
Erich Gulbins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888120/publications.pdf Version: 2024-02-01

FRICH CHIRINS

#	Article	IF	CITATIONS
1	Risk of Death in Individuals Hospitalized for COVID-19 With and Without Psychiatric Disorders: An Observational Multicenter Study in France. Biological Psychiatry Global Open Science, 2023, 3, 56-67.	2.2	12
2	The acid sphingomyelinase/ceramide system in COVID-19. Molecular Psychiatry, 2022, 27, 307-314.	7.9	71
3	Comorbid medical conditions are a key factor to understand the relationship between psychiatric disorders and COVID-19-related mortality: Results from 49,089 COVID-19 inpatients. Molecular Psychiatry, 2022, 27, 1278-1280.	7.9	18
4	CFTR modulator therapy alters plasma sphingolipid profiles in people with cystic fibrosis. Journal of Cystic Fibrosis, 2022, 21, 713-720.	0.7	13
5	Lung Transplantation for Adult Respiratory Distress Syndrome after SARS-CoV-2 Infection. The Thoracic and Cardiovascular Surgeon Reports, 2022, 11, e23-e26.	0.3	1
6	Pharmacological modulation of Kv1.3 potassium channel selectively triggers pathological B lymphocyte apoptosis in vivo in a genetic CLL model. Journal of Experimental and Clinical Cancer Research, 2022, 41, 64.	8.6	14
7	Association between FIASMA psychotropic medications and reduced risk of intubation or death in individuals with psychiatric disorders hospitalized for severe COVID-19: an observational multicenter study. Translational Psychiatry, 2022, 12, 90.	4.8	23
8	Sphingolipid control of cognitive functions in health and disease. Progress in Lipid Research, 2022, 86, 101162.	11.6	21
9	Mitochondrial Kv1.3 Channels as Target for Treatment of Multiple Myeloma. Cancers, 2022, 14, 1955.	3.7	9
10	Inhibition of a Mitochondrial Potassium Channel in Combination with Gemcitabine and Abraxane Drastically Reduces Pancreatic Ductal Adenocarcinoma in an Immunocompetent Orthotopic Murine Model. Cancers, 2022, 14, 2618.	3.7	11
11	Ceramide levels in blood plasma correlate with major depressive disorder severity and its neutralization abrogates depressive behavior in mice. Journal of Biological Chemistry, 2022, 298, 102185.	3.4	14
12	Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cerebral Cortex, 2021, 31, 1316-1333.	2.9	12
13	The Role of Acid Sphingomyelinase Inhibition in Repetitive Mild Traumatic Brain Injury. Journal of Surgical Research, 2021, 259, 296-304.	1.6	9
14	Cocaine attenuates acid sphingomyelinase activity during establishment of addictionâ€related behavior—A translational study in rats and monkeys. Addiction Biology, 2021, 26, e12955.	2.6	1
15	Neutral ceramidase is a marker for cognitive performance in rats and monkeys. Pharmacological Reports, 2021, 73, 73-84.	3.3	7
16	Acid Ceramidase Rescues Cystic Fibrosis Mice from Pulmonary Infections. Infection and Immunity, 2021, 89, .	2.2	10
17	Interferon regulatory factor 8 regulates expression of acid ceramidase and infection susceptibility in cystic fibrosis. Journal of Biological Chemistry, 2021, 296, 100650.	3.4	3
18	Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. Journal of Biological Chemistry, 2021, 296, 100701.	3.4	63

#	Article	IF	CITATIONS
19	Acid sphingomyelinase promotes SGK1-dependent vascular calcification. Clinical Science, 2021, 135, 515-534.	4.3	9
20	Ex vivo assay to evaluate the efficacy of drugs targeting sphingolipids in preventing SARS-CoV-2 infection of nasal epithelial cells. STAR Protocols, 2021, 2, 100356.	1.2	7
21	The Anti-Infectious Role of Sphingosine in Microbial Diseases. Cells, 2021, 10, 1105.	4.1	23
22	mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases upon Antidepressant Treatment. International Journal of Molecular Sciences, 2021, 22, 5700.	4.1	10
23	Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Frontiers in Microbiology, 2021, 12, 694489.	3.5	4
24	Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVIDâ€19: An Observational Multicenter Study. Clinical Pharmacology and Therapeutics, 2021, 110, 1498-1511.	4.7	59
25	Repurposing antidepressants inhibiting the sphingomyelinase acid/ceramide system against COVID-19: current evidence and potential mechanisms. Molecular Psychiatry, 2021, 26, 7098-7099.	7.9	38
26	New Molecular Targets for Antidepressant Drugs. Pharmaceuticals, 2021, 14, 894.	3.8	22
27	Inhaled sphingosine has no adverse side effects in isolated ventilated and perfused pig lungs. Scientific Reports, 2021, 11, 18607.	3.3	2
28	Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects. Molecular Psychiatry, 2021, 26, 7403-7416.	7.9	20
29	Antimicrobial coating prevents ventilator-associated pneumonia in a 72 hour large animal model. Journal of Surgical Research, 2021, 267, 424-431.	1.6	2
30	Mitochondrial K+ channels and their implications for disease mechanisms. , 2021, 227, 107874.		29
31	Burn Injury Impairs Neutrophil Chemotaxis Through Increased Ceramide. Shock, 2021, 56, 125-132.	2.1	7
32	P. aeruginosa Induced Lipid Peroxidation Causes Ferroptotic Cell Death in Airways. Cellular Physiology and Biochemistry, 2021, 55, 590-604.	1.6	17
33	Analysis of Lipids in Ceramide-Enriched Membrane Domains. Methods in Molecular Biology, 2021, 2187, 207-213.	0.9	1
34	Acid sphingomyelinase regulates T _H 2Âcytokine release and bronchial asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 603-615.	5.7	14
35	Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro. Journal of Molecular Medicine, 2020, 98, 209-219.	3.9	18
36	Ceramides affect alcohol consumption and depressiveâ€like and anxietyâ€like behavior in a brain region― and ceramide speciesâ€specific way in male mice. Addiction Biology, 2020, 25, e12847.	2.6	26

