.	0.5	94
27	Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1497-1505.	0.5	34
28	Limitations to photosynthesis by proton motive force-induced photosystem II photodamage. ELife, 2016, 5, .	2.8	101
29	Photosynthetic Constraints on Fuel from Microbes. Frontiers in Bioengineering and Biotechnology, 2015, 3, 36.	2.0	22
30	Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria. Molecular Biology and Evolution, 2015, 32, 1310-1328.	3.5	96
31	Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2015, 137, 8541-8549.	6.6	228
32	Electron transfer pathways from the S 2 -states to the S 3 -states either after a Ca $2+$ /Sr $2+$ or a Cl \hat{a} ' /I \hat{a} ' exchange in Photosystem II from Thermosynechococcus elongatus. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 576-586.	0.5	89
33	Energetics of proton release on the first oxidation step in the water-oxidizing enzyme. Nature Communications, 2015, 6, 8488.	5.8	111
34	Modification of the pheophytin redox potential in Thermosynechococcus elongatus Photosystem II with PsbA3 as D1. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 139-148.	0.5	40
35	Covalent Immobilization of Oriented Photosystem II on a Nanostructured Electrode for Solar Water Oxidation. Journal of the American Chemical Society, 2013, 135, 10610-10613.	6.6	112
36	Photosynthetic Reaction Center Performance under Physiologically Relevant Energetic Changes. Biophysical Journal, 2013, 104, 489a.	0.2	0

#	Article	IF	Citations
37	Artificial photosynthesis as a frontier technology for energy sustainability. Energy and Environmental Science, 2013, 6, 1074.	15.6	284
38	Energy and environment policy case for a global project on artificial photosynthesis. Energy and Environmental Science, 2013, 6, 695.	15.6	264
39	Mechanism of proton-coupled quinone reduction in Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 954-959.	3.3	125
40	Mechanism of tyrosine D oxidation in Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7690-7695.	3.3	67
41	Photoelectrochemical Water Oxidation with Photosystem II Integrated in a Mesoporous Indium–Tin Oxide Electrode. Journal of the American Chemical Society, 2012, 134, 8332-8335.	6.6	199
42	Backâ€reactions, shortâ€circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O ₂ . FEBS Letters, 2012, 586, 603-616.	1.3	234
43	Charge separation in Photosystem II: A comparative and evolutionary overview. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 26-43.	0.5	293
44	Semiquinoneâ€"Iron Complex of Photosystem II: EPR Signals Assigned to the Low-Field Edge of the Ground State Doublet of Q _A ^{•â€"} Fe ²⁺ and Q _B ^{•â€"} Fe ²⁺ . Biochemistry, 2011, 50, 6012-6021.	1.2	27
45	Effect of Ca ²⁺ /Sr ²⁺ Substitution on the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II: A Combined Multifrequency EPR, ⁵⁵ Mn-ENDOR, and DFT Study of the S ₂ State. Journal of the American Chemical Society, 2011, 133, 3635-3648.	6.6	211
46	Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel. Energy and Environmental Science, 2011, 4, 2353.	15.6	99
47	Effects of formate binding on the quinone–iron electron acceptor complex of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 216-226.	0.5	30
48	The electronic structures of the S2 states of the oxygen-evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 829-840.	0.5	81
49	Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1658-1661.	0.5	36
50	Lightâ€Driven Activation of the [H ₂)â€Mn ^{IV} (terpy)OH ₂ Unit in a Chromophore–Catalyst Complex. Chemistry - an Asian Journal, 2011, 6, 1335-1339.	·> <u>1</u> .7	21
51	High and low potential forms of the QA quinone electron acceptor in Photosystem II of Thermosynechococcus elongatus and spinach. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 154-157.	1.7	24
