John Hardy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3890460/publications.pdf

Version: 2024-02-01

115 90 154,375 949 163 357 citations h-index g-index papers 1045 1045 1045 91013 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics. Science, 2002, 297, 353-356.	6.0	12,113
2	Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991, 349, 704-706.	13.7	4,326
3	The amyloid hypothesis of Alzheimer's disease at 25Âyears. EMBO Molecular Medicine, 2016, 8, 595-608.	3.3	4,226
4	Â-Synuclein Locus Triplication Causes Parkinson's Disease. Science, 2003, 302, 841-841.	6.0	3,836
5	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	3.8	3,833
6	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
7	Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 1998, 393, 702-705.	13.7	3,333
8	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	9.4	2,697
9	<i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.	13.9	2,385
10	Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in Pharmacological Sciences, 1991, 12, 383-388.	4.0	2,091
11	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
12	Parkinson's disease. Lancet, The, 2009, 373, 2055-2066.	6.3	1,835
13	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	9.4	1,745
14	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	9.4	1,708
15	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	9.4	1,685
16	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	9.4	1,676
17	Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nature Genetics, 2019, 51, 404-413.	9.4	1,625
18	${\sf A}\hat{\sf I}^2$ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature, 2000, 408, 982-985.	13.7	1,506

#	Article	IF	Citations
19	Increased amyloid- \hat{l}^2 42(43) in brains of mice expressing mutant presentlin 1. Nature, 1996, 383, 710-713.	13.7	1,480
20	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	4.9	1,414
21	Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP. Science, 2001, 293, 1487-1491.	6.0	1,409
22	Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Medicine, 1998, 4, 97-100.	15.2	1,288
23	Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genetics, 2000, 25, 402-405.	9.4	1,254
24	Early-onset Alzheimer's disease caused by mutations at codon 717 of the \hat{l}^2 -amyloid precursor protein gene. Nature, 1991, 353, 844-846.	13.7	1,202
25	Toxic Proteins in Neurodegenerative Disease. Science, 2002, 296, 1991-1995.	6.0	1,103
26	Endoproteolysis of Presenilin 1 and Accumulation of Processed Derivatives In Vivo. Neuron, 1996, 17, 181-190.	3.8	1,054
27	Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	4.9	1,039
28	Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 284-289.	3.3	907
29	The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet, The, 2012, 379, 1214-1224.	6.3	886
30	Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet, The, 2011, 377, 641-649.	6.3	845
31	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
32	Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 2008, 451, 998-1003.	13.7	780
33	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	13.7	772
34	Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurology, The, 2009, 8, 1150-1157.	4.9	734
35	The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. Journal of Neurochemistry, 2009, 110, 1129-1134.	2.1	700
36	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	9.4	700

#	Article	IF	CITATIONS
37	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	1.1	696
38	Genomewide Association Studies and Human Disease. New England Journal of Medicine, 2009, 360, 1759-1768.	13.9	683
39	Green Tea Epigallocatechin-3-Gallate (EGCG) Modulates Amyloid Precursor Protein Cleavage and Reduces Cerebral Amyloidosis in Alzheimer Transgenic Mice. Journal of Neuroscience, 2005, 25, 8807-8814.	1.7	620
40	Genetic variability in the regulation of gene expression in ten regions of the human brain. Nature Neuroscience, 2014, 17, 1418-1428.	7.1	620
41	CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Human Molecular Genetics, 2004, 13, 703-714.	1.4	613
42	Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain, 2009, 132, 1783-1794.	3.7	612
43	TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Science Translational Medicine, 2014, 6, 243ra86.	5.8	600
44	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	9.4	594
45	Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nature Reviews Drug Discovery, 2010, 9, 560-574.	21.5	560
46	The Neuropathology and Neurobiology of Traumatic Brain Injury. Neuron, 2012, 76, 886-899.	3.8	555
47	Parkin Protects against the Toxicity Associated with Mutant α-Synuclein. Neuron, 2002, 36, 1007-1019.	3.8	542
48	<scp>APP</scp> mouse models for Alzheimer's disease preclinical studies. EMBO Journal, 2017, 36, 2473-2487.	3.5	530
49	AÎ ² 42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice. Neuron, 2005, 47, 191-199.	3.8	524
50	αâ€Synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma. FASEB Journal, 2003, 17, 1-16.	0.2	520
51	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
52	î±-Synuclein Shares Physical and Functional Homology with 14-3-3 Proteins. Journal of Neuroscience, 1999, 19, 5782-5791.	1.7	513
53	The A53T α-Synuclein Mutation Increases Iron-Dependent Aggregation and Toxicity. Journal of Neuroscience, 2000, 20, 6048-6054.	1.7	504
54	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	9.4	502

#	Article	IF	Citations
55	Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 2018, 19, 286-302.	3.2	498
56	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	1.5	495
57	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	9.4	494
58	A survey of genetic human cortical gene expression. Nature Genetics, 2007, 39, 1494-1499.	9.4	488
59	A High-Density Whole-Genome Association Study Reveals That APOE Is the Major Susceptibility Gene for Sporadic Late-Onset Alzheimer's Disease. Journal of Clinical Psychiatry, 2007, 68, 613-618.	1.1	484
60	Lewy bodies and parkinsonism in families withparkin mutations. Annals of Neurology, 2001, 50, 293-300.	2.8	479
61	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	9.4	479
62	The Amyloid-β Pathway in Alzheimer's Disease. Molecular Psychiatry, 2021, 26, 5481-5503.	4.1	478
63	Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Annals of Neurology, 2012, 72, 455-463.	2.8	473
64	GAB2 Alleles Modify Alzheimer's Risk in APOE É-4 Carriers. Neuron, 2007, 54, 713-720.	3.8	451
65	A Hundred Years of Alzheimer's Disease Research. Neuron, 2006, 52, 3-13.	3.8	427
66	Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature, 2014, 505, 550-554.	13.7	425
67	Alzheimer's disease: The amyloid cascade hypothesis: An update and reappraisal. Journal of Alzheimer's Disease, 2006, 9, 151-153.	1.2	424
68	Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in <i>alpha2â€macroglobulin</i> and <i>tau</i> : A populationâ€based autopsy study. Annals of Medicine, 2008, 40, 232-239.	1.5	414
69	Parkinson's disease induced pluripotent stem cells with triplication of the $\hat{l}\pm$ -synuclein locus. Nature Communications, 2011, 2, 440.	5.8	406
70	A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nature Reviews Neuroscience, 2015, 16, 564-574.	4.9	404
71	Characterization of PLA2G6 as a locus for dystoniaâ€parkinsonism. Annals of Neurology, 2009, 65, 19-23.	2.8	399
72	Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.	7.1	398

#	Article	IF	Citations
73	Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain, 2012, 135, 736-750.	3.7	392
74	Selective vulnerability in neurodegenerative diseases. Nature Neuroscience, 2018, 21, 1350-1358.	7.1	384
75	Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson's disease. Movement Disorders, 2014, 29, 454-462.	2.2	379
76	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	4.5	374
77	Susceptibility Locus for Alzheimer's Disease on Chromosome 10. Science, 2000, 290, 2304-2305.	6.0	372
78	α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy?. Acta Neuropathologica, 2013, 125, 753-769.	3.9	369
79	From The Cover: Correlations between apolipoprotein E Â4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8299-8302.	3.3	366
80	Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurology, The, 2006, 5, 911-916.	4.9	360
81	Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain, 2015, 138, 3673-3684.	3.7	359
82	A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nature Medicine, 1998, 4, 452-455.	15.2	347
83	Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease. PLoS ONE, 2010, 5, e13950.	1.1	347
84	Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2626-2631.	3.3	342
85	Apolipoprotein E in Alzheimer's Disease: An Update. Annual Review of Neuroscience, 2014, 37, 79-100.	5.0	340
86	The β-Secretase BACE1 in Alzheimer's Disease. Biological Psychiatry, 2021, 89, 745-756.	0.7	336
87	Transmitter deficits in Alzheimer's disease. Neurochemistry International, 1985, 7, 545-563.	1.9	333
88	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	2.6	333
89	Major Shifts in Clial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Reports, 2017, 18, 557-570.	2.9	326
90	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	3.7	323

#	Article	IF	CITATIONS
91	alpha-synuclein gene haplotypes are associated with Parkinson's disease. Human Molecular Genetics, 2001, 10, 1847-1851.	1.4	314
92	Genome-wide association study of obsessive-compulsive disorder. Molecular Psychiatry, 2013, 18, 788-798.	4.1	312
93	Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia–like Syndrome Without Bone Involvement. JAMA Neurology, 2013, 70, 78.	4.5	311
94	Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Medicine, 2017, 14, e1002258.	3.9	311
95	Genetic dissection of Alzheimer's disease and related dementias: amyloid and its relationship to tau. Nature Neuroscience, $1998,1,355-358.$	7.1	310
96	Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked Dominant Form of NBIA. American Journal of Human Genetics, 2012, 91, 1144-1149.	2.6	309
97	Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain, 2011, 134, 2565-2581.	3.7	306
98	Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias. PLoS Genetics, 2014, 10, e1004606.	1.5	305
99	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
100	Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population. American Journal of Human Genetics, 2013, 92, 345-353.	2.6	297
101	Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain, 2012, 135, 751-764.	3.7	293
102	The Parkinson's disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature Neuroscience, 2013, 16, 1257-1265.	7.1	292
103	Genetic Control of Human Brain Transcript Expression in Alzheimer Disease. American Journal of Human Genetics, 2009, 84, 445-458.	2.6	290
104	Earlyâ€onset Lâ€dopaâ€responsive parkinsonism with pyramidal signs due to <i>ATP13A2, PLA2G6, FBXO7</i> and <i>spatacsin</i> mutations. Movement Disorders, 2010, 25, 1791-1800.	2.2	287
105	Genetics of Parkinson's disease and parkinsonism. Annals of Neurology, 2006, 60, 389-398.	2.8	281
106	A Loss of Function Mutation of Presenilin-2 Interferes with Amyloid \hat{l}^2 -Peptide Production and Notch Signaling. Journal of Biological Chemistry, 1999, 274, 28669-28673.	1.6	279
107	Lack of Nigral Pathology in Transgenic Mice Expressing Human \hat{l}_{\pm} -Synuclein Driven by the Tyrosine Hydroxylase Promoter. Neurobiology of Disease, 2001, 8, 535-539.	2.1	273
108	Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet, The, 2011, 378, 584-594.	6.3	273

#	Article	IF	CITATIONS
109	C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurology, The, 2015, 14, 291-301.	4.9	270
110	Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans. PLoS Genetics, 2007, 3, e108.	1.5	269
111	A locus for familial early–onset Alzhelmer's disease on the long arm of chromosome 14, proximal to the α1–antichymotrypsin gene. Nature Genetics, 1992, 2, 340-342.	9.4	266
112	Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nature Cell Biology, 2000, 2, 848-851.	4.6	263
113	A statistical framework for cross-tissue transcriptome-wide association analysis. Nature Genetics, 2019, 51, 568-576.	9.4	262
114	A mutation in Alzheimer $\hat{E}^{1}\!\!/\!4s$ disease destroying a splice acceptor site in the presenilin-1 gene. NeuroReport, 1995, 7, 297-301.	0.6	262
115	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	4.1	260
116	Parkinson's disease age at onset genomeâ€wide association study: Defining heritability, genetic loci, and αâ€synuclein mechanisms. Movement Disorders, 2019, 34, 866-875.	2.2	258
117	Widespread sex differences in gene expression and splicing in the adult human brain. Nature Communications, 2013, 4, 2771.	5.8	255
118	An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks. BMC Systems Biology, 2017, 11, 47.	3.0	253
119	Common genetic variation within the Low-Density Lipoprotein Receptor-Related Protein 6 and late-onset Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9434-9439.	3.3	252
120	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	5.8	250
121	Biological markers for therapeutic trials in Alzheimer's disease. Neurobiology of Aging, 2003, 24, 521-536.	1.5	249
122	Genetic Analysis of Pathways to Parkinson Disease. Neuron, 2010, 68, 201-206.	3.8	249
123	A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease. PLoS Genetics, 2011, 7, e1002142.	1.5	247
124	A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology. Cell Reports, 2015, 10, 633-644.	2.9	247
125	Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 2020, 11, 667.	5.8	246
126	Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases. JAMA Neurology, 2017, 74, 780.	4.5	245

#	Article	IF	CITATIONS
127	Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimerâ \in ^{Ms} disease. Molecular Neurodegeneration, 2016, 11, 3.	4.4	236
128	Early-onset Parkinson's disease caused by a compound heterozygous DJ-1 mutation. Annals of Neurology, 2003, 54, 271-274.	2.8	233
129	A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Annals of Neurology, 2014, 76, 185-205.	2.8	232
130	The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiology of Disease, 2007, 25, 561-570.	2.1	231
131	Genotype-Imputation Accuracy across Worldwide Human Populations. American Journal of Human Genetics, 2009, 84, 235-250.	2.6	231
132	Has the Amyloid Cascade Hypothesis for Alzheimers Disease been Proved?. Current Alzheimer Research, 2006, 3, 71-73.	0.7	225
133	Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Human Molecular Genetics, 2010, 19, 3295-3301.	1.4	223
134	Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends in Neurosciences, 2013, 36, 561-569.	4.2	223
135	Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease. Current Opinion in Neurobiology, 2016, 36, 74-81.	2.0	223
136	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
137	The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiology of Aging, 2012, 33, 437-456.	1.5	220
138	Syndromes of neurodegeneration with brain iron accumulation (NBIA): An update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Movement Disorders, 2012, 27, 42-53.	2.2	219
139	Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. Journal of Neurochemistry, 2011, 119, 275-282.	2.1	214
140	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	7.1	213
141	Genome-wide SNP assay reveals structural genomic variation, extended homozygosity and cell-line induced alterations in normal individuals. Human Molecular Genetics, 2007, 16, 1-14.	1.4	211
142	Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurology, The, 2007, 6, 322-328.	4.9	206
143	A Nonsense Mutation in COQ9 Causes Autosomal-Recessive Neonatal-Onset Primary Coenzyme Q10 Deficiency: A Potentially Treatable Form of Mitochondrial Disease. American Journal of Human Genetics, 2009, 84, 558-566.	2.6	206
144	The presenilins and Alzheimer's disease. Human Molecular Genetics, 1997, 6, 1639-1646.	1.4	205

#	Article	IF	Citations
145	Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurology, The, 2010, 9, 986-994.	4.9	205
146	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	7.1	204
147	Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron, 2017, 93, 1066-1081.e8.	3.8	204
148	Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain, 2013, 136, 1708-1717.	3.7	203
149	DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurology, The, 2008, 7, 207-215.	4.9	202
150	Defective <i>FA2H</i> leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Annals of Neurology, 2010, 68, 611-618.	2.8	202
151	Dissection of the genetics of Parkinson's disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21. Human Molecular Genetics, 2011, 20, 345-353.	1.4	202
152	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	9.4	198
153	Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiology of Aging, 2010, 31, 725-731.	1.5	196
154	The PARK8 Locus in Autosomal Dominant Parkinsonism: Confirmation of Linkage and Further Delineation of the Disease-Containing Interval. American Journal of Human Genetics, 2004, 74, 11-19.	2.6	195
155	The genetics of Parkinson's syndromes: a critical review. Current Opinion in Genetics and Development, 2009, 19, 254-265.	1.5	195
156	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	4.9	195
157	Full genome screen for Alzheimer disease: Stage II analysis. American Journal of Medical Genetics Part A, 2002, 114, 235-244.	2.4	194
158	Complex relationship between Parkin mutations and Parkinson disease. American Journal of Medical Genetics Part A, 2002, 114, 584-591.	2.4	193
159	Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol. American Journal of Human Genetics, 2014, 94, 233-245.	2.6	193
160	Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathologica, 2017, 133, 337-352.	3.9	193
161	MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Human Molecular Genetics, 2012, 21, 4094-4103.	1.4	191
162	Parkinson's disease and αâ€synuclein expression. Movement Disorders, 2011, 26, 2160-2168.	2.2	186