#	Article	IF	CITATIONS
37	Homozygous Smpd1 deficiency aggravates brain ischemia/ reperfusion injury by mechanisms involving polymorphonuclear neutrophils, whereas heterozygous Smpd1 deficiency protects against mild focal cerebral ischemia. Basic Research in Cardiology, 2020, 115, 64.	5.9	13
38	Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biology, 2020, 37, 101705.	9.0	22
39	Doxycycline-Coated Silicone Breast Implants Reduce Acute Surgical-Site Infection and Inflammation. Plastic and Reconstructive Surgery, 2020, 146, 1029-1041.	1.4	12
40	Sphingosine prevents binding of SARS–CoV-2 spike to its cellular receptor ACE2. Journal of Biological Chemistry, 2020, 295, 15174-15182.	3.4	34
41	Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. Journal of Lipid Research, 2020, 61, 896-910.	4.2	39
42	Voltage-Gated Potassium Channels as Regulators of Cell Death. Frontiers in Cell and Developmental Biology, 2020, 8, 611853.	3.7	36
43	Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Reports Medicine, 2020, 1, 100142.	6.5	142
44	Acid Sphingomyelinase Contributes to the Control of Mycobacterial Infection via a Signaling Cascade Leading from Reactive Oxygen Species to Cathepsin D. Cells, 2020, 9, 2406.	4.1	6
45	Veno-Venous Extracorporeal Membrane Oxygenation in Adult Patients with Sickle Cell Disease and Acute Chest Syndrome: a Single-Center Experience. Hemoglobin, 2020, 44, 71-77.	0.8	4
46	Anxiety and Depression Are Related to Higher Activity of Sphingolipid Metabolizing Enzymes in the Rat Brain. Cells, 2020, 9, 1239.	4.1	16
47	Acid Sphingomyelinase Inhibition Mitigates Histopathological and Behavioral Changes in a Murine Model of Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1902-1909.	3.4	8
48	Podocytopathy and Nephrotic Syndrome in Mice with Podocyte-Specific Deletion of the Asah1 Gene. American Journal of Pathology, 2020, 190, 1211-1223.	3.8	26
49	Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nature Communications, 2020, 11, 1338.	12.8	32
50	Recombinant Acid Ceramidase Reduces Inflammation and Infection in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1133-1145.	5.6	26
51	Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Scientific Reports, 2020, 10, 1645.	3.3	28
52	Role of 1â€Deoxysphingolipids in docetaxel neurotoxicity. Journal of Neurochemistry, 2020, 154, 662-672.	3.9	11
53	Serotonin – lipid interactions and their role in behavior. Handbook of Behavioral Neuroscience, 2020, 31, 289-308.	0.7	2
54	Sphingosine kills bacteria by binding to cardiolipin. Journal of Biological Chemistry, 2020, 295, 7686-7696.	3.4	36

