
Daniela M Correia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescent Poly(vinylidene fluoride)â€Based Inks for Anticounterfeiting Applications. Advanced Photonics Research, 2022, 3, 2100151.	3.6	3
2	Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategies. Polymers for Advanced Technologies, 2022, 33, 1233-1243.	3.2	4
3	Environmentally friendly carrageenan-based ionic-liquid driven soft actuators. Materials Advances, 2022, 3, 937-945.	5.4	4
4	Solution processing of piezoelectric unconventional structures. , 2022, , 375-439.		3
5	Ionic liquid modified electroactive polymer-based microenvironments for tissue engineering. Polymer, 2022, 246, 124731.	3.8	4
6	Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applications. European Polymer Journal, 2022, , 111197.	5.4	2
7	Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 2022, 252, 124943.	3.8	7
8	Structural organization of ionic liquids embedded in fluorinated polymers. Journal of Molecular Liquids, 2022, 360, 119385.	4.9	8
9	Carrageenan-Based Hybrid Materials with Ionic Liquids for Sustainable and Recyclable Printable Pressure Sensors. ACS Sustainable Chemistry and Engineering, 2022, 10, 8631-8640.	6.7	6
10	Lithium-Ion Battery Solid Electrolytes Based on Poly(vinylidene Fluoride)–Metal Thiocyanate Ionic Liquid Blends. ACS Applied Polymer Materials, 2022, 4, 5909-5919.	4.4	5
11	lonic-triggered magnetoelectric coupling for magnetic sensing applications. Applied Materials Today, 2022, 29, 101590.	4.3	0
12	Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries. Journal of Colloid and Interface Science, 2021, 582, 376-386.	9.4	63
13	Magnetoelectric Polymer-Based Nanocomposites with Magnetically Controlled Antimicrobial Activity. ACS Applied Bio Materials, 2021, 4, 559-570.	4.6	20
14	All printed soft actuators based on ionic liquid/polymer hybrid materials. Applied Materials Today, 2021, 22, 100928.	4.3	16
15	Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatings. Polymer, 2021, 221, 123635.	3.8	3
16	Comparative Assessment of Ionic Liquidâ€Based Soft Actuators Prepared by Film Casting Versus Direct Ink Writing. Advanced Engineering Materials, 2021, 23, 2100411.	3.5	9
17	Crystallization Monitoring of Semicrystalline Poly(vinylidene fluoride)/1-Ethyl-3-methylimidazolium Hexafluorophosphate [Emim][PF ₆] Ionic Liquid Blends. Crystal Growth and Design, 2021, 21, 4406-4416.	3.0	8
18	Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cation. Polymer, 2021, 229, 123995.	3.8	7

#	Article	IF	CITATIONS
19	Highly sensitive transparent piezoionic materials and their applicability as printable pressure sensors. Composites Science and Technology, 2021, 214, 108976.	7.8	18
20	Ionic Liquid-Based Materials for Biomedical Applications. Nanomaterials, 2021, 11, 2401.	4.1	52
21	Nanostructured Cr(N,O) based thin films for relative humidity sensing. Vacuum, 2021, 191, 110333.	3.5	2
22	Multifunctional hard coatings based on CrNx for temperature sensing applications. Sensors and Actuators A: Physical, 2021, 329, 112794.	4.1	4
23	Influence of cellulose nanocrystal surface functionalization on the bending response of cellulose nanocrystal/ionic liquid soft actuators. Physical Chemistry Chemical Physics, 2021, 23, 6710-6716.	2.8	3
24	High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Applied Materials & Interfaces, 2021, 13, 48889-48900.	8.0	21
25	Tailoring electroactive poly(vinylidene fluorideâ€co-trifluoroethylene) microspheres by a nanoprecipitation method. Materials Letters, 2020, 261, 127018.	2.6	8
26	Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer. Materials Today Energy, 2020, 18, 100494.	4.7	18
27	Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Materials Science and Engineering C, 2020, 117, 111281.	7.3	22
28	Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Response. ACS Applied Materials & Interfaces, 2020, 12, 42089-42098.	8.0	14
29	Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds. Nanomaterials, 2020, 10, 2421.	4.1	8
30	Cellulose Nanocrystal and Water-Soluble Cellulose Derivative Based Electromechanical Bending Actuators. Materials, 2020, 13, 2294.	2.9	16
31	Development of Poly(l-Lactic Acid)-Based Bending Actuators. Polymers, 2020, 12, 1187.	4.5	7
32	Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries. Materials Today Sustainability, 2020, 9, 100041.	4.1	9
33	Polymer-based actuators: back to the future. Physical Chemistry Chemical Physics, 2020, 22, 15163-15182.	2.8	41
34	lonic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Advanced Functional Materials, 2020, 30, 1909736.	14.9	197
35	Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends. Crystal Growth and Design, 2020, 20, 4967-4979.	3.0	12
36	Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and		7

opportunities. , 2020, , 1-43.