52	A High Redox Potential Form of Cytochrome c550 in Photosystem II from Thermosynechococcus elongatus. Journal of Biological Chemistry, 2011, 286, 5985-5994.	1.6	16
53	D1 protein variants in Photosystem II from Thermosynechococcus elongatus studied by low temperature optical spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 11-19.	0.5	21
54	Photoelectron Generation by Photosystemâ€II Core Complexes Tethered to Gold Surfaces. ChemSusChem, 2010, 3, 471-475.	3.6	34

#	Article	IF	Citations
55	On the assignment of PSHB in D1/D2/ cytb559 reaction centers. Physics Procedia, 2010, 3, 1601-1605.	1.2	9
56	Intramolecular light induced activation of a Salen–MnIII complex by a ruthenium photosensitizer. Chemical Communications, 2010, 46, 7605.	2,2	29
57	Carbon Nanotube–Acridine Nanohybrids: Spectroscopic Characterization of Photoinduced Electron Transfer. Chemistry - A European Journal, 2009, 15, 3882-3888.	1.7	12
58	Identification of the Q _{<i>Y</i>} Excitation of the Primary Electron Acceptor of Photosystem II: CD Determination of Its Coupling Environment. Journal of Physical Chemistry B, 2009, 113, 12364-12374.	1.2	27
59	Complete EPR Spectrum of the S ₃ -State of the Oxygen-Evolving Photosystem II. Journal of the American Chemical Society, 2009, 131, 5050-5051.	6.6	83
60	The Semiquinone-Iron Complex of Photosystem II: Structural Insights from ESR and Theoretical Simulation; Evidence that the Native Ligand to the Non-Heme Iron Is Carbonate. Biophysical Journal, 2009, 97, 2024-2033.	0.2	34
61	Quantum efficiency distributions of photo-induced side-pathway donor oxidation at cryogenic temperature in photosystem II. Photosynthesis Research, 2008, 98, 199-206.	1.6	10
62	Artificial systems related to light driven electron transfer processes in PSII. Coordination Chemistry Reviews, 2008, 252, 456-468.	9.5	96
63	Mimicking photosynthesis, but just the best bits. Nature, 2008, 453, 449-449.	13.7	20
64	Jean-Michel Neumann. Trends in Biochemical Sciences, 2008, 33, 297.	3.7	0
65	Semiquinone in Molecularly Imprinted Hybrid Amino Acidâ "SiO < sub > 2 < / sub > Biomimetic Materials. An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 12841-12852.	1.5	17
66	X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of Photosystem II. Energy and Environmental Science, 2008, 1, 161.	15.6	118
67	Biosynthetic Exchange of Bromide for Chloride and Strontium for Calcium in the Photosystem II Oxygen-evolving Enzymes. Journal of Biological Chemistry, 2008, 283, 13330-13340.	1.6	65
68	Introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1125-1128.	1.8	7
69	Low-temperature photochemistry in photosystem II from <i>Thermosynechococcus elongatus</i> induced by visible and near-infrared light. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1203-1210.	1.8	34
70	What Is the Origin of the Highly Dispersive Quantum Efficiencies for Secondary Donor Oxidation at Low Temperature in Photosystem II., 2008, , 85-88.		0
71	Influence of the Redox Potential of the Primary Quinone Electron Acceptor on Photoinhibition in Photosystem II. Journal of Biological Chemistry, 2007, 282, 12492-12502.	1.6	75
72	Purification, crystallization and X-ray diffraction analyses of the T. elongatus PSII core dimer with strontium replacing calcium in the oxygen-evolving complex. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 404-413.	0.5	37

#	Article	IF	CITATIONS
73	Horst Tobias Witt (1922–2007). Nature, 2007, 448, 425-425.	13.7	7
74	Four young research investigators were honored at the 2006 Gordon Research Conference on Photosynthesis. Photosynthesis Research, 2007, 92, 137-138.	1.6	7
75	Near-infrared-induced Transitions in the Manganese Cluster of Photosystem II: Action Spectra for the S2 and S3 Redox States. Plant and Cell Physiology, 2005, 46, 837-842.	1.5	37
76	Herbicide-Induced Changes in Charge Recombination and Redox Potential of QAin the T4 Mutant ofBlastochloris viridisâ€. Biochemistry, 2005, 44, 5931-5939.	1.2	13