#	Article	IF	CITATIONS
55	Therapeutic Inhaled Sphingosine for Treating Lung Infection in a Mouse Model of Critical Illness. Cellular Physiology and Biochemistry, 2020, 54, 1054-1067.	1.6	3
56	The Forebrain-Specific Overexpression of Acid Sphingomyelinase Induces Depressive-Like Symptoms in Mice. Cells, 2020, 9, 1244.	4.1	15
57	Role of Sphingolipids in Bacterial Infections. , 2020, , 165-177.		0
58	The Role of Chemoprophylactic Agents in Modulating Platelet Aggregability After TraumaticÂBrain Injury. Journal of Surgical Research, 2019, 244, 1-8.	1.6	11
59	Enhanced Alcohol Preference and Anxiolytic Alcohol Effects in Niemann-Pick Disease Model in Mice. Frontiers in Neurology, 2019, 10, 731.	2.4	17
60	Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia. Journal of Molecular Medicine, 2019, 97, 1195-1211.	3.9	23
61	Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1381-1391.	5.6	74
62	Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Frontiers in Cell and Developmental Biology, 2019, 7, 210.	3.7	44
63	Acid sphingomyelinase controls dopamine activity and responses to appetitive stimuli in mice. Brain Research Bulletin, 2019, 146, 310-319.	3.0	18
64	Secretory Acid Sphingomyelinase in the Serum of Medicated Patients Predicts the Prospective Course of Depression. Journal of Clinical Medicine, 2019, 8, 846.	2.4	25
65	Acid Sphingomyelinase Deficiency Ameliorates Farber Disease. International Journal of Molecular Sciences, 2019, 20, 6253.	4.1	13
66	Role of Sphingolipids in Bacterial Infections. , 2019, , 1-14.		0
67	Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis. Free Radical Biology and Medicine, 2019, 131, 81-97.	2.9	36
68	Amitriptyline Treatment Mitigates Sepsis-Induced Tumor Necrosis Factor Expression and Coagulopathy. Shock, 2019, 51, 356-363.	2.1	17
69	Acid Sphingomyelinase-Ceramide System in Bacterial Infections. Cellular Physiology and Biochemistry, 2019, 52, 280-301.	1.6	31
70	Amitriptyline Reduces Inflammation and Mortality in a Murine Model of Sepsis. Cellular Physiology and Biochemistry, 2019, 52, 565-579.	1.6	23
71	Signalling Effects Induced by Acid Ceramidase in Human Epithelial Or Leukemic Cell Lines. Cellular Physiology and Biochemistry, 2019, 52, 1092-1102.	1.6	3
72	Pharmacological Inhibition of Acid Sphingomyelinase Ameliorates Experimental Autoimmune Encephalomyelitis. NeuroSignals, 2019, 27, 20-31.	0.9	5

#	Article	IF	CITATIONS
73	Clinical Development of Sphingosine as Anti-Bacterial Drug: Inhalation of Sphingosine in Mini Pigs has no Adverse Side Effects. Cellular Physiology and Biochemistry, 2019, 53, 1015-1028.	1.6	16
74	Pulmonary infection of cystic fibrosis mice with <i>Staphylococcus aureus</i> requires expression of α-toxin. Biological Chemistry, 2018, 399, 1203-1213.	2.5	16
75	Sphingomyelinase, Acidic. , 2018, , 5112-5119.		0
76	The role of sphingolipids in psychoactive drug use and addiction. Journal of Neural Transmission, 2018, 125, 651-672.	2.8	20
77	Sphingolipids as targets for inhalation treatment of cystic fibrosis. Advanced Drug Delivery Reviews, 2018, 133, 66-75.	13.7	25
78	Crosstalk Between Sphingomyelinases and Reactive Oxygen Species in Mycobacterial Infection. Antioxidants and Redox Signaling, 2018, 28, 935-948.	5.4	8
79	Regulation of <i>Staphylococcus aureus</i> Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxidants and Redox Signaling, 2018, 28, 916-934.	5.4	28
80	Endocytosis of Red Blood Cell Microparticles by Pulmonary Endothelial Cells is Mediated By Rab5. Shock, 2018, 49, 288-294.	2.1	16
81	Bioactive Lipids and Redox Signaling: Molecular Mechanism and Disease Pathogenesis. Antioxidants and Redox Signaling, 2018, 28, 911-915.	5.4	18
82	Staphylococcus aureus Alpha-Toxin Disrupts Endothelial-Cell Tight Junctions via Acid Sphingomyelinase and Ceramide. Infection and Immunity, 2018, 86, .	2.2	37
83	Peripheral Acid Sphingomyelinase Activity Is Associated with Biomarkers and Phenotypes of Alcohol Use and Dependence in Patients and Healthy Controls. International Journal of Molecular Sciences, 2018, 19, 4028.	4.1	32
84	Antidepressants regulate autophagy by targeting acid sphingomyelinase. Molecular Psychiatry, 2018, 23, 2251-2251.	7.9	4
85	Mycobacterial Infection is Promoted by Neutral Sphingomyelinase 2 Regulating a Signaling Cascade Leading to Activation of β1-Integrin. Cellular Physiology and Biochemistry, 2018, 51, 1815-1829.	1.6	15
86	Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation. Frontiers in Psychiatry, 2018, 9, 496.	2.6	12
87	Sphingolipids and Innate Immunity: A New Approach to Infection in the Post-Antibiotic Era?. Surgical Infections, 2018, 19, 792-803.	1.4	11
88	Vascular and Neurogenic Rejuvenation in Aging Mice by Modulation of ASM. Neuron, 2018, 100, 167-182.e9.	8.1	39
89	Derivatization of common antidepressant drugs increases inhibition of acid sphingomyelinase and reduces induction of phospholipidosis. Journal of Neural Transmission, 2018, 125, 1837-1845.	2.8	11
90	Antidepressants act by inducing autophagy controlled by sphingomyelin–ceramide. Molecular Psychiatry, 2018, 23, 2324-2346.	7.9	166