#	Article	IF	Citations
163	Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiology of Aging, 2012, 33, 814-823.	1.5	184
164	Dementia in Down's syndrome. Lancet Neurology, The, 2016, 15, 622-636.	4.9	180
165	Diagnosis of Parkinson's disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurology, The, 2015, 14, 1002-1009.	4.9	179
166	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	1.4	178
167	Evolutionary toggling of the MAPT 17q21.31 inversion region. Nature Genetics, 2008, 40, 1076-1083.	9.4	176
168	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2012, 21, 4996-5009.	1.4	176
169	A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurology, The, 2007, 6, 414-420.	4.9	175
170	Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain, 2006, 129, 3115-3123.	3.7	174
171	Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.	1.5	174
172	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.4	173
173	Familial non-specific dementia maps to chromosome 3. Human Molecular Genetics, 1995, 4, 1625-1628.	1.4	170
174	Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain, 2016, 139, 1904-1918.	3.7	170
175	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2014, 137, 2480-2492.	3.7	169
176	Dense-Core Plaques in Tg2576 and PSAPP Mouse Models of Alzheimer's Disease Are Centered on Vessel Walls. American Journal of Pathology, 2005, 167, 527-543.	1.9	168
177	Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage. Neurochemistry International, 2013, 62, 1-7.	1.9	166
178	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	4.5	166
179	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.4	166
180	Two novel (M233T and i278T) presenilin-1 mutations in early-onset Alzheimer's disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. NeuroReport, 1997, 8, 1537-1542.	0.6	165

#	Article	IF	Citations
181	Polygenic score prediction captures nearly all common genetic risk for Alzheimer's disease. Neurobiology of Aging, 2017, 49, 214.e7-214.e11.	1.5	164
182	<i>ATP13A2</i> mutations (PARK9) cause neurodegeneration with brain iron accumulation. Movement Disorders, 2010, 25, 979-984.	2.2	163
183	Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Reports, 2016, 15, 638-650.	2.9	163
184	Analysis of the PINK1 Gene in a Large Cohort of Cases With Parkinson Disease. Archives of Neurology, 2004, 61, 1898-904.	4.9	162
185	Genome-wide association study of Tourette's syndrome. Molecular Psychiatry, 2013, 18, 721-728.	4.1	161
186	Inhibition of GSK-3 Ameliorates ${\rm A}\hat{\rm I}^2$ Pathology in an Adult-Onset Drosophila Model of Alzheimer's Disease. PLoS Genetics, 2010, 6, e1001087.	1.5	159
187	APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons. Cell Reports, 2015, 11, 689-696.	2.9	158
188	A Scan of Chromosome 10 Identifies a Novel Locus Showing Strong Association with Late-Onset Alzheimer Disease. American Journal of Human Genetics, 2006, 78, 78-88.	2.6	157
189	Repeat Expansion in <i>C9ORF72</i> iii Alzheimer's Disease. New England Journal of Medicine, 2012, 366, 283-284.	13.9	156
190	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	1.1	155
191	Low frequency of ?-synuclein mutations in familial Parkinson's disease. Annals of Neurology, 1998, 43, 394-397.	2.8	153
192	Whole Genome Analyses Suggest Ischemic Stroke and Heart Disease Share an Association With Polymorphisms on Chromosome 9p21. Stroke, 2008, 39, 1586-1589.	1.0	153
193	<i>SQSTM1</i> Mutations in French Patients With Frontotemporal Dementia or Frontotemporal Dementia With Amyotrophic Lateral Sclerosis. JAMA Neurology, 2013, 70, 1403-10.	4.5	153
194	Polygenic risk score analysis of pathologically confirmed Alzheimer disease. Annals of Neurology, 2017, 82, 311-314.	2.8	153
195	Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. PLoS Medicine, 2017, 14, e1002314.	3.9	152
196	The importance of understanding individual differences in Down syndrome. F1000Research, 2016, 5, 389.	0.8	151
197	Complete analysis of the presenilin 1 gene in early onset Alzheimer $\hat{E}^{1}\!\!/\!4$ s disease. NeuroReport, 1996, 7, 801-805.	0.6	150
198	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	3.7	149

#	Article	IF	Citations
199	Mutations in the autoregulatory domain of βâ€ŧubulin 4a cause hereditary dystonia. Annals of Neurology, 2013, 73, 546-553.	2.8	148
200	Milestones in PD genetics. Movement Disorders, 2011, 26, 1042-1048.	2.2	147
201	G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Human Molecular Genetics, 2012, 21, 4201-4213.	1.4	147
202	Genetic Analysis of Inherited Leukodystrophies. JAMA Neurology, 2013, 70, 875.	4.5	147
203	Region-specific loss of glutamate innervation in Alzheimer's disease. Neuroscience Letters, 1987, 73, 77-80.	1.0	146
204	Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiology of Aging, 2013, 34, 2699-2714.	1.5	145
205	Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: Systematic review and meta-analysis of 14 015 stroke cases and pooled analysis of primary biomarker data from up to 60 883 individuals. International Journal of Epidemiology, 2013, 42, 475-492.	0.9	145
206	Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. Circulation, 2015, 131, 2061-2069.	1.6	145
207	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.5	144
208	Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson's disease course. Movement Disorders, 2012, 27, 393-399.	2.2	144
209	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	4.5	144
210	Single-day apolipoprotein E genotyping. Journal of Neuroscience Methods, 1994, 53, 125-127.	1.3	143
211	Coâ€ordinate transcriptional regulation of dopamine synthesis genes by αâ€synuclein in human neuroblastoma cell lines. Journal of Neurochemistry, 2003, 85, 957-968.	2.1	143
212	Loss of <i>PLA2G6 </i> leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain, 2015, 138, 1801-1816.	3.7	143
213	Cancer and Neurodegeneration: Between the Devil and the Deep Blue Sea. PLoS Genetics, 2010, 6, e1001257.	1.5	141
214	Neurological consequences of traumatic brain injuries in sports. Molecular and Cellular Neurosciences, 2015, 66, 114-122.	1.0	141
215	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-? concentrations. Annals of Neurology, 2000, 48, 806-808.	2.8	135
216	Spinocerebellar Ataxia Type 3 Phenotypically Resembling Parkinson Disease in a Black Family. Archives of Neurology, 2001, 58, 296.	4.9	135

#	Article	IF	CITATIONS
217	Association of late-onset Alzheimer's disease with genetic variation in multiple members of the GAPD gene family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15688-15693.	3.3	134
218	Genetics of Alzheimer's Disease. Neurotherapeutics, 2014, 11, 732-737.	2.1	134
219	Neurobiology of Alzheimer's Disease: Integrated Molecular, Physiological, Anatomical, Biomarker, and Cognitive Dimensions. Current Alzheimer Research, 2015, 12, 712-722.	0.7	134
220	Framing β–amyloid. Nature Genetics, 1992, 1, 233-234.	9.4	133
221	Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus. Molecular Psychiatry, 2015, 20, 1588-1595.	4.1	133
222	Genomewide scans in North American families reveal genetic linkage of essential tremor to a region on chromosome 6p23. Brain, 2006, 129, 2318-2331.	3.7	132
223	Verifying the Stroke-Free Phenotype by Structured Telephone Interview. Stroke, 2000, 31, 1076-1080.	1.0	131
224	Pick's disease is associated with mutations in thetau gene. Annals of Neurology, 2000, 48, 859-867.	2.8	131
225	Association between cardiac denervation and parkinsonism caused by αâ€synuclein gene triplication. Brain, 2004, 127, 768-772.	3.7	131
226	APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer's disease. Neuroscience Letters, 1994, 169, 179-180.	1.0	130
227	Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology, 2013, 80, 2042-2048.	1.5	129
228	Recursive splicing in long vertebrate genes. Nature, 2015, 521, 371-375.	13.7	128
229	Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease. Movement Disorders, 2016, 31, 1518-1526.	2.2	128
230	Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Movement Disorders, 2004, 19, 622-629.	2.2	127
231	Pathogenic VCP Mutations Induce Mitochondrial Uncoupling and Reduced ATP Levels. Neuron, 2013, 78, 57-64.	3.8	127
232	Mutations in PNKP Cause Recessive Ataxia with Oculomotor Apraxia Type 4. American Journal of Human Genetics, 2015, 96, 474-479.	2.6	127
233	THAP1 mutations and dystonia phenotypes: Genotype phenotype correlations. Movement Disorders, 2012, 27, 1290-1294.	2.2	126
234	DAPK1 variants are associated with Alzheimer's disease and allele-specific expression. Human Molecular Genetics, 2006, 15, 2560-2568.	1.4	125

#	Article	IF	CITATIONS
235	Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia. Stem Cell Reports, 2018, 10, 1294-1307.	2.3	124
236	Twenty years of Alzheimer's disease ausing mutations. Journal of Neurochemistry, 2012, 120, 3-8.	2.1	123
237	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	1.4	122
238	Emerging pathways in genetic Parkinson's disease: Potential role of ceramide metabolism in Lewy body disease. FEBS Journal, 2008, 275, 5767-5773.	2.2	121
239	Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain. Neurobiology of Disease, 2012, 47, 20-28.	2.1	121
240	The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease. Movement Disorders, 2013, 28, 232-236.	2.2	121
241	Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay. Molecular Neurodegeneration, 2015, 10, 64.	4.4	121
242	A Paired RNAi and RabGAP Overexpression Screen Identifies Rabl1 as a Regulator of \hat{l}^2 -Amyloid Production. Cell Reports, 2013, 5, 1536-1551.	2.9	120
243	The discovery of Alzheimerâ€causing mutations in the <scp>APP</scp> gene and the formulation of the "amyloid cascade hypothesisâ€. FEBS Journal, 2017, 284, 1040-1044.	2.2	120
244	Low frequency of pathogenic mutations in the ubiquitin carboxyterminal hydrolase gene in familial Parkinson $\hat{E}^{1}/4$ s disease. NeuroReport, 1999, 10, 427-429.	0.6	119
245	The structure of the tau haplotype in controls and in progressive supranuclear palsy. Human Molecular Genetics, 2004, 13, 1267-1274.	1.4	119
246	Parkin Disease. JAMA Neurology, 2013, 70, 571.	4.5	119
247	Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Reports, 2019, 26, 582-593.e5.	2.9	119
248	Human Induced Pluripotent Stem Cell-Derived Microglia-Like Cells Harboring TREM2 Missense Mutations Show Specific Deficits in Phagocytosis. Cell Reports, 2018, 24, 2300-2311.	2.9	118
249	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
250	Increased A?42(43) from cell lines expressing presenilin 1 mutations. Annals of Neurology, 1998, 43, 256-258.	2.8	117
251	Hâ€ABC syndrome and DYT4: Variable expressivity or pleiotropy of TUBB4 mutations?. Movement Disorders, 2015, 30, 828-833.	2.2	117
252	Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD. American Journal of Psychiatry, 2015, 172, 82-93.	4.0	117

#	Article	IF	CITATIONS
253	A <i>Drosophila</i> Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin. Journal of Neuroscience, 2016, 36, 11654-11670.	1.7	117
254	Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the $10+16$ splice-site mutation in MAPT. Human Molecular Genetics, 2015, 24, 5260-5269.	1.4	116
255	The chromosome 9 ALS and FTD locus is probably derived from a single founder. Neurobiology of Aging, 2012, 33, 209.e3-209.e8.	1.5	115
256	Polygenic risk of <scp>P</scp> arkinson disease is correlated with disease age at onset. Annals of Neurology, 2015, 77, 582-591.	2.8	115
257	Alzheimer's disease: Molecular genetics and transgenic animal models. Behavioural Brain Research, 1993, 57, 207-213.	1.2	114
258	Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Medicine, 2018, 15, e1002487.	3.9	111
259	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	15.2	111
260	GLUT1 gene mutations cause sporadic paroxysmal exerciseâ€induced dyskinesias. Movement Disorders, 2009, 24, 1684-1688.	2.2	110
261	Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nature Reviews Neuroscience, 2012, 13, 453-464.	4.9	110
262	Missense variant in TREML2 protects against Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1510.e19-1510.e26.	1.5	110
263	Association of Dementia With Mortality Among Adults With Down Syndrome Older Than 35 Years. JAMA Neurology, 2019, 76, 152.	4.5	110
264	A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia. American Journal of Human Genetics, 2015, 96, 938-947.	2.6	109
265	Phosphodiesterase 4D and 5-lipoxygenase activating protein in ischemic stroke. Annals of Neurology, 2005, 58, 351-361.	2.8	108
266	Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Movement Disorders, 2012, 27, 526-532.	2.2	108
267	Complement receptor 1 (CR1) and Alzheimer's disease. Immunobiology, 2012, 217, 244-250.	0.8	107
268	Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain, 2016, 139, 3237-3252.	3.7	107
269	Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 152-164.	0.9	107
270	G2019S dardarin substitution is a common cause of Parkinson's disease in a Portuguese cohort. Movement Disorders, 2005, 20, 1653-1655.	2.2	106

#	Article	IF	Citations
271	A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2009, 18, 1524-1532.	1.4	106
272	Antiamyloid Therapy for Alzheimer's Disease â€" Are We on the Right Road?. New England Journal of Medicine, 2014, 370, 377-378.	13.9	106
273	The dardarin G2019S mutation is a common cause of Parkinson's disease but not other neurodegenerative diseases. Neuroscience Letters, 2005, 389, 137-139.	1.0	105
274	A disorder of cortical GABAergic innervation in Alzheimer's disease. Neuroscience Letters, 1987, 73, 192-196.	1.0	104
275	Correlations Between Apolipoprotein E $\hat{l}\mu 4$ Gene Dose and Whole Brain Atrophy Rates. American Journal of Psychiatry, 2007, 164, 916-921.	4.0	104
276	The Etiopathogenesis of Parkinson Disease and Suggestions for Future Research. Part I. Journal of Neuropathology and Experimental Neurology, 2007, 66, 251-257.	0.9	104
277	Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer's disease. Neurogenetics, 2009, 10, 183-190.	0.7	104
278	Features of <i>GBA</i> -associated Parkinson's disease at presentation in the UK <i>Tracking Parkinson's</i> study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 702-709.	0.9	103
279	The tau H2 haplotype is almost exclusively Caucasian in origin. Neuroscience Letters, 2004, 369, 183-185.	1.0	102
280	Genomeâ€Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease. Movement Disorders, 2021, 36, 424-433.	2.2	101
281	Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Current Neuropharmacology, 2013, 11, 59-79.	1.4	100
282	SCA2 may present as levodopa-responsive parkinsonism. Movement Disorders, 2003, 18, 425-429.	2.2	99
283	Familial Alzheimer's disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Molecular Psychiatry, 2020, 25, 2919-2931.	4.1	99
284	Genetic association of ?2-macroglobulin with Alzheimer's disease in a Finnish elderly population. Annals of Neurology, 1999, 46, 382-390.	2.8	98
285	Genes and parkinsonism. Lancet Neurology, The, 2003, 2, 221-228.	4.9	98
286	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	4.9	97
287	Ventricular Cerebrospinal Fluid Monoamine Transmitter and Metabolite Concentrations Reflect Human Brain Neurochemistry in Autopsy Cases. Journal of Neurochemistry, 1990, 54, 1148-1156.	2.1	96
288	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	1.5	96

