
Chuo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 2013, 339, 826-830.	12.6	1,778
2	Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chemical Biology, 2009, 5, 100-107.	8.0	1,259
3	Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High-Affinity Ligand for STING. Molecular Cell, 2013, 51, 226-235.	9.7	819
4	Visible Light-Promoted Metal-Free C–H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination. Journal of the American Chemical Society, 2013, 135, 17494-17500.	13.7	471
5	cGAS is essential for the antitumor effect of immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1637-1642.	7.1	394
6	2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metabolism, 2015, 22, 508-515.	16.2	190
7	Synthesis and Structure Revision of Nakiterpiosin. Journal of the American Chemical Society, 2009, 131, 1410-1412.	13.7	132
8	Structure–activity relationship studies of small-molecule inhibitors of Wnt response. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3825-3827.	2.2	126
9	Visible light-promoted metal-free sp ³ -C–H fluorination. Chemical Communications, 2014, 50, 11701-11704.	4.1	116
10	Asymmetric syntheses of sceptrin and massadine and evidence for biosynthetic enantiodivergence. Science, 2014, 346, 219-224.	12.6	100
11	The Development of Highly Potent Inhibitors for Porcupine. Journal of Medicinal Chemistry, 2013, 56, 2700-2704.	6.4	94
12	Palladium-Catalyzed Direct Functionalization of Imidazolinone:Â Synthesis of Dibromophakellstatin. Journal of the American Chemical Society, 2007, 129, 7768-7769.	13.7	90
13	Regiocontrol in MnIII-Mediated Oxidative Heterobicyclizations: Access to the Core Skeletons of Oroidin Dimers. Angewandte Chemie - International Edition, 2006, 45, 4345-4348.	13.8	78
14	Vanadium-catalyzed C(sp ³)–H fluorination reactions. Organic Chemistry Frontiers, 2014, 1, 468-472.	4.5	75
15	Diverse Chemical Scaffolds Support Direct Inhibition of the Membrane-bound O-Acyltransferase Porcupine. Journal of Biological Chemistry, 2012, 287, 23246-23254.	3.4	72
16	Chemical and Biological Studies of Nakiterpiosin and Nakiterpiosinone. Journal of the American Chemical Society, 2010, 132, 371-383.	13.7	71
17	Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8947-8952.	7.1	64
18	Nickel-catalyzed carbonylative Negishi cross-coupling reactions. Tetrahedron Letters, 2008, 49, 2916-2921.	1.4	61

CHUO CHEN

#	Article	IF	CITATIONS
19	Syntheses of cyclic guanidine-containing natural products. Tetrahedron, 2015, 71, 1145-1173.	1.9	60
20	Dimeric pyrrole–imidazole alkaloids: synthetic approaches and biosynthetic hypotheses. Chemical Communications, 2014, 50, 8628-8639.	4.1	59
21	Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells. Molecular and Cellular Biology, 2015, 35, 2425-2435.	2.3	58
22	The past, present, and future of the Yang reaction. Organic and Biomolecular Chemistry, 2016, 14, 8641-8647.	2.8	58
23	Uncoupling of PARP1 trapping and inhibition using selective PARP1 degradation. Nature Chemical Biology, 2019, 15, 1223-1231.	8.0	57
24	A highly selective vanadium catalyst for benzylic C–H oxidation. Chemical Science, 2012, 3, 2240.	7.4	54
25	Asymmetric Synthesis of Ageliferin. Journal of the American Chemical Society, 2011, 133, 15350-15353.	13.7	50
26	Revisiting the Kinnel–Scheuer hypothesis for the biosynthesis of palau'amine. Chemical Communications, 2011, 47, 427-429.	4.1	43
27	A Biomimetic Route for Construction of the [4+2] and [3+2] Core Skeletons of Dimeric Pyrrole–Imidazole Alkaloids and Asymmetric Synthesis of Ageliferins. Journal of the American Chemical Society, 2012, 134, 18834-18842.	13.7	43
28	Tankyrase is necessary for canonical Wnt signaling during kidney development. Developmental Dynamics, 2010, 239, 2014-2023.	1.8	38
29	The Hedgehog Pathway Effector Smoothened Exhibits Signaling Competency in the Absence of Ciliary Accumulation. Chemistry and Biology, 2014, 21, 1680-1689.	6.0	28
30	A Simple Method for the Electrophilic Cyanation of Secondary Amines. Organic Letters, 2014, 16, 247-249.	4.6	26
31	Necroptosis-blocking compound NBC1 targets heat shock protein 70 to inhibit MLKL polymerization and necroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6521-6530.	7.1	26
32	Ketone-catalyzed photochemical C(sp3)–H chlorination. Tetrahedron, 2017, 73, 3696-3701.	1.9	25
33	Asymmetric Synthesis of Axinellamines A and B. Angewandte Chemie - International Edition, 2016, 55, 4763-4766.	13.8	24
34	Vanadium-catalyzed oxidative Strecker reaction: α-C–H cyanation of para-methoxyphenyl (PMP)-protected primary amines. Tetrahedron Letters, 2014, 55, 232-234.	1.4	23
35	Development of a triazole class of highly potent Porcn inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5891-5895.	2.2	20
36	Stereoselective fatty acylation is essential for the release of lipidated WNT proteins from the acyltransferase Porcupine (PORCN). Journal of Biological Chemistry, 2019, 294, 6273-6282.	3.4	18

CHUO CHEN

#	Article	IF	CITATIONS
37	Identification and characterization of \hat{I}^2 -sitosterol target proteins. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4976-4979.	2.2	16
38	An approach for the synthesis of nakamuric acid. Tetrahedron, 2015, 71, 3690-3693.	1.9	16
39	Syntheses of sceptrins and nakamuric acid and insights into the biosyntheses of pyrrole–imidazole dimers. Organic Chemistry Frontiers, 2015, 2, 978-984.	4.5	15
40	Construction of the 5,6,7-tricyclic skeleton of lancifodilactone F. Tetrahedron Letters, 2015, 56, 3225-3227.	1.4	13
41	Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9. EBioMedicine, 2019, 39, 145-158.	6.1	13
42	Avoid the trap: Targeting PARP1 beyond human malignancy. Cell Chemical Biology, 2021, 28, 456-462.	5.2	12
43	Palladium-Catalyzed C–H Arylation of 1,2,3-Triazoles. Molecules, 2016, 21, 1268.	3.8	8
44	Identification of TRAMs as sphingolipid-binding proteins using a photoactivatable and clickable short-chain ceramide analog. Journal of Biological Chemistry, 2021, 297, 101415.	3.4	8
45	The Chemistry and Biology of Nakiterpiosin – C-nor-D-Homosteroids. Synlett, 2012, 23, 2298-2310.	1.8	7
46	Response to Comment on "Asymmetric syntheses of sceptrin and massadine and evidence for biosynthetic enantiodivergence― Science, 2015, 349, 149-149.	12.6	7
47	Asymmetric Synthesis of Axinellamines A and B. Angewandte Chemie, 2016, 128, 4841-4844.	2.0	6
48	Natural Products as Inspiration for the Development of New Synthetic Methods. Journal of the Chinese Chemical Society, 2018, 65, 43-59.	1.4	4
49	Rapid access to the core skeleton of the [3Â+Â2]-type dimeric pyrrole–imidazole alkaloids by triplet ketone-mediated C–H functionalization. Tetrahedron, 2018, 74, 769-772.	1.9	3
50	Stereocontrolled Formation of a [4.4]Heterospiro Ring System with Unexpected Inversion of Configuration at the Spirocenter. Journal of Organic Chemistry, 2017, 82, 731-736.	3.2	1