#	Article	IF	CITATIONS
91	Sphingolipids in early viral replication and innate immune activation. Biological Chemistry, 2018, 399, 1115-1123.	2.5	27
92	Highlight: sphingolipids in infectious biology and immunology. Biological Chemistry, 2018, 399, 1113-1113.	2.5	1
93	The function of sphingomyelinases in mycobacterial infections. Biological Chemistry, 2018, 399, 1125-1133.	2.5	7
94	Pathological manifestations of Farber disease in a new mouse model. Biological Chemistry, 2018, 399, 1183-1202.	2.5	24
95	Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms. Journal of Vascular Surgery, 2017, 65, 1171-1179.e1.	1.1	47
96	Lipids in psychiatric disorders and preventive medicine. Neuroscience and Biobehavioral Reviews, 2017, 76, 336-362.	6.1	116
97	Acid Sphingomyelinase Inhibition in Stored Erythrocytes Reduces Transfusion-Associated Lung Inflammation. Annals of Surgery, 2017, 265, 218-226.	4.2	41
98	Burn injury influences the T cell homeostasis in a butyrate-acid sphingomyelinase dependent manner. Cellular Immunology, 2017, 313, 25-31.	3.0	13
99	Contribution of p62 to Phenotype Transition of Coronary Arterial Myocytes with Defective Autophagy. Cellular Physiology and Biochemistry, 2017, 41, 555-568.	1.6	6
100	Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells InÂVivo. Cancer Cell, 2017, 31, 516-531.e10.	16.8	138
101	The sphingosine 1-phosphate breakdown product, (2E)-hexadecenal, forms protein adducts and glutathione conjugates in vitro. Journal of Lipid Research, 2017, 58, 1648-1660.	4.2	21
102	β1-Integrin Accumulates in Cystic Fibrosis Luminal Airway Epithelial Membranes and Decreases Sphingosine, Promoting Bacterial Infections. Cell Host and Microbe, 2017, 21, 707-718.e8.	11.0	86
103	Staphylococcus aureus Survives in Cystic Fibrosis Macrophages, Forming a Reservoir for Chronic Pneumonia. Infection and Immunity, 2017, 85, .	2.2	33
104	Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis. Molecular Metabolism, 2017, 6, 416-427.	6.5	9
105	Paradoxical antidepressant effects of alcohol are related to acid sphingomyelinase and its control of sphingolipid homeostasis. Acta Neuropathologica, 2017, 133, 463-483.	7.7	68
106	Staphylococcus aureus α-Toxin Induces Inflammatory Cytokines via Lysosomal Acid Sphingomyelinase and Ceramides. Cellular Physiology and Biochemistry, 2017, 43, 2170-2184.	1.6	32
107	Lysophosphatidic Acid Inhibits Insulin Signaling in Primary Rat Hepatocytes via the LPA3 Receptor Subtype and is Increased in Obesity. Cellular Physiology and Biochemistry, 2017, 43, 445-456.	1.6	22
108	Regulation of Arthritis Severity by the Acid Sphingomyelinase. Cellular Physiology and Biochemistry, 2017, 43, 1460-1471.	1.6	20

#	Article	IF	CITATIONS
109	Neutrophils Kill Reactive Oxygen Species-Resistant Pseudomonas aeruginosa by Sphingosine. Cellular Physiology and Biochemistry, 2017, 43, 1603-1616.	1.6	11
110	Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nature Communications, 2017, 8, 480.	12.8	40
111	Glucosylceramide Critically Contributes to the Host Defense of Cystic Fibrosis Lungs. Cellular Physiology and Biochemistry, 2017, 41, 1208-1218.	1.6	10
112	Targeting the Potassium Channel Kv1.3 Kills Glioblastoma Cells. NeuroSignals, 2017, 25, 26-38.	0.9	40
113	Bronchoalveolar Lavage Microvesicles Protect Burn-Injured Mice from Pulmonary Infection. Journal of the American College of Surgeons, 2017, 225, 538-547.	0.5	9
114	Sphingosine rescues aged mice from pulmonary pseudomonas infection. Journal of Surgical Research, 2017, 219, 354-359.	1.6	12
115	Sphingosine's role in epithelial host defense: A natural antimicrobial and novel therapeutic. Biochimie, 2017, 141, 91-96.	2.6	27
116	Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets. Clinical and Experimental Metastasis, 2017, 34, 25-35.	3.3	25
117	Alternative splicing of SMPD1 coding for acid sphingomyelinase in major depression. Journal of Affective Disorders, 2017, 209, 10-15.	4.1	18
118	Blockade of Experimental Multiple Sclerosis by Inhibition of the Acid Sphingomyelinase/Ceramide System. NeuroSignals, 2017, 25, 88-97.	0.9	18
119	Acid sphingomyelinase deficiency enhances myelin repair after acute and chronic demyelination. PLoS ONE, 2017, 12, e0178622.	2.5	29
120	Implication of CD38 gene in autophagic degradation of collagen I in mouse coronary arterial myocytes. Frontiers in Bioscience - Landmark, 2017, 22, 558-569.	3.0	11
121	Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget, 2016, 7, 73229-73241.	1.8	95
122	Chemokine Receptors, CXCR1 and CXCR2, Differentially Regulate Exosome Release in Hepatocytes. PLoS ONE, 2016, 11, e0161443.	2.5	28
123	Acid Sphingomyelinase Inhibition Prevents Hemolysis During Erythrocyte Storage. Cellular Physiology and Biochemistry, 2016, 39, 331-340.	1.6	9
124	Inhibition of neutral sphingomyelinase protects mice against systemic tuberculosis. Frontiers in Bioscience - Elite, 2016, 8, 311-325.	1.8	8
125	Role of Acid Sphingomyelinase in the Regulation of Social Behavior and Memory. PLoS ONE, 2016, 11, e0162498.	2.5	19
126	Amitriptyline Usage Exacerbates the Immune Suppression Following Burn Injury. Shock, 2016, 46, 541-548.	2.1	23

