
Jennifer M Pocock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/389029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the <i>OAS1</i> gene. Brain, 2021, 144, 3727-3741.	7.6	65
2	The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles. Brain Communications, 2021, 3, fcab009.	3.3	7
3	Human Huntington's disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species. Journal of Neuroinflammation, 2021, 18, 94.	7.2	26
4	Microglialï»; signalling pathway deficits associated with the patient derived R47H TREM2 variants linked to AD indicate inability to activate inflammasome. Scientific Reports, 2021, 11, 13316.	3.3	34
5	Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells. Neurochemistry International, 2021, 147, 105070.	3.8	18
6	Differential Stimulation of Pluripotent Stem Cell-Derived Human Microglia Leads to Exosomal Proteomic Changes Affecting Neurons. Cells, 2021, 10, 2866.	4.1	6
7	A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSCâ€derived microglia. FASEB Journal, 2020, 34, 2436-2450.	0.5	82
8	<i>Trem2</i> promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Human Molecular Genetics, 2020, 29, 3224-3248.	2.9	76
9	Amyloid precursor protein processing in human neurons with an allelic series of the PSEN1 intron 4 deletion mutation and total presenilin-1 knockout. Brain Communications, 2019, 1, fcz024.	3.3	13
10	Soluble Fibrinogen Triggers Non-cell Autonomous ER Stress-Mediated Microglial-Induced Neurotoxicity. Frontiers in Cellular Neuroscience, 2018, 12, 404.	3.7	13
11	The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. Molecular Neurodegeneration, 2018, 13, 49.	10.8	91
12	Human Induced Pluripotent Stem Cell-Derived Microglia-Like Cells Harboring TREM2 Missense Mutations Show Specific Deficits in Phagocytosis. Cell Reports, 2018, 24, 2300-2311.	6.4	118
13	Modelling microglial function with induced pluripotent stem cells: an update. Nature Reviews Neuroscience, 2018, 19, 445-452.	10.2	41
14	Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. Acta Neuropathologica Communications, 2018, 6, 74.	5.2	42
15	Combined tissue and fluid proteomics with Tandem Mass Tags to identify low-abundance protein biomarkers of disease in peripheral body fluid: An Alzheimer's Disease case study. Rapid Communications in Mass Spectrometry, 2017, 31, 153-159.	1.5	35
16	Neuroprotection by safinamide in the 6â€hydroxydopamine model of <scp>P</scp> arkinson's disease. Neuropathology and Applied Neurobiology, 2016, 42, 423-435.	3.2	36
17	P1â€003: Knockdown of Trem2 Expression in Microglia: Implications For Migration and Inflammation. Alzheimer's and Dementia, 2016, 12, P397.	0.8	1
18	Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease. Current Opinion in Neurobiology, 2016, 36, 74-81.	4.2	223

Jennifer M Pocock

#	Article	IF	CITATIONS
19	Selective Depletion of Microglia from Cerebellar Granule Cell Cultures Using L-leucine Methyl Ester. Journal of Visualized Experiments, 2015, , e52983.	0.3	10
20	O1-02-01: Microglial-derived proteins in CSF are candidate biomarkers for early diagnosis of Alzheimer's disease. , 2015, 11, P126-P126.		0
21	Glia: guardians, gluttons, or guides for the maintenance of neuronal connectivity?. Annals of the New York Academy of Sciences, 2015, 1351, 1-10.	3.8	34
22	Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration. Neuroscience Letters, 2014, 583, 92-97.	2.1	37
23	P2-105: IDENTIFYING MARKERS OF MICROGLIA ACTIVATION IN CSF FROM PATIENTS WITH ALZHEIMER'S DISEASE USING A NOVEL MASS SPECTROMETRY APPROACH. , 2014, 10, P509-P509.		0
24	Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiology of Aging, 2013, 34, 2699-2714.	3.1	145
25	<i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.	27.0	2,385
26	Blockage of CR1 prevents activation of rodent microglia. Neurobiology of Disease, 2013, 54, 139-149.	4.4	76
27	Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis. Brain, 2013, 136, 1067-1082.	7.6	67
28	Complement receptor 1 (CR1) and Alzheimer's disease. Immunobiology, 2012, 217, 244-250.	1.9	107
29	Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neuroscience, 2012, 13, 144.	1.9	88
30	Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial–neuronal interactions. Journal of Neurochemistry, 2012, 121, 287-301.	3.9	68
31	Emerging roles of p53 in glial cell function in health and disease. Clia, 2012, 60, 515-525.	4.9	24
32	Positive allosteric modulation of metabotropic glutamate receptor 5 down-regulates fibrinogen-activated microglia providing neuronal protection. Neuroscience Letters, 2011, 505, 140-145.	2.1	33
33	Inhibiting p53 pathways in microglia attenuates microglialâ€evoked neurotoxicity following exposure to Alzheimer peptides. Journal of Neurochemistry, 2010, 112, 552-563.	3.9	62
34	Scavenger receptor control of chromogranin Aâ€induced microglial stress and neurotoxic cascades. FEBS Letters, 2009, 583, 3461-3466.	2.8	21
35	Differential effects of albumin on microglia and macrophages; implications for neurodegeneration following blood–brain barrier damage. Journal of Neurochemistry, 2009, 109, 694-705.	3.9	56
36	Glutamate induces release of glutathione from cultured rat astrocytes – a possible neuroprotective mechanism?. Journal of Neurochemistry, 2008, 105, 1144-1152.	3.9	33