77	Secondary Quinone in Photosystem II of Thermosynechococcus elongatus: Semiquinoneâ^'lron EPR Signals and Temperature Dependence of Electron Transfer. Biochemistry, 2005, 44, 12780-12789.	1.2	55
78	Side-Path Electron Donors: Cytochrome b559, Chlorophyll Z and \hat{I}^2 -Carotene. , 2005, , 347-365.		30
79	BIOCHEMISTRY: Water Photolysis in Biology. Science, 2004, 303, 1782-1784.	6.0	122
80	Biosynthetic Ca2+/Sr2+ Exchange in the Photosystem II Oxygen-evolving Enzyme of Thermosynechococcus elongatus. Journal of Biological Chemistry, 2004, 279, 22809-22819.	1.6	145
81	Cytochrome c550 in the Cyanobacterium Thermosynechococcus elongatus. Journal of Biological Chemistry, 2004, 279, 52869-52880.	1.6	36
82	Low-Temperature Electron Transfer in Photosystem II: A Tyrosyl Radical and Semiquinone Charge Pairâ€. Biochemistry, 2004, 43, 13787-13795.	1.2	60
83	Hydroxyl Radical Generation by Photosystem IIâ€. Biochemistry, 2004, 43, 6783-6792.	1.2	117
84	Site-Directed Mutagenesis of Thermosynechococcus elongatus Photosystem II:Â The O2-Evolving Enzyme Lacking the Redox-Active Tyrosine D. Biochemistry, 2004, 43, 13549-13563.	1.2	73
85	The stable tyrosyl radical in Photosystem II: why D?. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 222-230.	0.5	98
86	Resolving intermediates in biological proton-coupled electron transfer: A tyrosyl radical prior to proton movement. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8732-8735.	3.3	112
87	Photosystem II: evolutionary perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 245-253.	1.8	106
88	Photosystem II and photosynthetic oxidation of water: an overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1369-1381.	1.8	151
89	Tyrosine D Oxidation at Cryogenic Temperature in Photosystem II. Biochemistry, 2002, 41, 12914-12920.	1.2	74
90	Reduction of the Mn Cluster of the Water-Oxidizing Enzyme by Nitric Oxide:  Formation of an S-2 State. Biochemistry, 2002, 41, 3057-3064.	1.2	46

#	Article	IF	CITATIONS
91	Orientation selection in photosynthetic PS I multilayers: structural investigation of the charge separated state P700+A1a^' by high-field/high-frequency time-resolved EPR at 3.4 T/95 GHz. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 81-88.	0.5	11
92	Singlet oxygen production in herbicide-treated photosystem II. FEBS Letters, 2002, 532, 407-410.	1.3	167
93	Chlorophyll and Carotenoid Radicals in Photosystem II Studied by Pulsed ENDORâ€. Biochemistry, 2001, 40, 320-326.	1.2	43
94	Electron spin echo envelope modulation spectroscopy in photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1507, 226-246.	0.5	34
95	β-Carotene Redox Reactions in Photosystem II: Electron Transfer Pathwayâ€. Biochemistry, 2001, 40, 6431-6440.	1.2	97
96	A high-field EPR tour of radicals in photosystems I and II. Applied Magnetic Resonance, 2001, 21, 341-361.	0.6	72
97	The heart of photosynthesis in glorious 3D. Trends in Biochemical Sciences, 2001, 26, 341-344.	3.7	46
98	Photosystem I: both sides now. Trends in Biochemical Sciences, 2001, 26, 411.	3.7	0
99	Herbicide-induced oxidative stress in photosystem II. Trends in Biochemical Sciences, 2001, 26, 648-653.	3.7	270
100	Rapid formation of the stable tyrosyl radical in photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14368-14373.	3.3	118
101	Effect of pH on the semiquinone radical QAâ^' in CN-treated photosystem II: study by hyperfine sublevel correlation spectroscopy. Journal of Inorganic Biochemistry, 2000, 79, 339-345.	1.5	7
102	Inhibition of Photosystem II activity by saturating single turnover flashes in calcium-depleted and active Photosystem II. Photosynthesis Research, 2000, 63, 209-216.	1.6	24
103	Carotenoid Oxidation in Photosystem II:Â 1D- and 2D-Electron Spinâ^'Echo Envelope Modulation Study. Journal of the American Chemical Society, 2000, 122, 400-401.	6.6	28