#	Article	IF	CITATIONS
127	Frontline Science: Sphingosine rescues burn-injured mice from pulmonary <i>Pseudomonas aeruginosa</i> infection. Journal of Leukocyte Biology, 2016, 100, 1233-1237.	3.3	33
128	Role of Janus-Kinases in Major Depressive Disorder. NeuroSignals, 2016, 24, 71-80.	0.9	16
129	A sphingolipid mechanism for behavioral extinction. Journal of Neurochemistry, 2016, 137, 589-603.	3.9	46
130	Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+ Conventional versus Foxp3+ Regulatory T Cells. Journal of Immunology, 2016, 197, 3130-3141.	0.8	42
131	Long-Term Pulmonal Therapy of Cystic Fibrosis-Patients with Amitriptyline. Cellular Physiology and Biochemistry, 2016, 39, 565-572.	1.6	29
132	Quantitative Determination of Ceramide Molecular Species in Dendritic Cells. Cellular Physiology and Biochemistry, 2016, 39, 1608-1617.	1.6	9
133	Regulation of Neuronal Stem Cell Proliferation in the Hippocampus by Endothelial Ceramide. Cellular Physiology and Biochemistry, 2016, 39, 790-801.	1.6	26
134	Role of Acid Sphingomyelinase-Induced Signaling in Melanoma Cells for Hematogenous Tumor Metastasis. Cellular Physiology and Biochemistry, 2016, 38, 1-14.	1.6	19
135	Lack of Sphingosine Causes Susceptibility to Pulmonary Staphylococcus Aureus Infections in Cystic Fibrosis. Cellular Physiology and Biochemistry, 2016, 38, 2094-2102.	1.6	59
136	Melatonin Acts as an Antidepressant by Inhibition of the Acid Sphingomyelinase/Ceramide System. NeuroSignals, 2016, 24, 48-58.	0.9	13
137	Acid Sphingomyelinase (ASM) is a Negative Regulator of Regulatory T Cell (Treg) Development. Cellular Physiology and Biochemistry, 2016, 39, 985-995.	1.6	42
138	Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1385-1397.	4.1	82
139	Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. Journal of Hepatology, 2016, 64, 60-68.	3.7	235
140	Sphingomyelinase, Acidic. , 2016, , 1-8.		0
141	Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Molecular Medicine, 2015, 7, 714-734.	6.9	83
142	Inhibition of Acid Sphingomyelinase by Antidepressants Counteracts Stress-Induced Activation of P38-Kinase in Major Depression. NeuroSignals, 2015, 23, 84-92.	0.9	18
143	Highly sensitive isotope-dilution liquid-chromatography–electrospray ionization–tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans. Talanta, 2015, 144, 71-79.	5.5	18
144	Ceramide and sphingosine in pulmonary infections. Biological Chemistry, 2015, 396, 611-620.	2.5	41

#	Article	IF	CITATIONS
145	Sphingolipids in Major Depression. NeuroSignals, 2015, 23, 49-58.	0.9	24
146	Brain membrane lipids in major depression and anxiety disorders. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1052-1065.	2.4	222
147	Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 758-767.	4.9	54
148	Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology, 2015, 61, 275-284.	7.3	141
149	Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. Journal of Molecular Medicine, 2015, 93, 675-689.	3.9	62
150	Highlight: Molecular Medicine of Sphingolipids. Biological Chemistry, 2015, 396, 569-571.	2.5	0
151	Inhibition of acidic sphingomyelinase reduces established hepatic fibrosis in mice. Hepatology Research, 2015, 45, 305-314.	3.4	21
152	<i>Pseudomonas aeruginosa</i> Pyocyanin Induces Neutrophil Death <i>via</i> Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase. Antioxidants and Redox Signaling, 2015, 22, 1097-1110.	5.4	122
153	A central role for the acid sphingomyelinase/ceramide system in neurogenesis and major depression. Journal of Neurochemistry, 2015, 134, 183-192.	3.9	67
154	Alterations of plasma glycerophospholipid and sphingolipid species in male alcohol-dependent patients. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1501-1510.	2.4	23
155	Sphingolipids in liver injury, repair and regeneration. Biological Chemistry, 2015, 396, 633-643.	2.5	39
156	Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 396-408.	4.1	102
157	Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium, 2015, 58, 131-138.	2.4	48
158	Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nature Biotechnology, 2015, 33, 81-88.	17.5	187
159	Activation of Nlrp3 Inflammasomes Enhances Macrophage Lipid-Deposition and Migration: Implication of a Novel Role of Inflammasome in Atherogenesis. PLoS ONE, 2014, 9, e87552.	2.5	100
160	Effects of Green Tea Compound Epigallocatechin-3-Gallate against Stenotrophomonas maltophilia Infection and Biofilm. PLoS ONE, 2014, 9, e92876.	2.5	40
161	Regulation of the Inflammasome by Ceramide in Cystic Fibrosis Lungs. Cellular Physiology and Biochemistry, 2014, 34, 45-55.	1.6	49
162	Invariant Natural Killer T (iNKT) Cells Prevent Autoimmunity, but Induce Pulmonary Inflammation in Cystic Fibrosis. Cellular Physiology and Biochemistry, 2014, 34, 56-70.	1.6	24