#	Article	IF	Citations
289	De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. American Journal of Human Genetics, 2016, 98, 763-771.	2.6	96
290	Trisomy of human chromosome 21 enhances amyloid- \hat{l}^2 deposition independently of an extra copy of < i > APP < /i> . Brain, 2018, 141, 2457-2474.	3.7	96
291	Chromosome 14-encoded Alzheimer's disease: Genetic and clinicopathological description. Annals of Neurology, 1994, 36, 362-367.	2.8	95
292	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	4.5	95
293	Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Greece. Neuroscience Letters, 2009, 452, 87-89.	1.0	94
294	Apolipoprotein E $\hat{l}\mu 2$ allele promotes longevity and protects patients with Down $\hat{E}\frac{1}{4}$ s syndrome from dementia. NeuroReport, 1994, 5, 2583-2585.	0.6	93
295	Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer's disease. Human Genetics, 2001, 109, 646-652.	1.8	93
296	Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 862-871.	0.4	93
297	Presynaptic and postsynaptic glutamatergic function in Alzheimer's disease. Neuroscience Letters, 1988, 86, 109-113.	1.0	92
298	Association between the low density lipoprotein receptor-related protein (LRP) and Alzheimer's disease. Neuroscience Letters, 1997, 227, 68-70.	1.0	92
299	A Presenilin 1 Mutation Associated with Familial Frontotemporal Dementia Inhibits \hat{I}^3 -Secretase Cleavage of APP and Notch. Neurobiology of Disease, 2002, 9, 269-273.	2.1	92
300	Phenomenology of ?Lubag? or X-linked dystonia-parkinsonism. Movement Disorders, 2002, 17, 1271-1277.	2.2	92
301	Non-coding variability at the APOE locus contributes to the Alzheimer's risk. Nature Communications, 2019, 10, 3310.	5.8	91
302	Number of AÎ ² Inoculations in APP+PS1 Transgenic Mice Influences Antibody Titers, Microglial Activation, and Congophilic Plaque Levels. DNA and Cell Biology, 2001, 20, 731-736.	0.9	90
303	PREDICT-PD: Identifying risk of Parkinson's disease in the community: methods and baseline results. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 31-37.	0.9	90
304	Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Molecular Neurodegeneration, 2015, 10, 41.	4.4	90
305	Loss-of-function mutations in $\langle i \rangle$ RAB39B $\langle i \rangle$ are associated with typical early-onset Parkinson disease. Neurology: Genetics, 2015, 1, e9.	0.9	90
306	Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathologica, 2017, 133, 825-837.	3.9	90

#	Article	IF	Citations
307	Change in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neuroscience Letters, 1988, 86, 317-321.	1.0	88
308	Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biology, 2017, 12, 410-422.	3.9	87
309	The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Human Molecular Genetics, 2004, 13, 123R-126.	1.4	86
310	SnapShot: Genetics of Alzheimer's Disease. Cell, 2013, 155, 968-968.e1.	13.5	86
311	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	1.5	86
312	The genetic landscape of Alzheimer disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 395-408.	1.0	86
313	Genetic variability at the PARK16 locus. European Journal of Human Genetics, 2010, 18, 1356-1359.	1.4	85
314	Health comorbidities and cognitive abilities across the lifespan in Down syndrome. Journal of Neurodevelopmental Disorders, 2020, 12, 4.	1.5	85
315	Screening for the \hat{I}^2 -amyloid precursor protein mutation (APP717: Val \hat{a}^{\dagger} ' lle) in extended pedigrees with early onset Alzheimer's disease. Neuroscience Letters, 1991, 129, 134-135.	1.0	84
316	Aberrant Splicing in the Presenilin-1 Intron 4 Mutation Causes Presenile Alzheimer's Disease by Increased AÂ42 Secretion. Human Molecular Genetics, 1999, 8, 1529-1540.	1.4	84
317	Genomics implicates adaptive and innate immunity in Alzheimer's and Parkinson's diseases. Annals of Clinical and Translational Neurology, 2016, 3, 924-933.	1.7	84
318	Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Current Neuropharmacology, 2013, 11, 59-79.	1.4	84
319	Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21-22. Annals of Neurology, 1997, 42, 794-798.	2.8	83
320	A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan. BMC Neurology, 2006, 6, 47.	0.8	83
321	Characteristics of frontotemporal dementia patients with aProgranulinmutation. Annals of Neurology, 2006, 60, 374-380.	2.8	83
322	Sensitization of Neuronal Cells to Oxidative Stress with Mutated Human \hat{l}_{\pm} -Synuclein. Journal of Neurochemistry, 2008, 75, 2546-2554.	2.1	83
323	Moving beyond neurons: the role of cell type-specific gene regulation in Parkinson's disease heritability. Npj Parkinson's Disease, 2019, 5, 6.	2.5	83
324	Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer's disease. Brain Research, 1988, 452, 403-407.	1.1	82

#	Article	IF	Citations
325	A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSCâ€derived microglia. FASEB Journal, 2020, 34, 2436-2450.	0.2	82
326	Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends in Neurosciences, 2010, 33, 211-219.	4.2	81
327	The Evolution of Genetics: Alzheimer's and Parkinson's Diseases. Neuron, 2016, 90, 1154-1163.	3.8	81
328	The Spread of Neurodegenerative Disease. New England Journal of Medicine, 2012, 366, 2126-2128.	13.9	80
329	Amyloid precursor protein mutation causes Alzheimer's disease in a Swedish family. Neuroscience Letters, 1994, 168, 254-256.	1.0	79
330	A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Human Molecular Genetics, 2011, 20, R158-R162.	1.4	79
331	Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochemical and Biophysical Research Communications, 2013, 441, 862-866.	1.0	79
332	Parkinson's Disease – the Debate on the Clinical Phenomenology, Aetiology, Pathology and Pathogenesis. Journal of Parkinson's Disease, 2013, 3, 1-11.	1.5	79
333	SnapShot: Genetics of Parkinson's Disease. Cell, 2015, 160, 570-570.e1.	13.5	79
334	Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum. JAMA Neurology, 2018, 75, 860.	4.5	79
335	Variant Alzheimer Disease With Spastic paraparesis: Neuropathological phenotype. Journal of Neuropathology and Experimental Neurology, 2001, 60, 483-492.	0.9	78
336	Association of HFE common mutations with Parkinson's disease, Alzheimer's disease and mild cognitive impairment in a Portuguese cohort. BMC Neurology, 2006, 6, 24.	0.8	78
337	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	1.5	78
338	Ethnic differences in the expression of neurodegenerative disease: Machado-Joseph disease in Africans and Caucasians. Movement Disorders, 2002, 17, 1068-1071.	2.2	77
339	Genotype and phenotype in Parkinson's disease: Lessons in heterogeneity from deep brain stimulation. Movement Disorders, 2013, 28, 1370-1375.	2.2	77
340	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	4.9	77
341	A Pathogenic Presenilin-1 Deletion Causes Abberrant A \hat{l}^2 42 Production in the Absence of Congophilic Amyloid Plaques. Journal of Biological Chemistry, 2001, 276, 7233-7239.	1.6	76
342	Measures of Autozygosity in Decline: Globalization, Urbanization, and Its Implications for Medical Genetics. PLoS Genetics, 2009, 5, e1000415.	1.5	76

#	Article	IF	CITATIONS
343	Complicated recessive dystonia parkinsonism syndromes. Movement Disorders, 2009, 24, 490-499.	2.2	76
344	Mendelian disorders and multifactorial traits: the big divide or one for all?. Nature Reviews Genetics, 2010, 11, 380-384.	7.7	76
345	Blockage of CR1 prevents activation of rodent microglia. Neurobiology of Disease, 2013, 54, 139-149.	2.1	76
346	Review: Prionâ€like mechanisms of transactive response DNA binding protein of 43 kDa (<scp>TDP</scp> â€43) in amyotrophic lateral sclerosis (<scp>ALS</scp>). Neuropathology and Applied Neurobiology, 2015, 41, 578-597.	1.8	76
347	<i>Trem2</i> promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Human Molecular Genetics, 2020, 29, 3224-3248.	1.4	76
348	The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neuroscience Letters, 1999, 270, 1-4.	1.0	75
349	ApoE genotype and Down's syndrome. Lancet, The, 1994, 343, 979-980.	6.3	74
350	Testing times for the "amyloid cascade hypothesis― Neurobiology of Aging, 2002, 23, 1073-1074.	1.5	74
351	Towards a complete resolution of the genetic architecture of disease. Trends in Genetics, 2010, 26, 438-442.	2.9	74
352	Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurology, The, 2022, 21, 234-245.	4.9	74
353	In search of Î ³ -secretase. Nature, 1999, 398, 466-467.	13.7	73
354	Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy. Annals of Neurology, 2001, 50, 494-502.	2.8	73
355	Torsin A haplotype predisposes to idiopathic dystonia. Annals of Neurology, 2005, 57, 765-767.	2.8	73
356	<i>Sorl1</i> as an Alzheimer's Disease Predisposition Gene?. Neurodegenerative Diseases, 2008, 5, 60-64.	0.8	73
357	Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not. Experimental Neurology, 2014, 262, 75-83.	2.0	72
358	Screening for mutations in the open reading frame and promoter of the \hat{l}^2 -amyloid precursor protein gene in familial Alzheimer's disease: identification of a further family with APP717 Valâ†'lle. Human Molecular Genetics, 1992, 1, 165-168.	1.4	71
359	Co-association of parkin and α-synuclein. NeuroReport, 2001, 12, 2839-2843.	0.6	71
360	The Siblings With Ischemic Stroke Study (SWISS) Protocol. BMC Medical Genetics, 2002, 3, 1.	2.1	71

#	Article	IF	Citations
361	Analysis of an early-onset Parkinson's disease cohort for DJ-1 mutations. Movement Disorders, 2004, 19, 796-800.	2.2	71
362	A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain, 2017, 140, 1611-1618.	3.7	71
363	Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1697-1706.	3.3	71
364	Analysis of IFT74as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology, 2006, 6, 44.	0.8	70
365	Peptidylarginine Deiminasesâ€"Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release?. International Journal of Molecular Sciences, 2017, 18, 1196.	1.8	70
366	Genetic risk for alzheimer disease is distinct from genetic risk for amyloid deposition. Annals of Neurology, 2019, 86, 427-435.	2.8	70
367	Polygenic risk and hazard scores for Alzheimer's disease prediction. Annals of Clinical and Translational Neurology, 2019, 6, 456-465.	1.7	70
368	Genetic neuropathology of Parkinson's disease. International Journal of Clinical and Experimental Pathology, 2008, 1, 217-31.	0.5	70
369	An â€~anatomical cascade hypothesis' for Alzheimer's disease. Trends in Neurosciences, 1992, 15, 200-201.	4.2	69
370	FUS and TDP43 genetic variability in FTD and CBS. Neurobiology of Aging, 2012, 33, 1016.e9-1016.e17.	1.5	69
371	mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 2016, 6, 35106.	1.6	69
372	Alzheimer's disease polygenic risk score as a predictor of conversion from mild-cognitive impairment. Translational Psychiatry, 2019, 9, 154.	2.4	69
373	The Tau H1 Haplotype is associated with Parkinson's disease in the Norwegian population. Neuroscience Letters, 2002, 322, 83-86.	1.0	68
374	SnapShot: Genetics of ALS and FTD. Cell, 2015, 160, 798-798.e1.	13.5	68
375	Cognitive markers of preclinical and prodromal Alzheimer's disease in Down syndrome. Alzheimer's and Dementia, 2019, 15, 245-257.	0.4	68
376	Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. Neurobiology of Aging, 2012, 33, 426.e13-426.e21.	1.5	67
377	Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. Genome Medicine, 2017, 9, 100.	3.6	67
378	Genetic variability in response to amyloid beta deposition influences Alzheimer's disease risk. Brain Communications, 2019, 1, fcz022.	1.5	67

#	Article	IF	Citations
379	New Insights into the Genetics of Alzheimer's Disease. Annals of Medicine, 1996, 28, 255-258.	1.5	66
380	Genome screen for loci influencing age at onset and rate of decline in late onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 135B, 24-32.	1.1	66
381	CXCR4 involvement in neurodegenerative diseases. Translational Psychiatry, 2018, 8, 73.	2.4	66
382	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	2.2	66
383	SCA15 Due to Large ITPR1 Deletions in a Cohort of 333 White Families With Dominant Ataxia. Archives of Neurology, 2011, 68, 637-43.	4.9	65
384	Age-associated changes in gene expression in human brain and isolated neurons. Neurobiology of Aging, 2013, 34, 1199-1209.	1.5	65
385	A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the <i>OAS1</i> gene. Brain, 2021, 144, 3727-3741.	3.7	65
386	Largeâ€scale plasma proteomic profiling identifies a highâ€performance biomarker panel for Alzheimer's disease screening and staging. Alzheimer's and Dementia, 2022, 18, 88-102.	0.4	65
387	Tracking Parkinson's: Study Design and Baseline Patient Data. Journal of Parkinson's Disease, 2015, 5, 947-959.	1.5	64
388	Study protocol: Insight 46 – a neuroscience sub-study of the MRC National Survey of Health and Development. BMC Neurology, 2017, 17, 75.	0.8	64
389	Aging related cognitive changes associated with Alzheimer's disease in Down syndrome. Annals of Clinical and Translational Neurology, 2018, 5, 741-751.	1.7	64
390	Senile dementia of the Lewy body type has an apolipoprotein E $\hat{l}\mu4$ allele frequency intermediate between controls and Alzheimer's disease. Neuroscience Letters, 1994, 182, 1-2.	1.0	63
391	The genetics of neurodegenerative diseases. Journal of Neurochemistry, 2006, 97, 1690-1699.	2.1	63
392	Familial Parkinsonism and early onset Parkinson's disease in a Brazilian movement disorders clinic: Phenotypic characterization and frequency of <i>SNCA</i> , <i>PRKN</i> , <i>PINK1</i> , and <i>LRRK2</i> mutations. Movement Disorders, 2009, 24, 662-666.	2.2	63
393	Alzheimer's disease in Down syndrome: An overlooked population for prevention trials. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 703-713.	1.8	63
394	Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Molecular Psychiatry, 2021, 26, 5766-5788.	4.1	63
395	Disintegrating Brain Networks: from Syndromes to Molecular Nexopathies. Neuron, 2012, 73, 1060-1062.	3.8	62
396	Selective vulnerability in neurodegeneration: insights from clinical variants of Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1000-1004.	0.9	62

#	Article	IF	Citations
397	Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain, 2019, 142, 2828-2844.	3.7	62
398	Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurology, The, 2021, 20, 107-116.	4.9	62
399	Analysis of Nigerians with Apparently Sporadic Parkinson Disease for Mutations in LRRK2, PRKN and ATXN3. PLoS ONE, 2008, 3, e3421.	1.1	61
400	Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models. Science Translational Medicine, 2015, 7, 309ra164.	5.8	61
401	The Relationship between Amyloid and Tau. Journal of Molecular Neuroscience, 2003, 20, 203-206.	1.1	60
402	The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiology of Aging, 2012, 33, 2231.e7-2231.e14.	1.5	60
403	A 6.4 Mb Duplication of the α-Synuclein Locus Causing Frontotemporal Dementia and Parkinsonism. JAMA Neurology, 2014, 71, 1162.	4.5	60
404	Insights From Cerebellar Transcriptomic Analysis Into the Pathogenesis of Ataxia. JAMA Neurology, 2014, 71, 831.	4.5	60
405	TDP-43 Is Not a Common Cause of Sporadic Amyotrophic Lateral Sclerosis. PLoS ONE, 2008, 3, e2450.	1.1	60
406	Validation of next-generation sequencing technologies in genetic diagnosis of dementia. Neurobiology of Aging, 2014, 35, 261-265.	1.5	59
407	PREDICT-PD: An online approach to prospectively identify risk indicators of Parkinson's disease. Movement Disorders, 2017, 32, 219-226.	2.2	59
408	Parkinson's disease determinants, prediction and gene–environment interactions in the UK Biobank. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1046-1054.	0.9	59
409	Memory Function and Brain Biochemistry in Normal Aging and in Senile Dementia. Annals of the New York Academy of Sciences, 1985, 444, 255-268.	1.8	58
410	Association of ABCA1 with late-onset Alzheimer's disease is not observed in a case-control study. Neuroscience Letters, 2004, 366, 268-271.	1.0	58
411	ApoE genotype is a risk factor in nonpresenilin early-onset alzheimer's disease families. American Journal of Medical Genetics Part A, 1998, 81, 117-121.	2.4	57
412	Preclinical cognitive decline in late middle-aged asymptomatic apolipoprotein E-e4/4 homozygotes: a replication study. Journal of the Neurological Sciences, 2001, 189, 93-98.	0.3	57
413	Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Molecular Brain Research, 2001, 97, 94-102.	2.5	57
414	Cotton Wool Plaques in Non-Familial Late-Onset Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 1051-1061.	0.9	57