104	Calcium Binding to the Photosystem II Subunit CP29. Journal of Biological Chemistry, 2000, 275, 12781-12788.	1.6	26
105	Comparative study of the $g=4.1$ EPR signals in the S2 state of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1457, 145-156.	0.5	51
106	High-Field EPR Study of Carotenoid•+and the Angular Orientation of Chlorophyllz•+in Photosystem II. Journal of Physical Chemistry B, 2000, 104, 10960-10963.	1.2	25
107	EPR Study of the Oxygen Evolving Complex in His-Tagged Photosystem II from the CyanobacteriumSynechococcus elongatusâ€. Biochemistry, 2000, 39, 13788-13799.	1.2	64
108	Orientation of the Tyrosyl D, Pheophytin Anion, and Semiquinone QA•-Radicals in Photosystem II Determined by High-Field Electron Paramagnetic Resonanceâ€. Biochemistry, 2000, 39, 7826-7834.	1.2	77

#	Article	IF	CITATIONS
109	Effects of Copper and Zinc Ions on Photosystem II Studied by EPR Spectroscopyâ€. Biochemistry, 1999, 38, 12439-12445.	1.2	36
110	Detection of an Electron Paramagnetic Resonance Signal in the SOState of the Manganese Complex of Photosystem II fromSynechococcus elongatusâ€. Biochemistry, 1999, 38, 11942-11948.	1.2	39
111	Carotenoid Oxidation in Photosystem Ilâ€. Biochemistry, 1999, 38, 8189-8195.	1.2	183
112	Multifrequency High-Field EPR Study of the Interaction between the Tyrosyl Z Radical and the Manganese Cluster in Plant Photosystem II. Journal of Physical Chemistry B, 1999, 103, 10945-10954.	1.2	43
113	1D- and 2D-ESEEM Study of the Semiquinone Radical QA- of Photosystem II. Journal of the American Chemical Society, 1999, 121, 7653-7664.	6.6	58
114	A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO Journal, 1998, 17, 50-60.	3.5	101
115	Thermoluminescence measurements on chloride-depleted and calcium-depleted photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1364, 46-54.	0.5	29
116	Reaction centre photochemistry in cyanide-treated photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 354-362.	0.5	13
117	SQUID Magnetization Study of the Infrared-Induced Spin Transition in the S2State of Photosystem II:Â Spin Value Associated with theg= 4.1 EPR Signal. Journal of the American Chemical Society, 1998, 120, 7924-7928.	6.6	65
118	Relationship between Activity, D1 Loss, and Mn Binding in Photoinhibition of Photosystem IIâ€. Biochemistry, 1998, 37, 16262-16269.	1.2	52
119	Spinâ^'Lattice Relaxation of the Phyllosemiquinone Radical of Photosystem lâ€. Biochemistry, 1998, 37, 3329-3336.	1.2	19
120	Influence of Herbicide Binding on the Redox Potential of the Quinone Acceptor in Photosystem II:  Relevance to Photodamage and Phytotoxicity. Biochemistry, 1998, 37, 17339-17344.	1.2	161
121	Effect of Near-Infrared Light on the S2-State of the Manganese Complex of Photosystem II fromSynechococcus elongatusâ€. Biochemistry, 1998, 37, 8995-9000.	1.2	58
122	The 18 kDa Cytochromec553 fromHeliobacteriumgestii: Gene Sequence and Characterization of the Mature Protein‡. Biochemistry, 1998, 37, 9001-9008.	1.2	32
123	High-Spin States (S≥5/2) of the Photosystem II Manganese Complex. Biochemistry, 1998, 37, 4001-4007.	1.2	102
124	The Involvement of H2O2 Produced by Photosystem II in Photoinhibition., 1998,, 2135-2138.		2
125	Site-Directed Mutations Near the L-Subunit D-Helix of the Purple Bacterial Reaction Center: A Partial Model for the Primary Donor of Photosystem Ilâ€. Biochemistry, 1997, 36, 2178-2187.	1.2	2
126	ESEEM Study of the Phyllosemiquinone Radical A1•-in14N- and15N-Labeled Photosystem Iâ€. Biochemistry, 1997, 36, 11543-11549.	1.2	53

#	Article	IF	CITATIONS
127	One- and Two-Dimensional Electron Spin Echo Envelope Modulation Study of the Intermediate Electron Acceptor Pheophytin in 14N- and 15N-Labeled Photosystem II. Journal of the American Chemical Society, 1997, 119, 4471-4480.	6.6	23