JENNIFER M POCOCK

#	Article	IF	CITATIONS
37	Myelinâ€induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. Journal of Neurochemistry, 2008, 106, 442-454.	3.9	63
38	Neurotransmitter receptors on microglia. Trends in Neurosciences, 2007, 30, 527-535.	8.6	548
39	Chromogranin A activates diverse pathways mediating inducible nitric oxide expression and apoptosis in primary microglia. Neuroscience Letters, 2007, 413, 227-232.	2.1	22
40	Neuronal surface glycolytic enzymes are autoantigen targets in post-streptococcal autoimmune CNS disease. Journal of Neuroimmunology, 2006, 172, 187-197.	2.3	118
41	Pure albumin is a potent trigger of calcium signalling and proliferation in microglia but not macrophages or astrocytes. Journal of Neurochemistry, 2005, 92, 1363-1376.	3.9	63
42	Stimulation of Microglial Metabotropic Glutamate Receptor mGlu2 Triggers Tumor Necrosis Factor α-Induced Neurotoxicity in Concert with Microglial-Derived Fas Ligand. Journal of Neuroscience, 2005, 25, 2952-2964.	3.6	288
43	Microglia release activators of neuronal proliferation mediated by activation of mitogenâ€activated protein kinase, phosphatidylinositolâ€3â€kinase/Akt and delta–Notch signalling cascades. Journal of Neurochemistry, 2004, 90, 89-101.	3.9	146
44	Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain, 2003, 126, 2191-2202.	7.6	330
45	Activation of Microglial Group III Metabotropic Glutamate Receptors Protects Neurons against Microglial Neurotoxicity. Journal of Neuroscience, 2003, 23, 2150-2160.	3.6	195
46	A Role for Caspase-1 and -3 in the Pathology of Experimental Allergic Encephalomyelitis. American Journal of Pathology, 2002, 161, 1577-1586.	3.8	57
47	Microglial Apoptosis Induced by Chromogranin A Is Mediated by Mitochondrial Depolarisation and the Permeability Transition but Not by Cytochrome c Release. Journal of Neurochemistry, 2002, 74, 1452-1462.	3.9	64
48	Microglial signalling cascades in neurodegenerative disease. Progress in Brain Research, 2001, 132, 555-565.	1.4	76
49	Modulation of neurotransmitter release by dihydropyridine-sensitive calcium channels involves tyrosine phosphorylation. European Journal of Neuroscience, 1999, 11, 279-292.	2.6	42
50	Endothelin-1 inhibits voltage-sensitive Ca 2+ channels in cultured rat cerebellar granule neurones via the ET-A receptor. Pflugers Archiv European Journal of Physiology, 1998, 436, 766-775.	2.8	19
51	42 Nitric oxide (NOË™) and the nitrosonium cation (NO+) reduce mitochondrial membrane potential and trigger apoptosis in neuronal PC12 cells. Biochemical Society Transactions, 1998, 26, S340-S340.	3.4	9
52	43 Maple syrup urine disease metabolites induce apoptosis in neural cells without cytochrome c release or changes in mitochondrial membrane potential. Biochemical Society Transactions, 1998, 26, S341-S341.	3.4	9
53	Exocytotic and Nonexocytotic Modes of Glutamate Release from Cultured Cerebellar Granule Cells During Chemical Ischaemia. Journal of Neurochemistry, 1998, 70, 806-813.	3.9	48
54	Phosphorylation of synapsin I and MARCKS in nerve terminals is mediated by Ca2+entry via an Aga-GI sensitive Ca2+channel which is coupled to glutamate exocytosis. FEBS Letters, 1994, 353, 264-268.	2.8	31

#	Article	IF	CITATIONS
55	Energetics of cultured neurones and ischaemia. Biochemical Society Transactions, 1994, 22, 970-973.	3.4	1
56	A toxin (Aga-GI) from the venom of the spider Agelenopsis aperta inhibits the mammalian presynaptic Ca2+ channel coupled to glutamate exocytosis. European Journal of Pharmacology, 1992, 226, 343-350.	2.6	46
57	Kainic Acid Inhibits the Synaptosomal Plasma Membrane Glutamate Carrier and Allows Glutamate Leakage from the Cytoplasm but Does Not Affect Glutamate Exocytosis. Journal of Neurochemistry, 1988, 50, 745-751.	3.9	65