#	Article	IF	Citations
415	Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Human Molecular Genetics, 2014, 23, R47-R53.	1.4	57
416	Genetic comorbidities in Parkinson's disease. Human Molecular Genetics, 2014, 23, 831-841.	1.4	57
417	Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3. Neurogenetics, 2017, 18, 121-133.	0.7	57
418	Alzheimer's disease: where next for anti-amyloid therapies?. Brain, 2017, 140, 853-855.	3.7	57
419	Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. Neurobiology of Aging, 2019, 78, 98-110.	1.5	57
420	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	2.2	57
421	Advances and perspectives from genetic research: development of biological markers in Alzheimer's disease. Expert Review of Molecular Diagnostics, 2010, 10, 667-690.	1.5	56
422	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	2.8	56
423	Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease. Alzheimer's Research and Therapy, 2019, 11, 26.	3.0	56
424	Presenilin mutations line up along transmembrane α-helices. Neuroscience Letters, 2001, 306, 203-205.	1.0	55
425	Cholesterol 25-Hydroxylase on Chromosome 10q Is a Susceptibility Gene for Sporadic Alzheimer's Disease. Neurodegenerative Diseases, 2005, 2, 233-241.	0.8	55
426	Clinical and pathological features of an Alzheimer's disease patient with the MAPT Î"K280 mutation. Neurobiology of Aging, 2009, 30, 388-393.	1.5	55
427	Microglia, Alzheimer's Disease, and Complement. International Journal of Alzheimer's Disease, 2012, 2012, 1-10.	1.1	55
428	Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiology of Disease, 2016, 94, 55-62.	2.1	55
429	AD-linked R47H- <i>TREM2</i> mutation induces disease-enhancing microglial states via AKT hyperactivation. Science Translational Medicine, 2021, 13, eabe3947.	5.8	55
430	Intra- and extra-dopamine-synaptosomal localization of monoamine oxidase in striatal homogenates from four species. Biochemical Pharmacology, 1987, 36, 2931-2935.	2.0	54
431	A novel presenilin mutation (M233V) causing very early onset Alzheimer's disease with Lewy bodies. Neuroscience Letters, 2001, 313, 93-95.	1.0	54
432	Psychiatric Disorder Criteria and their Application to Research in Different Racial Groups. BMC Psychiatry, 2007, 7, 1.	1.1	54

#	Article	IF	Citations
433	Polymorphism in AACT gene may lower age of onset of Alzheimer's disease. NeuroReport, 1996, 7, 534-536.	0.6	53
434	Association between coding variability in the LRP gene and the risk of late-onset Alzheimer's disease. Human Genetics, 1999, 104, 432-434.	1.8	53
435	The Role of Variation at \hat{A}^2PP , PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 377-387.	1.2	53
436	Investigating the role of rare coding variability in Mendelian dementia genes (APP , PSEN1 , PSEN2 , GRN) Tj ETQo	q0,00 rgB 1.5	T <u> </u> Qverlock
437	Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Reports, 2021, 34, 108615.	2.9	53
438	Presenilin 1 Mutation in an African American Family Presenting With Atypical Alzheimer Dementia. Archives of Neurology, 2003, 60, 884.	4.9	52
439	Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer's disease. Human Molecular Genetics, 2007, 16, 2703-2712.	1.4	52
440	Analysis of Parkinson disease patients from Portugal for mutations in SNCA, PRKN, PINK1 and LRRK2. BMC Neurology, 2008, 8, 1.	0.8	52
441	Parietal Lobe Deficits in Frontotemporal Lobar Degeneration Caused by a Mutation in the Progranulin Gene. Archives of Neurology, 2008, 65, 506.	4.9	52
442	Identification of Modifier Genes in a Mouse Model of Gaucher Disease. Cell Reports, 2016, 16, 2546-2553.	2.9	52
443	Genetic Variability in CLU and Its Association with Alzheimer's Disease. PLoS ONE, 2010, 5, e9510.	1.1	52
444	Analysis of Genome-Wide Association Studies of Alzheimer Disease and of Parkinson Disease to Determine If These 2 Diseases Share a Common Genetic Risk. JAMA Neurology, 2013, 70, 1268-76.	4.5	51
445	Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Scientific Reports, 2017, 7, 1666.	1.6	51
446	Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer's and Parkinson's disease. Alzheimer's Research and Therapy, 2019, 11, 82.	3.0	51
447	Structure and alternative splicing of the Presenilin-2 gene. NeuroReport, 1996, 7, 1680-1684.	0.6	50
448	Alzheimer disease PS-1 exon 9 deletion defined. Nature Medicine, 1999, 5, 1090-1090.	15.2	50
449	Conflicting Results Regarding the Semaphorin Gene (SEMA5A) and the Risk for Parkinson Disease. American Journal of Human Genetics, 2006, 78, 1082-1083.	2.6	50
450	Lack of G2019S LRRK2 mutation in a cohort of Taiwanese with sporadic Parkinson's disease. Movement Disorders, 2006, 21, 880-881.	2.2	50

#	Article	IF	Citations
451	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 678-679.	4.9	50
452	The Parkinson's Disease Mendelian Randomization Research Portal. Movement Disorders, 2019, 34, 1864-1872.	2.2	50
453	Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders. Brain, 2020, 143, 2771-2787.	3.7	50
454	Analysis of Copy Number Variation in Alzheimer's Disease in a Cohort of Clinically Characterized and Neuropathologically Verified Individuals. PLoS ONE, 2012, 7, e50640.	1.1	49
455	StemBANCC: Governing Access to Material and Data in a Large Stem Cell Research Consortium. Stem Cell Reviews and Reports, 2015, 11, 681-687.	5 . 6	49
456	Rare and Coding Region Genetic Variants Associated With Risk of Ischemic Stroke. JAMA Neurology, 2015, 72, 781.	4.5	49
457	No association between the alpha-2 macroglobulin I1000V polymorphism and Alzheimer's disease. Neuroscience Letters, 1999, 262, 137-139.	1.0	48
458	Cardiovascular risk factors and Alzheimer's disease: a genetic association study in a population aged 85 or over. Neuroscience Letters, 2000, 292, 195-198.	1.0	48
459	Genetic testing in Parkinson's disease. Movement Disorders, 2005, 20, 1-10.	2.2	48
460	Investigating the utility of human embryonic stem cellâ€derived neurons to model ageing and neurodegenerative disease using wholeâ€genome gene expression and splicing analysis. Journal of Neurochemistry, 2012, 122, 738-751.	2.1	48
461	A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiology of Aging, 2015, 36, 2904.e13-2904.e26.	1.5	48
462	Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Human Molecular Genetics, 2016, 25, ddw348.	1.4	48
463	Antisense-Induced Reduction of Presenilin 1 Expression Selectively Increases the Production of Amyloid beta42 in Transfected Cells. Journal of Neurochemistry, 1999, 73, 2383-2388.	2.1	47
464	Genetic Variability in <i>CHMP2B</i> and Frontotemporal Dementia. Neurodegenerative Diseases, 2006, 3, 129-133.	0.8	47
465	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	2.2	47
466	Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain, 2019, 142, 1616-1630.	3.7	47
467	SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Reports, 2021, 35, 109259.	2.9	47
468	Aducanumab: a new phase in therapeutic development for Alzheimer's disease?. EMBO Molecular Medicine, 2021, 13, e14781.	3.3	47

#	Article	IF	Citations
469	Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. European Journal of Human Genetics, 2001, 9, 659-666.	1.4	46
470	Genomewide SNP assay reveals mutations underlying Parkinson disease. Human Mutation, 2008, 29, 315-322.	1.1	46
471	Candidate Gene Polymorphisms for Ischemic Stroke. Stroke, 2009, 40, 3436-3442.	1.0	46
472	Screening for C9ORF72 repeat expansion in FTLD. Neurobiology of Aging, 2012, 33, 1850.e1-1850.e11.	1.5	46
473	Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain, 2017, 140, 1437-1446.	3.7	46
474	Potential human transmission of amyloid \hat{l}^2 pathology: surveillance and risks. Lancet Neurology, The, 2020, 19, 872-878.	4.9	46
475	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46
476	Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology, 2012, 79, 435-441.	1.5	45
477	Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus. PLoS ONE, 2013, 8, e70724.	1.1	45
478	A comprehensive analysis of methods for assessing polygenic burden on Alzheimer's disease pathology and risk beyond APOE. Brain Communications, 2020, 2, fcz047.	1.5	45
479	Clinical, 18F-dopa PET, and genetic analysis of an ethnic Chinese kindred with early-onset parkinsonism andparkin gene mutations. Movement Disorders, 2002, 17, 670-675.	2.2	44
480	The Ischemic Stroke Genetics Study (ISGS) Protocol. BMC Neurology, 2003, 3, 4.	0.8	44
481	Genome-Wide Analysis of the Parkinsonism-Dementia Complex of Guam. Archives of Neurology, 2004, 61, 1889-97.	4.9	44
482	Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research. PLoS ONE, 2012, 7, e43099.	1.1	44
483	Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2014, 3, 211-219.	0.9	44
484	GBA-Associated Parkinson's Disease: Progression in a Deep Brain Stimulation Cohort. Journal of Parkinson's Disease, 2017, 7, 635-644.	1.5	44
485	Incomplete annotation has a disproportionate impact on our understanding of Mendelian and complex neurogenetic disorders. Science Advances, 2020, 6, .	4.7	44
486	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	5.8	44

#	Article	IF	CITATIONS
487	Genome-wide association studies for Alzheimer's disease: bigger is not always better. Brain Communications, 2022, 4, .	1.5	44
488	Genetic variability at the amyloid- \hat{l}^2 precursor protein locus may contribute to the risk of late-onset Alzheimer's disease. Neuroscience Letters, 1999, 269, 67-70.	1.0	43
489	Indianâ€subcontinent NBIA: Unusual phenotypes, novel <i>PANK2</i> mutations, and undetermined genetic forms. Movement Disorders, 2010, 25, 1424-1431.	2.2	43
490	The genetics of ischaemic stroke. Journal of Internal Medicine, 2010, 267, 139-155.	2.7	43
491	The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson's disease with a sexual dimorphism. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 666-673.	0.9	43
492	Genomewide association study in cervical dystonia demonstrates possible association with sodium leak channel. Movement Disorders, 2014, 29, 245-251.	2,2	43
493	Neurofilament light as a blood biomarker for neurodegeneration in Down syndrome. Alzheimer's Research and Therapy, 2018, 10, 39.	3.0	43
494	Association of Apolipoprotein E With Intracerebral Hemorrhage Risk by Race/Ethnicity. JAMA Neurology, 2019, 76, 480.	4.5	43
495	Use of support vector machines for disease risk prediction in genome-wide association studies: Concerns and opportunities. Human Mutation, 2012, 33, 1708-1718.	1.1	42
496	Global and local ancestry in Africanâ€Americans: Implications for Alzheimer's disease risk. Alzheimer's and Dementia, 2016, 12, 233-243.	0.4	42
497	A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Molecular Psychiatry, 2020, 25, 629-639.	4.1	42
498	α-T-Catenin Is Expressed in Human Brain and Interacts With the Wnt Signaling Pathway But Is Not Responsible for Linkage to Chromosome 10 in Alzheimer's Disease. NeuroMolecular Medicine, 2004, 5, 133-146.	1.8	41
499	Characterization of two APP gene promoter polymorphisms that appear to influence risk of late-onset Alzheimer's disease. Neurobiology of Aging, 2005, 26, 1329-1341.	1.5	41
500	The Etiopathogenesis of Parkinson Disease and Suggestions for Future Research. Part II. Journal of Neuropathology and Experimental Neurology, 2007, 66, 329-336.	0.9	41
501	Progranulin (GRN)in two siblings of a Latino family and in other patients with Schizophrenia. Neurocase, 2010, 16, 273-279.	0.2	41
502	TDP-43 pathology in a patient carrying G2019S LRRK2Âmutation and a novel p.Q124E MAPT. Neurobiology of Aging, 2013, 34, 2889.e5-2889.e9.	1.5	41
503	Initial Assessment of the Pathogenic Mechanisms of the Recently Identified Alzheimer Risk Loci. Annals of Human Genetics, 2013, 77, 85-105.	0.3	41
504	Polymorphisms in BACE2 may affect the age of onset Alzheimer's dementia in Down syndrome. Neurobiology of Aging, 2014, 35, 1513.e1-1513.e5.	1.5	41

#	Article	IF	CITATIONS
505	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	4.4	41
506	Insertions in the prion protein gene in atypical dementias. Experimental Neurology, 1991, 112, 240-242.	2.0	40
507	Early-onset Alzheimer's disease with a presenilin-1 mutation at the site corresponding to the volga German presenilin-2 mutation. Annals of Neurology, 1997, 42, 124-128.	2.8	40
508	No association between TAU haplotype and Alzheimer's disease in population or clinic based series or in familial disease. Neuroscience Letters, 2000, 285, 147-149.	1.0	40
509	A MAPT mutation in a regulatory element upstream of exon 10 causes frontotemporal dementia. Neurobiology of Disease, 2006, 22, 401-403.	2.1	40
510	Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson's disease. Molecular Genetics and Metabolism, 2011, 103, 410-412.	0.5	40
511	Sequencing of exons 16 and 17 of the \hat{l}^2 -amyloid precursor protein gene in 14 families with early onset Alzheimer's disease fails to reveal mutations in the \hat{l}^2 -amyloid sequence. Neuroscience Letters, 1991, 133, 1-2.	1.0	39
512	Confirmation that familial clustering and age of onset in late onset Alzheimer's disease are determined at the apolipoprotein E locus. Neuroscience Letters, 1994, 174, 222-224.	1.0	39
513	The tau locus is not significantly associated with pathologically confirmed sporadic Parkinson's disease. Neuroscience Letters, 2002, 330, 201-203.	1.0	39
514	An association study of a functional catalase gene polymorphism, â°'262Câ†'T, and patients with Alzheimer's disease. Neuroscience Letters, 2002, 330, 210-212.	1.0	39
515	Toward Alzheimer Therapies Based on Genetic Knowledge. Annual Review of Medicine, 2004, 55, 15-25.	5.0	39
516	Amyloid double trouble. Nature Genetics, 2006, 38, 11-12.	9.4	39
517	Amyloid at the blood vessel wall. Nature Medicine, 2006, 12, 756-757.	15.2	39
518	Resolving the polymorphism-in-probe problem is critical for correct interpretation of expression QTL studies. Nucleic Acids Research, 2013, 41, e88-e88.	6.5	39
519	Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. Molecular Neurodegeneration, 2016, 11, 21.	4.4	39
520	Weighted Protein Interaction Network Analysis of Frontotemporal Dementia. Journal of Proteome Research, 2017, 16, 999-1013.	1.8	39
521	iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease. PLoS ONE, 2017, 12, e0184104.	1.1	39
522	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	3.7	39