128	Orientation of the Phylloquinone Electron Acceptor Anion Radical in Photosystem I. Biochemistry, 1997, 36, 9297-9303.	1.2	78
129	A single mutation in the M-subunit ofRhodospirillum rubrumconfers herbicide resistance. FEBS Letters, 1997, 409, 343-346.	1.3	3
130	Comparison of chloride-depleted and calcium-depleted PSII: the midpoint potential of QA and susceptibility to photodamage. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1319, 91-98.	0.5	38
131	EPR and ESEEM study of the plastoquinone anion radical QAâ^². in photosystem II treated at high pH. Chemical Physics Letters, 1997, 270, 564-572.	1.2	31
132	The Role of the Extrinsic 33 kDa Protein in Ca2+Binding in Photosystem IIâ€. Biochemistry, 1996, 35, 12104-12110.	1,2	21
133	Conversion of the Spin State of the Manganese Complex in Photosystem II Induced by Near-Infrared Light. Biochemistry, 1996, 35, 6984-6989.	1.2	159
134	Chemical Modeling of the Oxygen-Evolving Center in Plants. Synthesis, Structure, and Electronic and Redox Properties of a New Mixed Valence Mnâ^'Oxo Cluster:Â [Mn2III,IVO2(bisimMe2en)2]3+(bisimMe2en) Tj E Induced by UV Irradiation at Low Temperature. Journal of the American Chemical Society, 1996, 118,	TQq0 0 0 6.6	rgBT /Overloc 47
135	2669-2678. Location of the calcium binding site in Photosystem II: A Mn2+ substitution study. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1277, 127-134.	0.5	17
136	Properties of the Chloride-Depleted Oxygen-Evolving Complex of Photosystem II Studied by Electron Paramagnetic Resonance. Biochemistry, 1996, 35, 1829-1839.	1.2	85
137	Spinâ-'Lattice Relaxation of the Pheophytin, Pheo-, Radical of Photosystem II. Biochemistry, 1996, 35, 11239-11246.	1.2	22
138	Membrane-Bound c -Type Cytochromes in Heliobacillus mobilis. Characterisation by EPR and Optical Spectroscopy in Membranes and Detergent-Solubilised Material. FEBS Journal, 1996, 242, 695-702.	0.2	13
139	On the role of the N-terminus of the extrinsic 33 kDa protein of Photosystem II. Plant Molecular Biology, 1996, 31, 183-188.	2.0	15
140	Charge Recombination Reactions in Photosystem II. 2. Transient Absorbance Difference Spectra and Their Temperature Dependence. Biochemistry, 1995, 34, 4814-4827.	1.2	88
141	ESEEM study of the plastoquinone anion radical (QA.bul) in 14N- and 15N-labeled photosystem II treated with cyanide Biochemistry, 1995, 34, 16030-16038.	1.2	40
142	On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 193-201.	0.5	145
143	A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 202-207.	0.5	166
144	Does the formation of the S3-state in Ca2+-depleted Photosystem II correspond to an oxidation of Tyrosine Z detectable by cw-EPR at room temperature?. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1230, 195-201.	0.5	9

#	Article	IF	CITATIONS
145	Charge Recombination Reactions in Photosystem II. 1. Yields, Recombination Pathways, and Kinetics of the Primary Pair. Biochemistry, 1995, 34, 4798-4813.	1.2	138
146	g-Values as a Probe of the Local Protein Environment: High-Field EPR of Tyrosyl Radicals in Ribonucleotide Reductase and Photosystem II. Journal of the American Chemical Society, 1995, 117, 10713-10719.	6.6	141
147	The origin of 40–50°C thermoluminescence bands in Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 85-92.	0.5	94
148	Influence of DCMU and ferricyanide on photodamage in photosystem II. Biochemistry, 1994, 33, 3087-3095.	1.2	69
149	Structural and Functional Consequences of a Glu L212 .fwdarw. Lys Mutation in the QB Binding Site of the Photosynthetic Reaction Center of Rhodopseudomonas viridis. Biochemistry, 1994, 33, 11355-11363.	1.2	5
150	Chloride-Depletion Effects in the Calcium-Deficient Oxygen-Evolving Complex of Photosystem II. Biochemistry, 1994, 33, 12998-13004.	1.2	32