#	Article	IF	CITATIONS
163	Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Frontiers in Physiology, 2014, 5, 331.	2.8	103
164	Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of Neisseria meningitidis into Brain Endothelial Cells. PLoS Pathogens, 2014, 10, e1004160.	4.7	67
165	Loss of Cystic Fibrosis Transmembrane Conductance Regulator Impairs Lung Endothelial Cell Barrier Function and Increases Susceptibility to Microvascular Damage from Cigarette Smoke. Pulmonary Circulation, 2014, 4, 260-268.	1.7	30
166	Sphingoid long chain bases prevent lung infection by <i>Pseudomonas aeruginosa</i> . EMBO Molecular Medicine, 2014, 6, 1205-1214.	6.9	109
167	Role of acid sphingomyelinase in the regulation of mast cell function. Clinical and Experimental Allergy, 2014, 44, 79-90.	2.9	11
168	Sex-Dependent Decrease of Sphingomyelinase Activity During Alcohol Withdrawal Treatment. Cellular Physiology and Biochemistry, 2014, 34, 71-81.	1.6	24
169	The Common Acid Sphingomyelinase Polymorphism p.G508R is Associated with Self-Reported Allergy. Cellular Physiology and Biochemistry, 2014, 34, 82-91.	1.6	11
170	The ceramide system as a novel antidepressant target. Trends in Pharmacological Sciences, 2014, 35, 293-304.	8.7	96
171	Acid Sphingomyelinase Regulates Platelet Cell Membrane Scrambling, Secretion, and Thrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 61-71.	2.4	56
172	Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovascular Research, 2014, 102, 68-78.	3.8	53
173	Inhibition of a Mitochondrial Potassium Channel as a New Therapeutic Strategy for Chronic Lymphocytic Leukemia. Biophysical Journal, 2014, 106, 4a.	0.5	0
174	Ceramide. , 2014, , 906-908.		0
175	Ceramide. , 2014, , 1-3.		0
176	Ceramide mediates lung fibrosis in cystic fibrosis. Biochemical and Biophysical Research Communications, 2013, 434, 705-709.	2.1	36
177	Acid Sphingomyelinase. Handbook of Experimental Pharmacology, 2013, , 77-88.	1.8	62
178	Acid sphingomyelinase–ceramide system mediates effects of antidepressant drugs. Nature Medicine, 2013, 19, 934-938.	30.7	313
179	Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3228-3236.	4.1	27
180	It Takes a CAD to Kill a Tumor Cell with a LMP. Cancer Cell, 2013, 24, 279-281.	16.8	22

#	Article	IF	CITATIONS
181	Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells. International Journal of Medical Microbiology, 2013, 303, 182-189.	3.6	23
182	Targeting the ceramide system in cancer. Cancer Letters, 2013, 332, 286-294.	7.2	69
183	Clofazimine, Psora-4 and PAP-1, inhibitors of the potassium channel Kv1.3, as a new and selective therapeutic strategy in chronic lymphocytic leukemia. Leukemia, 2013, 27, 1782-1785.	7.2	75
184	Examination of Orbital Tissues in Murine Models of Graves' Disease Reveals Expression of UCP-1 and the TSHR in Retrobulbar Adipose Tissues. Hormone and Metabolic Research, 2013, 45, 401-407.	1.5	26
185	Therapy of CF-Patients with Amitriptyline and Placebo - a Randomised, Double-Blind, Placebo-Controlled Phase IIb Multicenter, Cohort-Study. Cellular Physiology and Biochemistry, 2013, 31, 505-512.	1.6	1,925
186	Intracellular ion channels and cancer. Frontiers in Physiology, 2013, 4, 227.	2.8	113
187	Ceramide in cystic fibrosis. Clinical Lipidology, 2013, 8, 681-692.	0.4	4
188	Glioma Cell Death Induced by Irradiation or Alkylating Agent Chemotherapy Is Independent of the Intrinsic Ceramide Pathway. PLoS ONE, 2013, 8, e63527.	2.5	18
189	Functional Inhibitors of Acid Sphingomyelinase (FIASMAs). Handbook of Experimental Pharmacology, 2013, , 169-186.	1.8	31
190	Ceramide in Cystic Fibrosis. Handbook of Experimental Pharmacology, 2013, , 265-274.	1.8	23
191	Characterization of Acid Sphingomyelinase Activity in Human Cerebrospinal Fluid. PLoS ONE, 2013, 8, e62912.	2.5	29
192	Acidic Sphingomyelinase Inhibition Limits CCl 4 Induced Hepatic Fibrosis. FASEB Journal, 2013, 27, 387.5.	0.5	0
193	Role of Kinase Suppressor of Ras-1 in Lipopolysaccharide-Induced Acute Lung Injury. Cellular Physiology and Biochemistry, 2012, 30, 905-914.	1.6	6
194	Induction of Apoptosis in Macrophages via Kv1.3 and Kv1.5 Potassium Channels. Current Medicinal Chemistry, 2012, 19, 5394-5404.	2.4	62
195	Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. Journal of Molecular Medicine, 2012, 90, 1011-1023.	3.9	26
196	Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. American Journal of Physiology - Cell Physiology, 2012, 303, C991-C999.	4.6	141
197	Oxidative Stress Triggers Ca ²⁺ -Dependent Lysosome Trafficking and Activation of Acid Sphingomyelinase. Cellular Physiology and Biochemistry, 2012, 30, 815-826.	1.6	66
198	Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants. PLoS ONE, 2012, 7, e35467.	2.5	27