#	Article	IF	CITATIONS
523	Association of Tau Haplotype-Tagging Polymorphisms with Parkinson's Disease in Diverse Ethnic Parkinson's Disease Cohorts. Neurodegenerative Diseases, 2006, 3, 327-333.	0.8	38
524	A presenilin 1 mutation (L420R) in a family with early onset Alzheimer disease, seizures and cotton wool plaques, but not spastic paraparesis. Neuropathology, 2007, 27, 228-232.	0.7	38
525	Neuronal intranuclear inclusion disease is genetically heterogeneous. Annals of Clinical and Translational Neurology, 2020, 7, 1716-1725.	1.7	38
526	X-linked dystonia ("Lubagâ€) presenting predominantly with parkinsonism: A more benign phenotype?. Movement Disorders, 2002, 17, 200-202.	2.2	37
527	Analysis of the PINK1 gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan. Neuroscience Letters, 2006, 394, 33-36.	1.0	37
528	Ubiquilin 1 polymorphisms are not associated with late-onset Alzheimer's disease. Annals of Neurology, 2006, 59, 21-26.	2.8	37
529	Familial early onset frontotemporal dementia caused by a novel S356T MAPT mutation, initially diagnosed as schizophrenia. Clinical Neurology and Neurosurgery, 2010, 112, 917-920.	0.6	37
530	Alzheimer's disease genetics: lessons to improve disease modelling. Biochemical Society Transactions, 2011, 39, 910-916.	1.6	37
531	Novel <i>CLN3</i> mutation causing autophagic vacuolar myopathy. Neurology, 2014, 82, 2072-2076.	1.5	37
532	Does the difference between PART and Alzheimerâ \in TM s disease lie in the age-related changes in cerebral arteries that trigger the accumulation of Al̂ ² and propagation of tau?. Acta Neuropathologica, 2015, 129, 763-766.	3.9	37
533	ABCA7 p.G215S as potential protective factor for Alzheimer's disease. Neurobiology of Aging, 2016, 46, 235.e1-235.e9.	1.5	37
534	Variation at the $\langle i \rangle$ TRIM11 $\langle i \rangle$ locus modifies progressive supranuclear palsy phenotype. Annals of Neurology, 2018, 84, 485-496.	2.8	37
535	De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes. European Journal of Human Genetics, 2019, 27, 1121-1133.	1.4	37
536	Association of lipoprotein base Ser447Ter polymorphism with brain infarction: a population-based neuropathological study. Annals of Medicine, 2001, 33, 486-492.	1.5	36
537	α-Synuclein selectively increases manganese-induced viability loss in SK-N-MC neuroblastoma cells expressing the human dopamine transporter. Neuroscience Letters, 2004, 354, 34-37.	1.0	36
538	Genetic association of the APP binding protein 2 gene (APBB2) with late onset Alzheimer disease. Human Mutation, 2005, 25, 270-277.	1.1	36
539	α-Synuclein mutations cluster around a putative protein loop. Neuroscience Letters, 2013, 546, 67-70.	1.0	36
540	Genetic Influences on Atrophy Patterns in Familial Alzheimer's Disease: A Comparison of APP and PSEN1 Mutations. Journal of Alzheimer's Disease, 2013, 35, 199-212.	1.2	36

#	Article	IF	CITATIONS
541	Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease. Neurobiology of Aging, 2014, 35, 2302-2315.	1.5	36
542	Apolipoprotein E4 and tau allele frequencies among Choctaw Indians. Neuroscience Letters, 2002, 324, 77-79.	1.0	35
543	Association studies between risk for late-onset Alzheimer's disease and variants in insulin degrading enzyme. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 62-68.	1.1	35
544	Exome sequencing in an SCA14 family demonstrates its utility in diagnosing heterogeneous diseases. Neurology, 2012, 79, 127-131.	1.5	35
545	Study of the genetic variability in a Parkinson's Disease gene: EIF4G1. Neuroscience Letters, 2012, 518, 19-22.	1.0	35
546	Ageing Increases Vulnerability to $\hat{Al^2}$ 42 Toxicity in Drosophila. PLoS ONE, 2012, 7, e40569.	1.1	35
547	Novel C12orf65 mutations in patients with axonal neuropathy and optic atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 486-492.	0.9	35
548	Autonomic Dysfunction in Early Parkinson's Disease: Results from the United Kingdom Tracking Parkinson's Study. Movement Disorders Clinical Practice, 2017, 4, 509-516.	0.8	35
549	Wholeâ€exome sequencing of the <scp>BDR</scp> cohort: evidence to support the role of the <i><scp>PILRA</scp></i> gene in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2018, 44, 506-521.	1.8	35
550	Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis. BMC Genomics, 2018, 19, 452.	1.2	35
551	Heritability Enrichment Implicates Microglia in Parkinson's Disease Pathogenesis. Annals of Neurology, 2021, 89, 942-951.	2.8	35
552	L-dopa slows the progression of familial parkinsonism. Lancet, The, 1999, 353, 1850-1851.	6.3	34
553	Polymorphism in the human DJ-1 gene is not associated with sporadic dementia with Lewy bodies or Parkinson's disease. Neuroscience Letters, 2003, 352, 151-153.	1.0	34
554	Parkin disease and the Lewy body conundrum. Movement Disorders, 2013, 28, 702-704.	2.2	34
555	Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer's disease identifies a homozygous CTSF mutation. Neurobiology of Aging, 2016, 46, 236.e1-236.e6.	1.5	34
556	Microgliali»; signalling pathway deficits associated with the patient derived R47H TREM2 variants linked to AD indicate inability to activate inflammasome. Scientific Reports, 2021, 11, 13316.	1.6	34
557	Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease. PLoS ONE, 2016, 11, e0150079.	1.1	34
558	Apolipoprotein E in the genetics and epidemiology of Alzheimer's disease. American Journal of Medical Genetics Part A, 1995, 60, 456-460.	2.4	33

#	Article	IF	CITATIONS
559	Linkage exclusion in French families with probable Parkinson's disease. Movement Disorders, 2000, 15, 1075-1083.	2.2	33
560	Sequence variation in the CHAT locus shows no association with late-onset Alzheimer's disease. Human Genetics, 2003, 113, 258-267.	1.8	33
561	Analysis of familial and sporadic restless legs syndrome in age of onset, gender, and severity features. Journal of Neurology, 2004, 251, 1398-1401.	1.8	33
562	IL1RN VNTR Polymorphism in Ischemic Stroke. Stroke, 2007, 38, 1189-1196.	1.0	33
563	Amyloid or tau: the chicken or the egg?. Acta Neuropathologica, 2013, 126, 609-613.	3.9	33
564	Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy. Neurobiology of Aging, 2014, 35, 1514.e1-1514.e12.	1.5	33
565	In search of the soluble. Nature, 1992, 359, 268-269.	13.7	32
566	A novel mutation in the apolipoprotein E gene (APOE*4 Pittsburgh) is associated with the risk of late-onset Alzheimer's disease. Neuroscience Letters, 1999, 263, 129-132.	1.0	32
567	Feasibility of an Affected Sibling Pair Study in Ischemic Stroke. Stroke, 2001, 32, 2939-2941.	1.0	32
568	Genetic variability at the LXR gene (NR1H2) may contribute to the risk of Alzheimer's disease. Neurobiology of Aging, 2006, 27, 1431-1434.	1.5	32
569	Structural genomic variation in ischemic stroke. Neurogenetics, 2008, 9, 101-108.	0.7	32
570	Functional characterization of three singleâ€nucleotide polymorphisms present in the human <i>APOE</i> promoter sequence: Differential effects in neuronal cells and on DNA–protein interactions. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 185-201.	1.1	32
571	Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiology of Aging, 2011, 32, 758.e1-758.e7.	1.5	32
572	Clinical features, with video documentation, of the original familial lewy body parkinsonism caused by î±â€synuclein triplication (lowa kindred). Movement Disorders, 2011, 26, 2134-2136.	2,2	32
573	Investigation of next-generation sequencing technologies as a diagnostic tool for amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1600.e5-1600.e8.	1.5	32
574	Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. Neurobiology of Aging, 2018, 66, 179.e17-179.e29.	1.5	32
575	POLYGENIC RISK SCORE ANALYSIS OF ALZHEIMER'S DISEASE IN CASES WITHOUT APOE4 OR APOE2 ALLELES journal of prevention of Alzheimer's disease, The, 2018, 6, 1-4.	· 1.5	32
576	Identification and characterization of the human parkin gene promoter. Journal of Neurochemistry, 2001, 78, 1146-1152.	2.1	31

#	Article	IF	CITATIONS
577	Interleukin-1A polymorphism is not associated with late onset Alzheimer's disease. Neuroscience Letters, 2002, 323, 81-83.	1.0	31
578	Mutations in neurofilament genes are not a significant primary cause of non-SOD1-mediated amyotrophic lateral sclerosis. Neurobiology of Disease, 2006, 21, 102-109.	2.1	31
579	Novel progranulin mutation: Screening for PGRN mutations in a Portuguese series of FTD/CBS cases. Movement Disorders, 2008, 23, 1269-1273.	2.2	30
580	Intracerebral haemorrhage in Down syndrome: protected or predisposed?. F1000Research, 2016, 5, 876.	0.8	30
581	Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer's disease. Neurobiology of Aging, 2018, 62, 244.e1-244.e8.	1.5	30
582	Presenilin–1 is Processed into Two Major Cleavage Products in Neuronal Cell Lines. Experimental Neurology, 1996, 5, 293-298.	1.7	29
583	ABCA1 polymorphisms and Alzheimer's disease. Neuroscience Letters, 2007, 416, 180-183.	1.0	29
584	TOMM40 Association With Alzheimer Disease. Archives of Neurology, 2012, 69, 1243.	4.9	29
585	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	2.1	29
586	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	2.8	29
587	The uptake of serotonin and dopamine by homogenates of frozen rat and human brain tissue. Neurochemical Research, 1985, 10, 591-599.	1.6	28
588	ApoE ?3-haplotype modulates Alzheimer beta-amyloid deposition in the brain. American Journal of Medical Genetics Part A, 2002, 114, 288-291.	2.4	28
589	Chromosome 21 BACE2 haplotype associates with Alzheimer's disease: A two-stage study. Journal of the Neurological Sciences, 2005, 236, 17-24.	0.3	28
590	Association of Integrin $\hat{l}\pm 2$ Gene Variants with Ischemic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 81-89.	2.4	28
591	Siblings With Ischemic Stroke Study. Stroke, 2011, 42, 2726-2732.	1.0	28
592	Genome Wide Assessment of Young Onset Parkinson's Disease from Finland. PLoS ONE, 2012, 7, e41859.	1,1	28
593	Exome sequencing identifies 2 novel presenilin 1 mutations (p.L166V and p.S230R) in British early-onset Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2422.e13-2422.e16.	1.5	28
594	The <i>CACNA1B </i> R1389H variant is not associated with myoclonus-dystonia in a large European multicentric cohort. Human Molecular Genetics, 2015, 24, 5326-5329.	1.4	28

#	Article	IF	CITATIONS
595	A Further Presenilin 1 Mutation in the Exon 8 Cluster in Familial Alzheimer's Disease. Experimental Neurology, 1996, 5, 207-212.	1.7	27
596	Apolipoprotein E genotype does not affect the age of onset of dementia in families with defined tau mutations. Neuroscience Letters, 1999, 260, 193-195.	1.0	27
597	No pathogenic mutations in the \hat{l}^2 -synuclein gene in Parkinson's disease. Neuroscience Letters, 1999, 269, 107-109.	1.0	27
598	Marked variation in clinical presentation and age of onset in a family with a heterozygous parkin mutation. Movement Disorders, 2003, 18, 758-763.	2,2	27
599	Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 72-74.	1.1	27
600	What Is a Schizophrenic Mouse?. Neuron, 2007, 54, 348-349.	3.8	27
601	Pathogenic LRRK2 Mutations Do Not Alter Gene Expression in Cell Model Systems or Human Brain Tissue. PLoS ONE, 2011, 6, e22489.	1.1	27
602	Youngâ€onset parkinsonism due to homozygous duplication of αâ€synuclein in a consanguineous family. Movement Disorders, 2012, 27, 1829-1830.	2.2	27
603	Progress in the genetic analysis of Parkinson's disease. Human Molecular Genetics, 2019, 28, R215-R218.	1.4	27
604	Knock-in models related to Alzheimer $\hat{a} \in \mathbb{N}$ disease: synaptic transmission, plaques and the role of microglia. Molecular Neurodegeneration, 2021, 16, 47.	4.4	27
605	Cross-platform transcriptional profiling identifies common and distinct molecular pathologies in Lewy body diseases. Acta Neuropathologica, 2021, 142, 449-474.	3.9	27
606	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	2.4	27
607	Measuring heritable contributions to Alzheimer's disease: polygenic risk score analysis with twins. Brain Communications, 2022, 4, fcab308.	1.5	27
608	Does AÎ ² 42 Have a Function Related to Blood Homeostasis?. Neurochemical Research, 2007, 32, 833-835.	1.6	26
609	A nonsense mutation in PRNP associated with clinical Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2656.e13-2656.e16.	1.5	26
610	Using global team science to identify genetic parkinson's disease worldwide. Annals of Neurology, 2019, 86, 153-157.	2.8	26
611	The pallidopyramidal syndromes. Current Opinion in Neurology, 2013, 26, 381-394.	1.8	25
612	Genomeâ€wide association study of neocortical Lewyâ€related pathology. Annals of Clinical and Translational Neurology, 2015, 2, 920-931.	1.7	25

#	Article	IF	CITATIONS
613	<i>RFC1</i> -related ataxia is a mimic of early multiple system atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 444-446.	0.9	25
614	Polygenic risk scores for Alzheimer's disease are related to dementia risk in APOE É>4 negatives. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12142.	1.2	25
615	Alzheimer's disease: Genetic evidence points to a single pathogenesis. Annals of Neurology, 2003, 54, 143-144.	2.8	24
616	Variation in the urokinase-plasminogen activator gene does not explain the chromosome 10 linkage signal for late onset AD. American Journal of Medical Genetics Part A, 2004, 124B, 29-37.	2.4	24
617	Evidence of a founder effect in families with frontotemporal dementia that harbor the tau +16 splice mutation. American Journal of Medical Genetics Part A, 2004, 125B, 79-82.	2.4	24
618	Gaucher and Parkinson diseases. Neurology, 2008, 70, 2272-2273.	1.5	24
619	Kohlschýtter-Tönz Syndrome: Mutations in <i>ROGDI</i> li>and Evidence of Genetic Heterogeneity. Human Mutation, 2013, 34, 296-300.	1.1	24
620	Gene co-expression networks shed light into diseases of brain iron accumulation. Neurobiology of Disease, 2016, 87, 59-68.	2.1	24
621	An association study of the cholesteryl ester transfer protein Taql B polymorphism with late onset Alzheimer's disease. Neuroscience Letters, 2004, 357, 152-154.	1.0	23
622	Mutation analysis of patients with neuronal intermediate filament inclusion disease (NIFID). Neurobiology of Aging, 2006, 27, 778.e1-778.e6.	1.5	23
623	Whole genome analysis in a consanguineous family with early onset Alzheimer's disease. Neurobiology of Aging, 2009, 30, 1986-1991.	1.5	23
624	A thorough assessment of benign genetic variability in <i>GRN</i> and <i>MAPT</i> . Human Mutation, 2010, 31, E1126-E1140.	1,1	23
625	Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiology of Aging, 2012, 33, 838.e7-838.e11.	1.5	23
626	199Âyears of Parkinson disease – what have we learned and what is the path to the future?. Journal of Neurochemistry, 2016, 139, 3-7.	2.1	23
627	Analysis of the genetic variability in Parkinson's disease from Southern Spain. Neurobiology of Aging, 2016, 37, 210.e1-210.e5.	1.5	23
628	Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease. PLoS ONE, 2019, 14, e0218111.	1.1	23
629	Pathways to Primary Neurodegenerative Disease. Mayo Clinic Proceedings, 1999, 74, 835-837.	1.4	22
630	The human sideroflexin 5 (SFXN5) gene: sequence, expression analysis and exclusion as a candidate for PARK3. Gene, 2002, 285, 229-237.	1.0	22