151	The tetrahaem cytochromes associated with photosynthetic reaction centres: a model system for intraprotein redox centre interactions. Biochemical Society Transactions, 1994, 22, 694-699.	1.6	10
152	Angular orientation of the stable tyrosyl radical within photosystem II by high-field 245-GHz electron paramagnetic resonance Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5262-5266.	3.3	62
153	The [2Fe-2S] centre of the cytochrome bc complex in Bacillus firmus OF4 in EPR: an example of a menaquinol-oxidizing Rieske centre. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 263-268.	0.5	19
154	The reaction center associated tetraheme cytochrome subunit from Chromatium vinosum revisited: A reexamination of its EPR properties. Biochemistry, 1993, 32, 8871-8879.	1.2	25
155	The manganese center of oxygen-evolving and calcium-depleted photosystem II: a pulsed EPR spectroscopy study. Biochemistry, 1993, 32, 4831-4841.	1.2	62
156	Comparative spectroscopy of photosystem II and purple bacterial reaction centres. Biochemical Society Transactions, 1993, 21, 986-991.	1.6	9
157	Inhibition of tyrosine Z photooxidation after formation of the S3-state in calcium-depleted and chloride-depleted photosystem-II. Biochemistry, 1992, 31, 1224-1234.	1.2	119
158	The origin of the split S3 EPR signal in calcium-depleted photosystem II: histidine versus tyrosine. Biochemistry, 1992, 31, 7441-7445.	1.2	41
159	Oxygen-evolving photosystem II preparation from wild-type and photosystem II mutants of Synechocystis sp. PCC 6803. Biochemistry, 1992, 31, 2099-2107.	1.2	51
160	The pH dependence of the redox midpoint potential of the 2Fe2S cluster from cytochrome b6f complex (the  Rieske centre'). Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1102, 266-268.	0.5	39
161	The reaction-centre associated cytochrome subunit of the purple bacterium Rhodocyclus gelatinosus. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 49-57.	0.5	27
162	The involvement of Ca2+ in the Ca2+-effect on Photosystem-II oxygen evolution. Photosynthesis Research, 1992, 32, 207-209.	1.6	10

#	Article	IF	CITATIONS
163	A chlorophyll tilted 30° relative to the membrane in the Photosystem II reaction centre. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1058, 379-385.	0.5	125
164	ESE relaxation measurements in photosystem II The influence of the reaction center non‐heme iron on the spin‐lattice relaxation of Tyr D FEBS Letters, 1991, 292, 279-283.	1.3	6
165	Photosynthetic reaction centres: variations on a common structural theme?. Trends in Biochemical Sciences, 1991, 16, 241-245.	3.7	209
166	Membrane-bound cytochromes in Chloroflexus aurantiacus studied by EPR. FEBS Journal, 1991, 199, 317-323.	0.2	17
167	Histidine oxidation in the oxygen-evolving photosystem-II enzyme. Nature, 1990, 347, 303-306.	13.7	246
168	Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry, 1990, 29, 3834-3842.	1.2	112
169	Interaction of ammonia with the water splitting enzyme of photosystem II. Biochemistry, 1990, 29, 24-32.	1.2	78
170	Reaction center photochemistry of Heliobacterium chlorum. Biochemistry, 1990, 29, 11079-11088.	1.2	84
171	Evidence for a unique Rieske iron-sulphur centre in Heliobacterium chlorum. FEBS Letters, 1990, 261, 427-430.	1.3	37
172	Factors influencing the formation of modified S2EPR signal and the S3EPR signal in Ca2+-depleted photosystem II. FEBS Letters, 1990, 277, 69-74.	1.3	94
173	Orientation of P700, the primary electron donor of Photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 128-132.	0.5	57
174	Photosystem II, the water-splitting enzyme. Trends in Biochemical Sciences, 1989, 14, 227-232.	3.7	279
175	Tetraheme cytochrome c subunit of Rhodopseudomonas viridis characterized by EPR. Biochemistry, 1989, 28, 3161-3168.	1.2	74
176	EPR signals from modified charge accumulation states of the oxygen-evolving enzyme in calcium-deficient photosystem II. Biochemistry, 1989, 28, 8984-8989.	1.2	280