#	Article	IF	CITATIONS
199	Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bakâ€independent death of cancer cells. EMBO Molecular Medicine, 2012, 4, 577-593.	6.9	136
200	Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Archiv European Journal of Physiology, 2012, 463, 231-246.	2.8	72
201	Identification of Novel Functional Inhibitors of Acid Sphingomyelinase. PLoS ONE, 2011, 6, e23852.	2.5	145
202	Ceramide in Chemotherapy of Tumors. Recent Patents on Anti-Cancer Drug Discovery, 2011, 6, 284-293.	1.6	31
203	Activity of Secretory Sphingomyelinase Is Increased in Plasma of Alcohol-Dependent Patients. Alcoholism: Clinical and Experimental Research, 2011, 35, 1852-1859.	2.4	46
204	Kinase suppressor of Ras-1 protects against pulmonary Pseudomonas aeruginosa infections. Nature Medicine, 2011, 17, 341-346.	30.7	41
205	Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis. Cell Death and Differentiation, 2011, 18, 427-438.	11.2	65
206	Activation of the Permeability Transition Pore by Bax via Inhibition of the Mitochondrial BK Channel. Cellular Physiology and Biochemistry, 2011, 27, 191-200.	1.6	58
207	Ceramide formation as a target in beta-cell survival and function. Expert Opinion on Therapeutic Targets, 2011, 15, 1061-1071.	3.4	61
208	Acute intratracheal Pseudomonas aeruginosa infection in cystic fibrosis mice is age-independent. Respiratory Research, 2011, 12, 148.	3.6	28
209	A Novel Mechanism Involved in the Pathogenesis of Graves Ophthalmopathy (GO): Clathrin Is a Possible Targeting Molecule for Inhibiting Local Immune Response in the Orbit. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1727-E1736.	3.6	16
210	Lipids in cystic fibrosis. Expert Review of Respiratory Medicine, 2011, 5, 527-535.	2.5	11
211	DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells. PLoS Pathogens, 2011, 7, e1001290.	4.7	80
212	Mitochondrial Ceramide-Rich Macrodomains Functionalize Bax upon Irradiation. PLoS ONE, 2011, 6, e19783.	2.5	122
213	Enhanced eryptosis of erythrocytes from gene-targeted mice lacking annexin A7. Pflugers Archiv European Journal of Physiology, 2010, 460, 667-676.	2.8	23
214	Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: Implications for uptake. Journal of Controlled Release, 2010, 147, 171-179.	9.9	92
215	Sphingomyelinase dependent apoptosis of dendritic cells following treatment with amyloid peptides. Journal of Neuroimmunology, 2010, 219, 81-89.	2.3	15
216	An investigation of the occurrence and properties of the mitochondrial intermediate-conductance Ca2+-activated K+ channel mtKCa3.1. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1260-1267.	1.0	38