#	Article	IF	Citations
631	Association of the Tauhaplotype with Parkinson's disease in the Greek population. Movement Disorders, 2006, 21, 1036-1039.	2.2	22
632	Neurofibrillary tau pathology modulated by genetic variation of α <i>â€synuclein</i> . Annals of Neurology, 2008, 64, 348-352.	2.8	22
633	Frontotemporal Dementia: From Mendelian Genetics Towards Genome Wide Association Studies. Journal of Molecular Neuroscience, 2011, 45, 500-515.	1.1	22
634	Plasma glial fibrillary acidic protein and neurofilament light chain, but not tau, are biomarkers of sports-related mild traumatic brain injury. Brain Communications, 2020, 2, fcaa137.	1.5	22
635	Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information. Nature Communications, 2020, 11, 1041.	5.8	22
636	Ex vivo release of GABA from tetanus toxin-induced chronic epileptic foci decreased during the active seizure phase. Neurochemistry International, 1991, 18, 373-379.	1.9	21
637	Commentary: Understanding sources of complexity in chronic diseasesâ€"the importance of integration of genetics and epidemiology. International Journal of Epidemiology, 2006, 35, 590-592.	0.9	21
638	Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions. Acta Neuropathologica Communications, 2014, 2, 159.	2.4	21
639	Concomitant progressive supranuclear palsy and chronic traumatic encephalopathy in a boxer. Acta Neuropathologica Communications, 2014, 2, 24.	2.4	21
640	Variation in Recent Onset Parkinson's Disease: Implications for Prodromal Detection. Journal of Parkinson's Disease, 2016, 6, 289-300.	1.5	21
641	Mutation analysis of sporadic early-onset Alzheimer's disease using the NeuroX array. Neurobiology of Aging, 2017, 49, 215.e1-215.e8.	1.5	21
642	Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17. Frontiers in Cellular Neuroscience, 2018, 12, 429.	1.8	21
643	SNCA and mTOR Pathway Single Nucleotide Polymorphisms Interact to Modulate the Age at Onset of Parkinson's Disease. Movement Disorders, 2019, 34, 1333-1344.	2.2	21
644	PINOT: an intuitive resource for integrating protein-protein interactions. Cell Communication and Signaling, 2020, 18, 92.	2.7	21
645	The association of circulating amylin with $\hat{l}^2\hat{a}\in a$ myloid in familial Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2021, 7, e12130.	1.8	21
646	Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease. PLoS ONE, 2012, 7, e28787.	1.1	21
647	Ethnic Differences and Disease Phenotypes. Science, 2003, 300, 739-740.	6.0	20
648	A consanguineous Turkish family with early-onset Parkinson's disease and an exon 4 parkin deletion. Movement Disorders, 2004, 19, 812-816.	2.2	20

#	Article	IF	Citations
649	Neurodegenerative disease: a different view of diagnosis. Trends in Molecular Medicine, 1999, 5, 514-517.	2.6	19
650	The Presenilin 1 C92S Mutation Increases Al 2 42 Production. Biochemical and Biophysical Research Communications, 2000, 277, 261-263.	1.0	19
651	The genetic causes of neurodegenerative diseases. Journal of Alzheimer's Disease, 2001, 3, 109-116.	1.2	19
652	No association between the lipoprotein lipase S447X polymorphism and Alzheimer's disease. Neuroscience Letters, 2002, 322, 192-194.	1.0	19
653	Epigenetic mechanisms in Alzheimer's disease: progress but much to do. Neurobiology of Aging, 2011, 32, 1181-1187.	1.5	19
654	Identical twins with Leucine rich repeat kinase type 2 mutations discordant for Parkinson's disease. Movement Disorders, 2012, 27, 1323-1323.	2.2	19
655	RANTing about C9orf72. Neuron, 2013, 77, 597-598.	3.8	19
656	Mutation Frequency of the Major Frontotemporal Dementia Genes, MAPT, GRN and C9ORF72 in a Turkish Cohort of Dementia Patients. PLoS ONE, 2016, 11, e0162592.	1.1	19
657	Multi-infarct dementia of Swedish type is caused by a 3'UTR mutation of COL4A1. Brain, 2017, 140, e29-e29.	3.7	19
658	An AARS variant as the likely cause of Swedish type hereditary diffuse leukoencephalopathy with spheroids. Acta Neuropathologica Communications, 2019, 7, 188.	2.4	19
659	White matter abnormalities in active elite adult rugby players. Brain Communications, 2021, 3, fcab133.	1.5	19
660	Genetic Analysis of Synphilin-1 in Familial Parkinson's Disease. Neurobiology of Disease, 2001, 8, 317-323.	2.1	18
661	Expression of mBRI2 in mice. Neuroscience Letters, 2003, 338, 95-98.	1.0	18
662	Smell testing is abnormal in â€~lubag' or X-linked dystonia-parkinsonism: a pilot study. Parkinsonism and Related Disorders, 2004, 10, 407-410.	1.1	18
663	Defining the ends of Parkin exon 4 deletions in two different families with Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 133B, 120-123.	1.1	18
664	Parkinson's disease: A broken nosology. Movement Disorders, 2005, 20, S2-S4.	2.2	18
665	Pathways to Primary Neurodegenerative Disease. Annals of the New York Academy of Sciences, 2000, 924, 29-34.	1.8	18
666	Genetic testing in familial and young-onset Alzheimer's disease: mutation spectrum in a Serbian cohort. Neurobiology of Aging, 2012, 33, 1481.e7-1481.e12.	1.5	18

#	Article	IF	Citations
667	Exome sequencing expands the mutational spectrum of SPG8 in a family with spasticity responsive to l-DOPA treatment. Journal of Neurology, 2013, 260, 2414-2416.	1.8	18
668	A novel A781V mutation in the CSF1R gene causes hereditary diffuse leucoencephalopathy with axonal spheroids. Journal of the Neurological Sciences, 2013, 332, 141-144.	0.3	18
669	Assessment of Parkinson's disease risk loci in Greece. Neurobiology of Aging, 2014, 35, 442.e9-442.e16.	1.5	18
670	DYT6 Dystonia: A Neuropathological Study. Neurodegenerative Diseases, 2016, 16, 273-278.	0.8	18
671	Is the <i>MC1R</i> variant p.R160W associated with Parkinson's?. Annals of Neurology, 2016, 79, 159-161.	2.8	18
672	Validating the Cognitive Scale for Down Syndrome (CS-DS) to Detect Longitudinal Cognitive Decline in Adults With Down Syndrome. Frontiers in Psychiatry, 2019, 10, 158.	1.3	18
673	Annexin A5 prevents amyloid-β-induced toxicity in choroid plexus: implication for Alzheimer's disease. Scientific Reports, 2020, 10, 9391.	1.6	18
674	Truncated presenilin 2 derived from differentially spliced mRNAs does not affect the ratio of amyloid \hat{l}^2 -peptide 1-42/1-40. NeuroReport, 1998, 9, 3293-3299.	0.6	17
675	Impact of genetic analysis on Parkinson's disease research. Movement Disorders, 2003, 18, 96-98.	2.2	17
676	Association of the dihydrolipoamide dehydrogenase gene with Alzheimer's disease in an Ashkenazi Jewish population. American Journal of Medical Genetics Part A, 2004, 131B, 60-66.	2.4	17
677	A new presenilin Alzheimer's disease case confirms the helical alignment of pathogenic mutations in transmembrane domain 5. Neuroscience Letters, 2004, 364, 139-140.	1.0	17
678	No evidence that extended tracts of homozygosity are associated with Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 764-771.	1.1	17
679	Profilin1 E117G is a moderate risk factor for amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 506-508.	0.9	17
680	Glutamate neurotoxicity and Alzheimer's disease. Trends in Neurosciences, 1987, 10, 406.	4.2	16
681	Lewy bodies in Alzheimer's disease in which the primary lesion is a mutation in the amyloid precursor protein. Neuroscience Letters, 1994, 180, 290-291.	1.0	16
682	Familial Clustering of Stroke According to Proband Age at Onset of Presenting Ischemic Stroke. Stroke, 2003, 34, e89-91.	1.0	16
683	Unaltered \hat{l}_{\pm} -synuclein blood levels in juvenile Parkinsonism with a parkin exon 4 deletion. Neuroscience Letters, 2005, 374, 189-191.	1.0	16
684	The Relationship between Lewy Body Disease, Parkinson's Disease, and Alzheimer's Disease. Annals of the New York Academy of Sciences, 2003, 991, 167-170.	1.8	16

#	Article	IF	Citations
685	Insulin-Degrading Enzyme Haplotypes Affect Insulin Levels but Not Dementia Risk. Neurodegenerative Diseases, 2006, 3, 320-326.	0.8	16
686	mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioscience Reports, 2018, 38, .	1.1	16
687	Genes, pathways and risk prediction in Alzheimer's disease. Human Molecular Genetics, 2019, 28, R235-R240.	1.4	16
688	Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease. Movement Disorders, 2021, 36, 449-459.	2.2	16
689	Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease. Neurobiology of Aging, 2021, 97, 148.e17-148.e24.	1.5	16
690	CoExp: A Web Tool for the Exploitation of Co-expression Networks. Frontiers in Genetics, 2021, 12, 630187.	1.1	16
691	No pathogenic mutations in the persyn gene in Parkinson's disease. Neuroscience Letters, 1999, 259, 65-66.	1.0	15
692	Targeting APP metabolism for the treatment of Alzheimer's disease. Drug Development Research, 2002, 56, 211-227.	1.4	15
693	Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism and Related Disorders, 2003, 9, 317-320.	1.1	15
694	Parkinson's disease in Ireland: Clinical presentation and genetic heterogeneity in patients with parkin mutations. Movement Disorders, 2004, 19, 677-681.	2.2	15
695	Testing for Linkage and Association Across the Dihydrolipoyl Dehydrogenase Gene Region with Alzheimer's Disease in Three Sample Populations. Neurochemical Research, 2007, 32, 857-869.	1.6	15
696	Novel Missense Mutation in Charged Multivesicular Body Protein 2B in a Patient With Frontotemporal Dementia. Alzheimer Disease and Associated Disorders, 2010, 24, 397-401.	0.6	15
697	APOE and AÎ ² PP Gene Variation in Cortical and Cerebrovascular Amyloid-Î ² Pathology and Alzheimer's Disease: A Population-Based Analysis. Journal of Alzheimer's Disease, 2011, 26, 377-385.	1.2	15
698	Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. Neuroscience Letters, 2012, 523, 35-38.	1.0	15
699	Utility of the new Movement Disorder Society clinical diagnostic criteria for Parkinson's disease applied retrospectively in a large cohort study of recent onset cases. Parkinsonism and Related Disorders, 2017, 40, 40-46.	1.1	15
700	Membrane damage is at the core of Alzheimer's disease. Lancet Neurology, The, 2017, 16, 342.	4.9	15
701	Establishing the role of rare coding variants in known Parkinson's disease risk loci. Neurobiology of Aging, 2017, 59, 220.e11-220.e18.	1.5	15
702	Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathologica, 2020, 139, 717-734.	3.9	15

#	Article	IF	Citations
703	Prion dimers: a deadly duo. Trends in Neurosciences, 1991, 14, 423-424.	4.2	14
704	Sequence analysis of all identified open reading frames on the frontal temporal dementia haplotype on chromosome 3 fails to identify unique coding variants except in CHMP2B. Neuroscience Letters, 2006, 410, 77-79.	1.0	14
705	Sequencing analysis of the ITPR1 gene in a pure autosomal dominant spinocerebellar ataxia series. Movement Disorders, 2010, 25, 771-773.	2.2	14
706	Genomic Risk Profiling of Ischemic Stroke: Results of an International Genome-Wide Association Meta-Analysis. PLoS ONE, 2011, 6, e23161.	1.1	14
707	Familial Lund frontotemporal dementia caused by C9ORF72 hexanucleotide expansion. Neurobiology of Aging, 2012, 33, 1850.e13-1850.e16.	1.5	14
708	THAP1 mutations in a Greek primary blepharospasm series. Parkinsonism and Related Disorders, 2013, 19, 404-405.	1.1	14
709	HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2016, 7, 47-52.	0.9	14
710	Perspective: Finding common ground. Nature, 2016, 537, S160-S161.	13.7	14
711	Common BACE2 Polymorphisms are Associated with Altered Risk for Alzheimer's Disease and CSF Amyloid Biomarkers in APOE ε4 Non-Carriers. Scientific Reports, 2019, 9, 9640.	1.6	14
712	L-dopa responsiveness in early Parkinson's disease is associated with the rate of motor progression. Parkinsonism and Related Disorders, 2019, 65, 55-61.	1.1	14
713	Genetic and polygenic risk score analysis for Alzheimer's disease in the Chinese population. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12074.	1.2	14
714	A novel silent variant at codon 711 and a variant at codon 708 of the APP sequence detected in Spanish Alzheimer and control cases. Neuroscience Letters, 1993, 150, 33-34.	1.0	13
715	Mouse model made. Nature, 1995, 373, 476-477.	13.7	13
716	Apolipoprotein E and Intellectual Achievement. Journal of the American Geriatrics Society, 2002, 50, 49-54.	1.3	13
717	Microarray analysis reveals induction of heat shock proteins mRNAs by the torsion dystonia protein, TorsinA. Neuroscience Letters, 2003, 343, 5-8.	1.0	13
718	The architecture of the tau haplotype block in different ethnicities. Neuroscience Letters, 2005, 377, 81-84.	1.0	13
719	Frontal temporal dementia: dissecting the aetiology and pathogenesis. Brain, 2006, 129, 830-831.	3.7	13
720	Genetic Analysis in Neurology. JAMA Neurology, 2013, 70, 696.	4.5	13

#	Article	IF	CITATIONS
721	The Birth of the Modern Era of Parkinson's Disease Genetics. Journal of Parkinson's Disease, 2017, 7, S87-S93.	1.5	13
722	Soluble Fibrinogen Triggers Non-cell Autonomous ER Stress-Mediated Microglial-Induced Neurotoxicity. Frontiers in Cellular Neuroscience, 2018, 12, 404.	1.8	13
723	Amyloid precursor protein processing in human neurons with an allelic series of the PSEN1 intron 4 deletion mutation and total presenilin-1 knockout. Brain Communications, 2019, 1, fcz024.	1.5	13
724	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	1.5	13
725	A multi-level developmental approach to exploring individual differences in Down syndrome: genes, brain, behaviour, and environment. Research in Developmental Disabilities, 2020, 104, 103638.	1.2	13
726	Do heterozygous mutations of Niemann–Pick type C predispose to late-onset neurodegeneration: a review of the literature. Journal of Neurology, 2021, 268, 2055-2064.	1.8	13
727	Action Myoclonus and Seizure in Kuforâ€Rakeb Syndrome. Movement Disorders Clinical Practice, 2018, 5, 195-199.	0.8	13
728	Genetic dissection of primary neurodegenerative diseases. Biochemical Society Symposia, 2001, 67, 51-57.	2.7	13
729	Amyotrophic Lateral Sclerosis: An Emerging Era of Collaborative Gene Discovery. PLoS ONE, 2007, 2, e1254.	1.1	13
730	Apolipoprotein E alleles but neither apolipoprotein B nor apolipoprotein AI/CIII alleles are associated with late onset, familial Alzheimer's disease. Neuroscience Letters, 1995, 188, 202-204.	1.0	12
731	Alteration in Brain Presenilin 1 mRNA Expression in Early Onset Familial Alzheimer's Disease. Experimental Neurology, 1996, 5, 213-218.	1.7	12
732	A family with a tau P301L mutation presenting with parkinsonism. Parkinsonism and Related Disorders, 2002, 9, 121-123.	1.1	12
733	Possible association between genetic variability at the apolipoprotein(a) locus and Alzheimer's disease in apolipoprotein E2 carriers. Neuroscience Letters, 2002, 331, 60-62.	1.0	12
734	PINK1 in mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11041-11042.	3.3	12
735	A Case of Dementia With PRNP D178Ncis-129M and No Insomnia. Alzheimer Disease and Associated Disorders, 2009, 23, 415-417.	0.6	12
736	Homozygosity analysis in amyotrophic lateral sclerosis. European Journal of Human Genetics, 2013, 21, 1429-1435.	1.4	12
737	A Phenotype of Atypical Apraxia of Speech in a Family Carrying SQSTM1 Mutation. Journal of Alzheimer's Disease, 2014, 43, 625-630.	1.2	12
738	Catastrophic cliffs: a partial suggestion for selective vulnerability in neurodegenerative diseases. Biochemical Society Transactions, 2016, 44, 659-661.	1.6	12