177	Characterization of four herbicide-resistant mutants of Rhodopseudomonas viridis by genetic analysis, electron paramagnetic resonance, and optical spectroscopy. Biochemistry, 1989, 28, 5544-5553.	1.2	99
178	Terbutryn resistance in a purple bacterium can induce sensitivity toward the plant herbicide DCMU. FEBS Letters, 1989, 256, 192-194.	1.3	33
179	The inhibition of quinol oxidation by stigmatellin is similar in cytochrome bc1 and b6f complexes. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 974, 223-226.	0.5	23
180	EPR relaxation measurements of Photosystem II reaction centers: influence of S-state oxidation and temperature. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 973, 428-442.	0.5	66

#	Article	IF	CITATIONS
181	The microwave power saturation of SIIslow varies with the redox state of the oxygen-evolving complex in photosystem II. Biochemistry, 1988, 27, 4915-4923.	1.2	110
182	Deactivation kinetics and temperature dependence of the S-state transitions in the oxygen-evolving system of Photosystem II measured by EPR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 933, 378-387.	0.5	126
183	Characterisation of the low-fluorescent (LF1) mutant of Scenedesmus by EPR. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 932, 171-176.	0.5	32
184	Ca2+ binding to the oxygen evolving enzyme varies with the redox state of the Mn cluster. FEBS Letters, 1988, 236, 432-436.	1.3	80
185	Nature of the inhibition of the oxygen-evolving enzyme of photosystem II induced by sodium chloride washing and reversed by the addition of calcium(2+) or strontium(2+). Biochemistry, 1988, 27, 3476-3483.	1.2	262
186	Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8477-8481.	3.3	271
187	The iron-quinone acceptor complex in Rhodospirillum rubrum chromatophores studied by EPR. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 169-178.	0.5	23
188	Formation and flash-dependent oscillation of the S2-state multiline EPR signal in an oxygen-evolving Photosystem-II preparation lacking the three extrinsic proteins in the oxygen-evolving system. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 32-38.	0.5	32
189	In the oxygen-evolving complex of photosystem II the SO state is oxidized to the S1 state by D+ (signal) Tj ETQq1	1,0,78431 1.2	14.rgBT /Ove
190	EPR Signal II in Photosystem II : Redox and Paramagnetic Interactions with the O2 Evolving Enzyme. , 1987, , 541-547.		2
191	Photoreductant-induced oxidation of Fe2+ in the electron-acceptor complex of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 851, 416-423.	0.5	105
192	Effects of trypsin upon EPR signals arising from components of the donor side of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 851, 424-430.	0.5	20
193	EPR evidence for a modified S-state transition in chloride-depleted Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 851, 193-201.	0.5	141
194	Electron paramagnetic resonance properties of the S2 state of the oxygen-evolving complex of photosystem II. Biochemistry, 1986, 25, 4609-4615.	1,2	206
195	Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9474-9477.	3.3	94
196	Primary photochemistry in photosystem-I. Photosynthesis Research, 1985, 6, 295-316.	1.6	136
197	Orientation of EPR signals arising from components in Photosystem II membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 807, 189-201.	0.5	130
198	Evidence for resistance of the microenvironment of the primary plastoquinone acceptor (QA \hat{a}^{\prime} \hat{A} ·Fe2+) to mild trypsinization in PS II particles. FEBS Letters, 1985, 185, 243-247.	1.3	7

#	Article	IF	CITATIONS
199	Manganese-quinone interactions in the electron acceptor region of bacterial photosynthetic reaction centres. FEBS Letters, 1985, 182, 151-157.	1.3	22