#	Article	IF	CITATIONS
37	The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites. Cellulose, 2020, 27, 3821-3834.	4.9	16
38	Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. Cellulose, 2020, 27, 10733-10746.	4.9	33
39	Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties of poly(vinylidene fluoride) nanocomposites. Composites Part B: Engineering, 2020, 185, 107786.	12.0	14
40	Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications. Polymers, 2020, 12, 953.	4.5	18
41	Ionic liquid based Fluoropolymer solid electrolytes for Lithium-ion batteries. Sustainable Materials and Technologies, 2020, 25, e00176.	3.3	26
42	Silk Fibroin Bending Actuators as an Approach Toward Natural Polymer Based Active Materials. ACS Applied Materials & Interfaces, 2019, 11, 30197-30206.	8.0	34
43	Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. Journal of Physical Chemistry C, 2019, 123, 27917-27926.	3.1	50
44	Magnetic ionic liquid/polymer composites: Tailoring physico-chemical properties by ionic liquid content and solvent evaporation temperature. Composites Part B: Engineering, 2019, 178, 107516.	12.0	20
45	Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2019, 11, 45265-45275.	8.0	101
46	Ionic-Liquid-Based Electroactive Polymer Composites for Muscle Tissue Engineering. ACS Applied Polymer Materials, 2019, 1, 2649-2658.	4.4	46
47	Highly Sensitive Humidity Sensor Based on Ionic Liquid–Polymer Composites. ACS Applied Polymer Materials, 2019, 1, 2723-2730.	4.4	46
48	Development of bio-hybrid piezoresistive nanocomposites using silk-elastin protein copolymers. Composites Science and Technology, 2019, 172, 134-142.	7.8	14
49	Ionic-Liquid-Based Printable Materials for Thermochromic and Thermoresistive Applications. ACS Applied Materials & Interfaces, 2019, 11, 20316-20324.	8.0	33
50	Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. Polymer, 2019, 171, 58-69.	3.8	17
51	Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene) Tj ETQq1 1 0.78	4314 rgB ⁻ 3.1	Г /Qverlock 1
52	Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment. Polymer, 2019, 169, 138-147.	3.8	51
53	Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochimica Acta, 2019, 296, 598-607.	5.2	49
54	Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. MRS Advances, 2018, 3, 1671-1676.	0.9	26

#	Article	IF	CITATIONS
55	Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer, 2018, 143, 164-172.	3.8	32
56	Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. Composites Part B: Engineering, 2018, 141, 70-75.	12.0	88
57	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13, 681-704.	12.0	466
58	Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. Nanomaterials, 2018, 8, 933.	4.1	16
59	Multifunctional magnetically responsive biocomposites based on genetically engineered silk-elastin-like protein. Composites Part B: Engineering, 2018, 153, 413-419.	12.0	17
60	Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications. International Journal of Molecular Sciences, 2018, 19, 2149.	4.1	23
61	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	4.5	196
62	Low-field giant magneto-ionic response in polymer-based nanocomposites. Nanoscale, 2018, 10, 15747-15754.	5.6	31
63	Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydrate Polymers, 2017, 167, 52-58.	10.2	58
64	Chitosan patterning on titanium implants. Progress in Organic Coatings, 2017, 111, 23-28.	3.9	21
65	In vivo demonstration of the suitability of piezoelectric stimuli for bone reparation. Materials Letters, 2017, 209, 118-121.	2.6	75
66	Electrospun Polymeric Smart Materials for Tissue Engineering Applications. , 2017, , 251-282.		2
67	Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences, 2017, 18, 2391.	4.1	34
68	Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water. Materials Chemistry and Physics, 2016, 183, 430-438.	4.0	41
69	Magnetically Controlled Drug Release System through Magnetomechanical Actuation. Advanced Healthcare Materials, 2016, 5, 3027-3034.	7.6	25
70	Processing and size range separation of pristine and magnetic poly(l -lactic acid) based microspheres for biomedical applications. Journal of Colloid and Interface Science, 2016, 476, 79-86.	9.4	23
71	Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Applied Surface Science, 2016, 371, 74-82.	6.1	44

Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene) Tj ETQq0 0 0 rg BT $\frac{1}{20}$ Overlock 10 Tf 50 6

#	Article	IF	CITATIONS
73	Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Engineering in Life Sciences, 2015, 15, 351-356.	3.6	91
74	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 2015, 85, 151-158.	3.9	79
75	Development of magnetoelectric CoFe ₂ O ₄ /poly(vinylidene fluoride) microspheres. RSC Advances, 2015, 5, 35852-35857.	3.6	88
76	Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2015, 136, 46-55.	5.0	364
77	Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight. Solid State Ionics, 2014, 268, 54-67.	2.7	32
78	Influence of electrospinning parameters on poly(hydroxybutyrate) electrospun membranes fiber size and distribution. Polymer Engineering and Science, 2014, 54, 1608-1617.	3.1	35
79	Processing and characterization of α-elastin electrospun membranes. Applied Physics A: Materials Science and Processing, 2014, 115, 1291-1298.	2.3	12
80	Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Advances, 2014, 4, 33013-33021.	3.6	77
81	Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 2014, 117, 123-130.	3.6	14
82	PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polymer Testing, 2014, 34, 64-71.	4.8	87
83	Electrical properties of intrinsically conductive core–shell polypyrrole/poly(vinylidene fluoride) electrospun fibers. Synthetic Metals, 2014, 197, 198-203.	3.9	14
84	Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polymer Testing, 2013, 32, 995-1000.	4.8	66
85	Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polymer Testing, 2012, 31, 1062-1069.	4.8	52
86	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87, 1295-1301.	10.2	90
87	Sustainable lithiumâ€ion battery separators based on poly(3â€hydroxybutyrateâ€coâ€hydroxyvalerate) pristine and composite electrospun membranes. Energy Technology, 0, , 2100761.	3.8	4
88	Piezoelectric biodegradable poly(3â€hydroxybutyrate oâ€3â€hydroxyvalerate) based electrospun fiber mats with tailored porosity. Polymers for Advanced Technologies, 0, , .	3.2	4