#	Article	IF	CITATIONS
739	Protein network analysis reveals selectively vulnerable regions and biological processes in FTD. Neurology: Genetics, 2018, 4, e266.	0.9	12
740	An Aged Canid with Behavioral Deficits Exhibits Blood and Cerebrospinal Fluid Amyloid Beta Oligomers. Frontiers in Aging Neuroscience, 2018, 10, 7.	1.7	12
741	The Future of Genetic Analysis of Neurological Disorders. Neurobiology of Disease, 2000, 7, 65-69.	2.1	11
742	Problems and Solutions in the Genetic Analysis of Late-Onset Alzheimer's Disease. Neurodegenerative Diseases, 2004, 1, 213-217.	0.8	11
743	Update on fluid biomarkers for concussion. Concussion, 2016, 1, CNC12.	1.2	11
744	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1033-1034.	4.9	11
745	Peripheral GRN mRNA and Serum Progranulin Levels as a Potential Indicator for Both the Presence of Splice Site Mutations and Individuals at Risk for Frontotemporal Dementia. Journal of Alzheimer's Disease, 2019, 67, 159-167.	1.2	11
746	TREM2-mediated activation of microglia breaks link between amyloid and tau. Lancet Neurology, The, 2021, 20, 416-417.	4.9	11
747	Genetic characterization of a familial non-specific dementia originating in Jutland, Denmark. Journal of the Neurological Sciences, 1993, 114, 138-143.	0.3	10
748	A novel candidate presenilin-1 interacting protein containing tetratricopeptide repeats. NeuroReport, 1999, 10, 1409-1415.	0.6	10
749	The real problem in association studies. American Journal of Medical Genetics Part A, 2002, 114, 253-253.	2.4	10
750	How many pathways are there to nigral death?. Annals of Neurology, 2004, 56, 316-318.	2.8	10
751	Genetic analysis suggests high misassignment rates in clinical Alzheimer's cases and controls. Neurobiology of Aging, 2019, 77, 178-182.	1.5	10
752	Genetic dissection of down syndrome-associated alterations in APP/amyloid- \hat{l}^2 biology using mouse models. Scientific Reports, 2021, 11, 5736.	1.6	10
753	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	0.7	10
754	Psychotic genes or forgetful ones?. Neurology, 2002, 59, 11-12.	1.5	9
755	A presenilin-1 mutation (T245P) in transmembrane domain 6 causes early onset Alzheimer's disease. Neuroscience Letters, 2006, 398, 251-252.	1.0	9
756	Does <i>APOE</i> explain the linkage of Alzheimer's disease to chromosome 19q13?. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 778-783.	1.1	9

#	Article	IF	Citations
757	<i>Parkin</i> â€related disease clinically diagnosed as a pallidoâ€pyramidal syndrome. Movement Disorders, 2009, 24, 138-140.	2.2	9
758	Whole genome expression as a quantitative trait. Biochemical Society Transactions, 2009, 37, 1276-1277.	1.6	9
759	Clusterin as an Alzheimer Biomarker. Archives of Neurology, 2011, 68, 1459.	4.9	9
760	Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.	1.6	9
761	Human-lineage-specific genomic elements are associated with neurodegenerative disease and APOE transcript usage. Nature Communications, 2021, 12, 2076.	5.8	9
762	Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain, 2022, 145, 1257-1263.	3.7	9
763	Combining biomarkers for prognostic modelling of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 707-715.	0.9	9
764	Multiâ€Omicsâ€Based Autophagyâ€Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology. Advanced Science, 2022, 9, .	5.6	9
765	â€~Slow virus' dementias: prion gene holds the key. Trends in Neurosciences, 1989, 12, 168-169.	4.2	8
766	Parkinson's disease, but not Alzheimer's disease, Lewy body variant associated with mutant alleles at cytochrome P450 gene. Lancet, The, 1994, 344, 815.	6.3	8
767	Genetic dissection of neurodegenerative disease. Clinical Neuroscience Research, 2001, 1, 134-141.	0.8	8
768	Putting presenilins centre stage. EMBO Reports, 2007, 8, 134-135.	2.0	8
769	Genes and Environment in Psychiatry. Archives of General Psychiatry, 2011, 68, 455.	13.8	8
770	Characterisation and Validation of Insertions and Deletions in 173 Patient Exomes. PLoS ONE, 2012, 7, e51292.	1.1	8
771	Atypical Parkinsonism-Dystonia Syndrome Caused by a Novel DJ1 Mutation. Movement Disorders Clinical Practice, 2014, 1, 45-49.	0.8	8
772	Informing disease modelling with brain-relevant functional genomic annotations. Brain, 2019, 142, 3694-3712.	3.7	8
773	CpGâ€related SNPs in the MS4A region have a doseâ€dependent effect on risk of late–onset Alzheimer disease. Aging Cell, 2019, 18, e12964.	3.0	8
774	Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. IScience, 2021, 24, 102484.	1.9	8

#	Article	IF	Citations
775	An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein. Cell Reports, 2021, 35, 109189.	2.9	8
776	Dissecting the limited genetic overlap of Parkinson's and Alzheimer's disease. Annals of Clinical and Translational Neurology, 2022, 9, 1289-1295.	1.7	8
777	Heterogeneity in Alzheimer's Disease. Annals of Medicine, 1993, 25, 437-440.	1.5	7
778	ANTIBODIES TO NON-AMYLOID COMPONENT OF PLAQUES (NACP) SPECIFICALLY LABEL LEWY BODIES AND LEWY NEURITES, BUT NOT OTHER INCLUSIONS IN NEURODEGENERATIVE DISEASES. Journal of Neuropathology and Experimental Neurology, 1998, 57, 516.	0.9	7
779	Construction of a Detailed Physical and Transcript Map of the FTDP-17 Candidate Region on Chromosome 17q21. Genomics, 1999, 60, 129-136.	1.3	7
780	No evidence for tau duplications in frontal temporal dementia families showing genetic linkage to the tau locus in which tau mutations have not been found. Neuroscience Letters, 2004, 363, 99-101.	1.0	7
781	Taiwanese cases of SCA2 are derived from a single founder. Movement Disorders, 2005, 20, 1633-1636.	2.2	7
782	No definitive evidence for a role for the environment in the etiology of Parkinson's Disease. Movement Disorders, 2006, 21, 1790-1791.	2.2	7
783	The HapMap. Archives of Neurology, 2008, 65, 319-21.	4.9	7
784	Neurodegeneration: the first mechanistic therapy and other progress in 2017. Lancet Neurology, The, 2018, 17, 3-5.	4.9	7
785	Distinct proteomic profiles in monozygotic twins discordant for ischaemic stroke. Molecular and Cellular Biochemistry, 2019, 456, 157-165.	1.4	7
786	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.5	7
787	Differential Associations of Apolipoprotein E $\hat{l}\mu 4$ Genotype With Attentional Abilities Across the Life Span of Individuals With Down Syndrome. JAMA Network Open, 2020, 3, e2018221.	2.8	7
788	Genetic variants in glutamate-, $\hat{Al^2a^2}$, and tau-related pathways determine polygenic risk for Alzheimer's disease. Neurobiology of Aging, 2021, 101, 299.e13-299.e21.	1.5	7
789	The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles. Brain Communications, 2021, 3, fcab009.	1.5	7
790	A glimpse of the genetics of youngâ€onset Parkinson's disease in Central Asia. Molecular Genetics & Genomic Medicine, 2021, 9, e1671.	0.6	7
791	<i>SORL1</i> mutation in a Greek family with Parkinson's disease and dementia. Annals of Clinical and Translational Neurology, 2021, 8, 1961-1969.	1.7	7
792	Spastic paraplegia preceding PSEN1 â€related familial Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12186.	1.2	7

#	Article	IF	Citations
793	Absence of linkage disequilibrium at amyloid precursor protein gene locus in Japanese familia Alzheimer's disease with 717Valâ†'lle mutation. Neuroscience Letters, 1993, 162, 63-66.	1.0	6
794	Tangle Diseases and the Tau Haplotypes. Alzheimer Disease and Associated Disorders, 2006, 20, 60-62.	0.6	6
795	Whole genome association studies: Deciding when persistence becomes perseveration. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 131-133.	1.1	6
796	A new way APP mismetabolism can lead to Alzheimer's disease. EMBO Molecular Medicine, 2011, 3, 247-248.	3.3	6
797	Behavioral Variant Frontotemporal Lobar Degeneration with Amyotrophic Lateral Sclerosis with a Chromosome 9p21 Hexanucleotide Repeat. Frontiers in Neurology, 2012, 3, 136.	1.1	6
798	Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia $\hat{a} \in \text{Hike}$ Syndrome Without Bone Involvement. JAMA Neurology, 0, , 1.	4.5	6
799	Webâ€based assessment of Parkinson's prodromal markers identifies GBA variants. Movement Disorders, 2015, 30, 1002-1003.	2.2	6
800	Mutations in TYROBP are not a common cause of dementia in a Turkish cohort. Neurobiology of Aging, 2017, 58, 240.e1-240.e3.	1.5	6
801	Genetics of dementia in a Finnish cohort. European Journal of Human Genetics, 2018, 26, 827-837.	1.4	6
802	Genotyping of the Alzheimer's Disease Genome-Wide Association Study Index Single Nucleotide Polymorphisms in the Brains for Dementia Research Cohort. Journal of Alzheimer's Disease, 2018, 64, 355-362.	1.2	6
803	Comparison of Receptive Verbal Abilities Assessed Using the KBIT-2 and BPVS3 in Adults With Down Syndrome. Frontiers in Psychology, 2019, 9, 2730.	1.1	6
804	Failures in Protein Clearance Partly Underlie Late Onset Neurodegenerative Diseases and Link Pathology to Genetic Risk. Frontiers in Neuroscience, 2019, 13, 1304.	1.4	6
805	Identifying Genetic Factors in Parkinson Disease. JAMA - Journal of the American Medical Association, 2002, 287, 715-a-716.	3.8	6
806	Differential Stimulation of Pluripotent Stem Cell-Derived Human Microglia Leads to Exosomal Proteomic Changes Affecting Neurons. Cells, 2021, 10, 2866.	1.8	6
807	Genetic effects on longitudinal cognitive decline during the early stages of Alzheimer's disease. Scientific Reports, 2021, 11, 19853.	1.6	6
808	Down on chromosome 21?. Trends in Neurosciences, 1989, 12, 209-210.	4.2	5
809	Two new genes for Alzheimer's disease. Trends in Neurosciences, 1995, 18, 436.	4.2	5
810	Exclusion of genetic linkage to $4q21-23$ and $17q21$ in a family with lewy body parkinsonism., $1998,81,166-171$.		5

#	Article	IF	CITATIONS
811	Genome-wide screen for stroke: Pilot testing in the Siblings With Ischemic Stroke Study (SWISS). Journal of Stroke and Cerebrovascular Diseases, 2000, 9, 276-281.	0.7	5
812	REPORTING AND INTERPRETATION OF GENETIC VARIANTS IN CASES AND CONTROLS. Neurology, 2007, 69, 111-112.	1.5	5
813	Further analysis of previously implicated linkage regions for Alzheimer's disease in affected relative pairs. BMC Medical Genetics, 2009, 10, 122.	2.1	5
814	Novel pathogenic mutations in the glucocerebrosidase locus. Molecular Genetics and Metabolism, 2012, 106, 495-497.	0.5	5
815	Psychiatric Genetics. JAMA Psychiatry, 2013, 70, 569.	6.0	5
816	<i>GNAL</i> Mutations and Dystonia. JAMA Neurology, 2014, 71, 1052.	4.5	5
817	Stem cell reprogramming: Basic implications and future perspective for movement disorders. Movement Disorders, 2015, 30, 301-312.	2.2	5
818	<i>TREM2</i> variants as a possible cause of frontotemporal dementia with distinct neuroimaging features. European Journal of Neurology, 2021, 28, 2603-2613.	1.7	5
819	Region-specific defects in glutamate and \hat{I}^3 -aminobutyric acid innervation in Alzheimer's disease. Biochemical Society Transactions, 1987, 15, 505-506.	1.6	4
820	Stability of brain RNA <i>post mortem </i> : effect of Alzheimer's disease. Biochemical Society Transactions, 1987, 15, 558-559.	1.6	4
821	Molecular biology and Alzheimer's disease: more questions than answers. Trends in Neurosciences, 1988, 11, 293-294.	4.2	4
822	Exclusion Mapping in Familial Non-Specific Dementia. Dementia and Geriatric Cognitive Disorders, 1993, 4, 163-166.	0.7	4
823	Is amyloid plaque imaging the key to monitoring brain pathology of Alzheimer?s disease in vivo?. European Journal of Nuclear Medicine and Molecular Imaging, 2004, 31, 1539-1540.	3.3	4
824	The uncertain anatomy of Alzheimer's disease. Neurobiology of Aging, 2004, 25, 719-720.	1.5	4
825	Reply to Bertram et al American Journal of Human Genetics, 2006, 79, 183-184.	2.6	4
826	Novel <i>GCH1</i> mutation in a Brazilian family with dopaâ€responsive dystonia. Movement Disorders, 2008, 23, 299-302.	2.2	4
827	Genotypic analysis of gene expression in the dissection of the aetiology of complex neurological and psychiatric diseases. Briefings in Functional Genomics & Proteomics, 2009, 8, 194-198.	3.8	4
828	Read all about it: Why we have an appetite for gossip. New Scientist, 2011, 211, 22-23.	0.0	4

#	Article	IF	Citations
829	Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. Journal of Neurochemistry, 2012, 120, 473-473.	2.1	4
830	The ignoble art. New Scientist, 2013, 219, 26-27.	0.0	4
831	Reply: Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2015, 138, e352-e352.	3.7	4
832	Effects of Multiple Genetic Loci on Age atÂOnset in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 56, 1271-1278.	1.2	4
833	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	1.6	4
834	Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiology of Disease, 2020, 146, 105079.	2.1	4
835	Genome-Wide Analyses Identify KIF5A as a Novel ALS Gene. SSRN Electronic Journal, 0, , .	0.4	4
836	Whole genome association analysis shows that ACE is a risk factor for Alzheimer's disease and fails to replicate most candidates from Meta-analysis. International Journal of Molecular Epidemiology and Genetics, 2010, 1, 19-30.	0.4	4
837	A highâ€performance biomarker panel for Alzheimer's disease screening and staging identified by largeâ€scale plasma proteomic profiling. Alzheimer's and Dementia, 2021, 17, .	0.4	4
838	Degradation of CCK-8 by rat synaptosomal peptidases. Regulatory Peptides, 1982, 3, 77.	1.9	3
839	Dementia with Lewy bodies: no association of polymorphisms in the human synphilin gene. Neurogenetics, 2004, 5, 251-252.	0.7	3
840	Prion genotypes in Central America suggest selection for the V129 allele. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 33-35.	1.1	3
841	Bad luck: An unappreciated limitation in the interpretation of twin studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 681-681.	1.1	3
842	The Persistence of Memory. New England Journal of Medicine, 2006, 355, 2697-2698.	13.9	3
843	Identification of Alzheimer Risk Factors Through Whole-Genome Analysis. Archives of Neurology, 2010, 67, 663-4.	4.9	3
844	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2013, 22, 1696-1696.	1.4	3
845	Is <i>SIGMAR1</i> a confirmed FTD/MND gene?. Brain, 2015, 138, e393-e393.	3.7	3
846	Reducing \hat{I}^2 -Amyloid by Inhibition of BACE1: How Low Should You Go?. Biological Psychiatry, 2015, 77, 683-684.	0.7	3