200	The effect of herbicides on components of the PS II reaction centre measured by EPR. FEBS Letters, 1984, 165, 156-162.	1.3	54
201	Oscillation of delayed luminescence from PS II: recombination of S2 Qâ° B and S3 Qâ° B. FEBS Letters, 1984, 165, 163-170.	1.3	78
202	EPR measurements on the effects of bicarbonate and triazine resistance on the acceptor side of Photosystem II. FEBS Letters, 1984, 175, 243-248.	1.3	101
203	Thermoluminescence as a probe of photosystem II. The redox and protonation states of the secondary acceptor quinone and the O2-evolving enzyme. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 548-556.	0.5	118
204	EPR studies of the oxygen-evolving enzyme of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 160-167.	0.5	186
205	A new EPR signal attributed to the primary plastosemiquinone acceptor in Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 168-175.	0.5	139
206	Effect of phenolic herbicides on the oxygen-evolving side of Photosystem II. Formation of the carotenoid cation. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 217-222.	0.5	63
207	Evidence from thermoluminescence for bicarbonate action on the recombination reactions involving the secondary quinone electron acceptor of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 766, 416-423.	0.5	27
208	Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1107-1111.	3.3	132
209	A relationship between the midpoint potential of the primary acceptor and low temperature photochemistry in photosystem II. FEBS Letters, 1983, 154, 328-334.	1.3	48
210	Characterization of Nuclear Mutants of Maize Which Lack the Cytochrome f/b-563 Complex. Plant Physiology, 1983, 73, 452-459.	2.3	42
211	Radical pair state in photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7283-7287.	3.3	13
212	The effect of ambient redox potential on the transient electron spin echo signals observed in chloroplasts and photosynthetic algae. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 682, 332-338.	0.5	41
213	Thermoluminescence as a probe of Photosystem II photochemistry. The origin of the flash-induced glow peaks. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 682, 457-465.	0.5	270
214	Differential extraction and structural specificity of specialized ubiquinone molecules in secondary electron transfer in chromatophores from Rhodopseudomonas sphaeroides, Ga. Archives of Biochemistry and Biophysics, 1982, 216, 566-580.	1.4	24
215	Measurement of the midpoint potential of the pheophytin acceptor of photosystem II. FEBS Letters, 1981, 123, 235-237.	1.3	78
216	A light-induced spin-polarized triplet detected by EPR in Photosystem II reaction centers. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 635, 205-214.	0.5	125

#	Article	IF	CITATIONS
217	Reaction center triplet states in Photosystem I and Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 635, 225-235.	0.5	93
218	EPR evidence for an acceptor functioning in photosystem II when the pheophytin acceptor is reduced. Biochemical and Biophysical Research Communications, 1981, 102, 1065-1070.	1.0	17
219	Direct measurement of the redox potential of the primary and secondary quinone electron acceptors in Rhodopseudomonas sphaeroides (wild-type) by EPR Spectrometry. FEBS Letters, 1980, 110, 257-261.	1.3	91
220	A high potential semiquinone-iron type EPR signal in Rhodopseudomonas viridis. FEBS Letters, 1979, 100, 305-308.	1.3	21
221	The high potential semiquinone-iron signal in Rhodopseudomonas viridis is the specific quinone secondary electron acceptor in the photosynthetic reaction centre. FEBS Letters, 1979, 104, 227-230.	1.3	31
222	Electron-paramagnetic-resonance measurements of the electron-transfer components of the reaction centre of <i>Rhodopseudomonas viridis</i> . Oxidationâ€"reduction potentials and interactions of the electron acceptors. Biochemical Journal, 1979, 182, 515-523.	3.2	46