#	Article	IF	CITATIONS
847	Genetic Variants and Related Biomarkers in Sporadic Alzheimer's Disease. Current Genetic Medicine Reports, 2015, 3, 19-25.	1.9	3
848	BVVL/ FL: features caused by SLC52A3 mutations; WDFY4 and TNFSF13B may be novel causative genes. Neurobiology of Aging, 2021, 99, 102.e1-102.e10.	1.5	3
849	Communityâ€based genetic study of Parkinson's disease in Estonia. Acta Neurologica Scandinavica, 2021, 143, 89-95.	1.0	3
850	Modeling multifunctionality of genes with secondary gene co-expression networks in human brain provides novel disease insights. Bioinformatics, 2021, 37, 2905-2911.	1.8	3
851	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS $\hat{a} \in \mathbb{R}$ mutations that lead to exceptionally high amyloid $\hat{a} \in \mathbb{R}^2$ concentrations. Annals of Neurology, 2000, 48, 806-808.	2.8	3
852	The East Asian Parkinson Disease Genomics Consortium. Lancet Neurology, The, 2021, 20, 982.	4.9	3
853	Demographics and Medication Use of Patients with Late-Onset Alzheimer's Disease in Hong Kong. Journal of Alzheimer's Disease, 2022, 87, 1205-1213.	1.2	3
854	The importance of altered structural proteins in the pathogenesis of Alzheimer's disease. Neurobiology of Aging, 1986, 7, 444-446.	1.5	2
855	Mouse models of human neurogenetic disorders. Trends in Neurosciences, 1988, 11, 89-90.	4.2	2
856	Alzheimer's — a correction. Nature, 1992, 356, 390-390.	13.7	2
857	Race, genetics, and medicine at a crossroads. Lancet, The, 2008, 372, S85-S89.	6.3	2
858	The relationship between nosology, etiology and pathogenesis in neurodegenerative diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 189-192.	1.0	2
859	Dissecting the familial risk of multiple sclerosis. Annals of Neurology, 2011, 69, 11-12.	2.8	2
860	F2-03-04: Genetic risk factors for posterior cortical atrophy., 2015, 11, P168-P169.		2
861	Response to the commentary of Yates RL and DeLuca GC on the study: HLA-DRB1*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 19, 168-170.	0.9	2
862	Insights into the Influence of Specific Splicing Events on the Structural Organization of LRRK2. International Journal of Molecular Sciences, 2018, 19, 2784.	1.8	2
863	Deep geno- and phenotyping in two consanguineous families with CMT2 reveals HADHA as an unusual disease-causing gene and an intronic variant in GDAP1 as an unusual mutation. Journal of Neurology, 2021, 268, 640-650.	1.8	2
864	Evidence for the presence of antibodies to cholinergic neurons in the serum of patients with Alzheimer's disease. Biochemical Society Transactions, 1987, 15, 1034-1036.	1.6	1

#	Article	IF	Citations
865	Friedreich's ataxia gene localized to chromosome 9. Trends in Neurosciences, 1988, 11, 479.	4.2	1
866	European research on Alzheimer's disease. Lancet, The, 1997, 350, 73-74.	6.3	1
867	The Human Genome Is Sequenced. Archives of Neurology, 2001, 58, 1748.	4.9	1
868	Genetic variability in expression of proteins and the risk of sporadic neurologic diseases. Neurology, 2007, 68, 632-633.	1. 5	1
869	A simple and efficient algorithm for genomeâ€wide homozygosity analysis in disease. Molecular Systems Biology, 2009, 5, 304.	3.2	1
870	Sample Tracking and Use in Published Genome-wide Association Studies. Archives of Neurology, 2010, 67, 1267-8.	4.9	1
871	Neurological Diagnoses Identify Molecular Processes. Archives of Neurology, 2010, 67, 400-1.	4.9	1
872	PARKIN DISEASE–A CLINICOPATHOLOGICAL ENTITY?. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, e2.35-e2.	0.9	1
873	Reply to Letter: Identical twins with leucine rich repeat kinase type 2 mutations discordant for Parkinson's disease. Movement Disorders, 2013, 28, 561-562.	2.2	1
874	A familial frontotemporal dementia associated with C9orf72 repeat expansion and dysplastic gangliocytoma. Neurobiology of Aging, 2014, 35, 444.e11-444.e14.	1.5	1
875	Identical non-identical twins and non-identical identical twins. BMJ, The, 2015, , h6589.	3.0	1
876	Elevated \hat{I}^3 -Glutamyltransferase and Erythrocyte Sedimentation Rate in Ischemic Stroke in Discordant Monozygotic Twin Study. International Journal of Stroke, 2015, 10, E32-E33.	2.9	1
877	P1â€003: Knockdown of Trem2 Expression in Microglia: Implications For Migration and Inflammation. Alzheimer's and Dementia, 2016, 12, P397.	0.4	1
878	Protein Deimination in Protein Misfolding Disorders: Modeled in Human Induced Pluripotent Stem Cells (iPSCs)., 2017,, 227-239.		1
879	Screening for PS1 mutations in a referral-based late-onset AD cases in Saudi Arabia. Journal of Medical Sciences (Faisalabad, Pakistan), 2003, 3, 209-213.	0.0	1
880	Amyloid Deposition as the Central Event in the Etiology and Pathogenesis of Alzheimer's Disease. , 1994, , 23-27.		1
881	Seventy-Two-Hour LRRK2 Kinase Activity Inhibition Increases Lysosomal GBA Expression in H4, a Human Neuroglioma Cell Line. International Journal of Molecular Sciences, 2022, 23, 6935.	1.8	1
882	Author's response to commentaries. Neurobiology of Aging, 1986, 7, 520-522.	1.5	0

#	Article	IF	CITATIONS
883	180. Genetic dissection of neurodegenerative disease. Biological Psychiatry, 2000, 47, S54.	0.7	0
884	Addendum "APH1, PEN2, and Nicastrin increase Aβ levels and γ-secretase activity―[Biochem. Biophys. Res. Commun. 305 (2003) 502–509]. Biochemical and Biophysical Research Communications, 2003, 307, 756.	1.0	0
885	P4-070 Is APOE exclusively responsible for the AD linkage peak on chromosome 19?. Neurobiology of Aging, 2004, 25, S494.	1.5	0
886	P4-141 The liver X receptor: candidate gene for Alzheimer's disease. Neurobiology of Aging, 2004, 25, S515.	1.5	0
887	P4-122 Genetic association of an APP binding protein gene with late onset Alzheimer's disease. Neurobiology of Aging, 2004, 25, S510.	1.5	0
888	P4-157 Genetic analysis of a the tau haplotype in the CEPH diversity panel and in Guam disease. Neurobiology of Aging, 2004, 25, S520.	1.5	0
889	O3-02-06 Linkage analysis of AD SIB pairs indicates evidence of interaction between genes regulating beta-amyloid degradation. Neurobiology of Aging, 2004, 25, S55-S56.	1.5	0
890	A genetic outline of the pathways to cell death in Alzheimer's disease, Parkinson's disease, frontal dementias and related disorders., 2005,, 222-226.		0
891	Towards a Molecular Classification of Neurodegenerative Disease. Research and Perspectives in Alzheimer's Disease, 2005, , 11-23.	0.1	0
892	What Is a Schizophrenic Mouse?. Neuron, 2007, 54, 1011.	3.8	0
893	11. Molecular genetics of Alzheimer's disease. Acta Neurologica Scandinavica, 2009, 82, 29-31.	1.0	0
894	IN44-WE-03 Genetic analysis of sporadic neurodegenerative disease. Journal of the Neurological Sciences, 2009, 285, S33.	0.3	0
895	P1.060 Pathological observations in seven cases with neurodegeneration with brain iron accumulation (NBIA) with mutations in PANK2 and PLA2G6. Parkinsonism and Related Disorders, 2009, 15, S44.	1.1	0
896	Protected to Death. Journal of Alzheimer's Disease, 2010, 20, 409-413.	1.2	0
897	120â€An algorithm to identify individuals at high-risk of Parkinson's disease in the community. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.71-e1.	0.9	0
898	119â€A pilot study of an algorithm designed to identify Parkinson's disease in the early, non-motor phase. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.70-e1.	0.9	0
899	<scp>CSF</scp> biomarking for diagnosis and treatment assessment in neurodegeneration. Journal of Neurochemistry, 2012, 123, 339-341.	2.1	O
900	O1â€05â€01: Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: Clinical, neuroanatomical and neuropathological features. Alzheimer's and Dementia, 2012, 8, P92.	0.4	0

#	Article	IF	CITATIONS
901	Genetic analysis of disease in the era of whole genome analysis and public databases. Neurobiology of Aging, 2012, 33, 635.	1.5	O
902	Alzheimer's disease and related dementias. , 0, , 17-31.		0
903	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2013, 22, 2973-2973.	1.4	O
904	P3-108: The application of snp profiling to the risk stratification for future cognitive decline in mild cognitive impairment (MCI)., 2015, 11, P662-P662.		0
905	PSEN1 mutation presenting as posterior cortical atrophy. Journal of the Neurological Sciences, 2015, 357, e127.	0.3	O
906	The mouse that trolled. Journal of Law and the Biosciences, 2015, 2, lsv035.	0.8	0
907	P2-074: Differences in the TREM2 levels in the CSF of Alzheimer's disease cases and controls. , 2015, 11, P511-P511.		O
908	O1-02-01: Microglial-derived proteins in CSF are candidate biomarkers for early diagnosis of Alzheimer's disease., 2015, 11, P126-P126.		0
909	A NOVEL MODEL OF GBA1-ASSOCIATED PARKINSON'S DISEASE IMPLICATES AUTOPHAGY. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, e1.68-e1.	0.9	O
910	P2â€158: LINKAGE AND WHOLE GENOME SEQUENCE ANALYSIS OF ALZHEIMER'S DISEASE RESILIENCE AND RISK. Alzheimer's and Dementia, 2016, 12, P675.	0.4	0
911	P3-091: Investigating SARM1 Variants in Alzheimer's Disease Cohorts. , 2016, 12, P855-P855.		0
912	P4â€111: Alzheimer's Disease Detection at the Preclinical Stage Using a Novel SNP Genotyping Array. Alzheimer's and Dementia, 2016, 12, P1054.	0.4	0
913	P4â€126: Evaluation of a Novel Array of SNP (Single Nucleotide Polymorphism) Markers in Amyloidâ€PET Stratified Samples from MCI and Cognitively Normal Individuals. Alzheimer's and Dementia, 2016, 12, P1061.	0.4	O
914	O1-06-05: Polygenic Scoring for Risk Stratification of Future Cognitive Decline in Mild Cognitive Impairment (MCI)., 2016, 12, P187-P187.		0
915	PLâ€04â€02: GENOMIC ANALYSIS OF NEURODEGENERATION GIVES CLUES TO PATHWAYS TO SELECTIVE CELL LOSS: THE HYPOTHESIS OF THE CATASTROPHIC CLIFF OF NEURON FAILURE. Alzheimer's and Dementia, 2016, 12, P329.	0.4	O
916	Reply: Glial mitochondropathy in infantile neuroaxonal dystrophy: pathophysiological and therapeutic implications. Brain, 2016, 139, e68-e68.	3.7	0
917	693. Identification, Regulation and Characterisation of Transcribed Intergenic Regions in Human Substantia Nigra and Putamen. Biological Psychiatry, 2017, 81, S281.	0.7	O
918	[F5–O3–O3]: IMMUNE SYSTEM GENETICS IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P14	I -⊕ 84	0

#	Article	IF	CITATIONS
919	[P3–168]: GENETIC DISSECTION OF SEVERITY AND ONSET MODULATORS FOR ALZHEIMER'S PATHOLOGY IN DOWN SYNDROME USING CELLULAR SYSTEMS. Alzheimer's and Dementia, 2017, 13, P998.	0.4	O
920	[P3–101]: MULTIâ€INFARCT DEMENTIA OF SWEDISH TYPE IS CAUSED BY 3'UTR <i>COL4A1</i> MUTATION Alzheimer's and Dementia, 2017, 13, P973.	·. 0.4	0
921	[P1–219]: PROBING DEVELOPMENTAL CONSEQUENCES OF PSEN1 MUTATIONS IN IPSC DIFFERENTIATION IN 2 AND 3D. Alzheimer's and Dementia, 2017, 13, P327.	D _{0.4}	O
922	[P1–220]: 3D CEREBRAL ORGANOIDS AS IN VITRO MODELS FOR ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P327.	0.4	0
923	[P1–025]: PROBING DEVELOPMENTAL CONSEQUENCES OF PSEN1 MUTATIONS IN IPSC DIFFERENTIATION IN 2 AND 3D. Alzheimer's and Dementia, 2017, 13, P242.	D _{0.4}	O
924	[P3–100]: ALZHEIMER's DISEASE, PARKINSON's DISEASE AND FRONTOTEMPORAL DEMENTIA: POLYGENICITY AND PLEIOTROPY. Alzheimer's and Dementia, 2017, 13, P972.	0.4	0
925	[P3–110]: CALCULATING POLYGENIC RISK FOR INDIVIDUALS WITH SPORADIC EARLY ONSET ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P976.	0.4	O
926	[P3–112]: INVESTIGATING GENETIC VARIATION IN ALZHEIMER's DISEASE USING WHOLEâ€EXOME SEQUENCIN Alzheimer's and Dementia, 2017, 13, P977.	G 0.4	0
927	[P4–062]: INTRODUCING A NEW SYSTEMS PATHOLOGY PARADIGM OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1281.	0.4	O
928	[P1–134]: ENRICHMENT OF AMYLOIDâ€POSITIVE SAMPLES BY PET FROM EARLY SYMPTOMATIC AND PRODROMAL COHORT. Alzheimer's and Dementia, 2017, 13, P293.	0.4	0
929	[P1–180]: DISTINCT Aβ PRODUCTION IN STEM CELLâ€DERIVED CORTICAL NEURONS FROM PATIENTS WITH FAMUTATION. Alzheimer's and Dementia, 2017, 13, P311.	AD.4	O
930	[P4–416]: GENETIC CHARACTERIZATION OF A TURKISH DEMENTIA COHORT: FOCUS ON ⟨i⟩TYROBP⟨/i⟩. Alzheimer's and Dementia, 2017, 13, P1490.	0.4	0
931	PO187â€Parkinson's families project recruiting via the bnsu: baseline data. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A60.3-A61.	0.9	O
932	10. Genetics of Alzheimer's disease. , 2017, , 117-132.		0
933	1115â€Chronic traumatic encephalopathy in retired footballers with dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A1.1-A1.	0.9	O
934	Reply to "Down Syndrome Cognitive Marker's Significance in Alzheimer's Disease and Dementia Management― Alzheimer's and Dementia, 2019, 15, 1238-1239.	0.4	0
935	Special Issue in Honour of Anthony J (Tony) Turner. Neurochemical Research, 2019, 44, 1269-1270.	1.6	O
936	P4â€490: ALZHEIMER'S DISEASE POLYGENIC BURDEN BEYOND APOE ACTS STRONGER ON TAU THAN ON AMYLOID. Alzheimer's and Dementia, 2019, 15, P1500.	0.4	0

#	Article	IF	CITATIONS
937	What is genomics teaching us about neurodegeneration and what should we do about it?. Journal of the Neurological Sciences, 2019, 405, 3-4.	0.3	0
938	Genetics of dementias. Journal of the Neurological Sciences, 2019, 405, 17.	0.3	0
939	Premature neuronal differentiation in familial Alzheimer's disease human stem cells in vitro and in postmortem brain tissue. Alzheimer's and Dementia, 2020, 16, e039793.	0.4	O
940	iPSCâ€derived engineered cerebral organoids (enCORs) as in vitro models of tauopathy. Alzheimer's and Dementia, 2020, 16, e039816.	0.4	0
941	Genomeâ€wide polygenic risk scores for identification of gene therapeutic target. Alzheimer's and Dementia, 2020, 16, e040903.	0.4	O
942	Evaluation of genetic risk for Alzheimer's disease in the Hong Kong Chinese population. Alzheimer's and Dementia, 2020, 16, e045142.	0.4	0
943	ALZHEIMER'S DISEASE: GENETICS TO PATHOGENESIS. , 2008, , .		0
944	Neurodegeneration and Dementia. , 0, , 393-400.		0
945	All MAPT out?: Well-travelled pathways into neurodegeneration. Biochemist, 2010, 32, 14-17.	0.2	O
946	Genetic influence during the early phases of Alzheimer's disease on longitudinal cognitive impairment Alzheimer's and Dementia, 2021, 17 Suppl 3, e053474.	0.4	0
947	Genetic interaction study of Alzheimer's disease quantitative biomarkers: A polygenic risk score analysis and evaluation Alzheimer's and Dementia, 2021, 17 Suppl 3, e053556.	0.4	O
948	Genomic features specific to the human lineage are associated with neurological diseases and intelligence. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A97.1-A97.	0.9	0
949	Parkinson's disease determinants, prediction and gene-environment interac- tions: a UK Biobank study. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A7.3-A8.	0.9	O