#	Article	IF	CITATIONS
217	Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1251-1259.	1.0	71
218	Contribution of the mitochondrial potassium channel Kv1.3 to the regulation of programmed cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 132-133.	1.0	1
219	Contribution of voltageâ€gated potassium channels to the regulation of apoptosis. FEBS Letters, 2010, 584, 2049-2056.	2.8	73
220	Triggering of dendritic cell apoptosis by xanthohumol. Molecular Nutrition and Food Research, 2010, 54, S214-24.	3.3	26
221	Role of acidic sphingomyelinase in thymolâ€mediated dendritic cell death. Molecular Nutrition and Food Research, 2010, 54, 1833-1841.	3.3	12
222	Increased Acid Sphingomyelinase Activity in Peripheral Blood Cells of Acutely Intoxicated Patients With Alcohol Dependence. Alcoholism: Clinical and Experimental Research, 2010, 34, 46-50.	2.4	43
223	Lipids control mucus production in cystic fibrosis. Nature Medicine, 2010, 16, 267-268.	30.7	6
224	3D topology and arrangement of proteins inside ceramide-rich domains. Proceedings of SPIE, 2010, , .	0.8	0
225	Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): A Novel Pharmacological Group of Drugs with Broad Clinical Applications. Cellular Physiology and Biochemistry, 2010, 26, 9-20.	1.6	299
226	Ceramide in <i>Pseudomonas aeruginosa</i> Infections and Cystic Fibrosis. Cellular Physiology and Biochemistry, 2010, 26, 57-66.	1.6	46
227	Ceramide in Suicidal Death of Erythrocytes. Cellular Physiology and Biochemistry, 2010, 26, 21-28.	1.6	211
228	Syntaxin 4 Is Required for Acid Sphingomyelinase Activity and Apoptotic Function*. Journal of Biological Chemistry, 2010, 285, 40240-40251.	3.4	65
229	Alterations in Ceramide Concentration and pH Determine the Release of Reactive Oxygen Species by <i>Cftr</i> -Deficient Macrophages on Infection. Journal of Immunology, 2010, 184, 5104-5111.	0.8	90
230	Alveolar inflammation in cystic fibrosis. Journal of Cystic Fibrosis, 2010, 9, 217-227.	0.7	103
231	CFTR-dependent susceptibility of the cystic fibrosis-host to Pseudomonas aeruginosa. International Journal of Medical Microbiology, 2010, 300, 578-583.	3.6	18
232	Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death. Biochemical and Biophysical Research Communications, 2010, 403, 368-374.	2.1	51
233	Acid Sphingomyelinase Inhibitors Normalize Pulmonary Ceramide and Inflammation in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 716-724.	2.9	153
234	The Role of Sphingolipids and Ceramide in Pulmonary Inflammation in Cystic Fibrosis. Open Respiratory Medicine Journal, 2010, 4, 39-47.	0.4	14

#	Article	lF	CITATIONS
235	The Role of Sphingolipids and Ceramide in Pulmonary Inflammation in Cystic Fibrosis~!2009-07-23~!2009-10-21~!2010-03-30~!. Open Respiratory Medicine Journal, 2010, 4, 39-47.	0.4	34
236	Accelerated Clearance of Plasmodium-infected Erythrocytes in Sickle Cell Trait and Annexin-A7 Deficiency. Cellular Physiology and Biochemistry, 2009, 24, 415-428.	1.6	128
237	Therapeutic Efficacy and Safety of Amitriptyline in Patients with Cystic Fibrosis. Cellular Physiology and Biochemistry, 2009, 24, 65-72.	1.6	59
238	Suicide for Survival - Death of Infected Erythrocytes as a Host Mechanism to Survive Malaria. Cellular Physiology and Biochemistry, 2009, 24, 133-140.	1.6	155
239	Induction of Membrane Ceramides: A Novel Strategy to Interfere with T Lymphocyte Cytoskeletal Reorganisation in Viral Immunosuppression. PLoS Pathogens, 2009, 5, e1000623.	4.7	52
240	Novel channels of the inner mitochondrial membrane. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 351-363.	1.0	60
241	Ceramide metabolism determines glioma cell resistance to chemotherapy. Journal of Cellular Physiology, 2009, 221, 688-695.	4.1	21
242	The role of ceramide in major depressive disorder. European Archives of Psychiatry and Clinical Neuroscience, 2009, 259, 199-204.	3.2	46
243	Eryptosis triggered by bismuth. BioMetals, 2009, 22, 453-460.	4.1	46
244	Lysosomal ceramide mediates gemcitabine-induced death of glioma cells. Journal of Molecular Medicine, 2009, 87, 1123-1132.	3.9	36
245	Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cellular Microbiology, 2009, 11, 208-216.	2.1	110
246	Ceramide-enriched membrane domains—Structure and function. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 178-183.	2.6	212
247	Highlights of a workshop to discuss targeting inflammation in cystic fibrosis. Journal of Cystic Fibrosis, 2009, 8, 1-8.	0.7	18
248	Stereoskopische Visualisierung einer Infektion mammalischer Zellen durch pathogene Bakterien. Informatik Aktuell, 2009, , 366-370.	0.6	0
249	Stereoscopic Visualization of Mammalian Macrophages Infected by Pathogenic Bacteria. IFMBE Proceedings, 2009, , 437-440.	0.3	0
250	Acid sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal damage. Oncogene, 2008, 27, 6590-6595.	5.9	38
251	The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene, 2008, 27, 4557-4568.	5.9	56
252	Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nature Medicine, 2008, 14, 382-391.	30.7	501

#	Article	IF	CITATIONS
253	Identification of New Functional Inhibitors of Acid Sphingomyelinase Using a Structureâ "Propertyâ" Activity Relation Model. Journal of Medicinal Chemistry, 2008, 51, 219-237.	6.4	203
254	Ceramide in bacterial infections and cystic fibrosis. Biological Chemistry, 2008, 389, 1371-1379.	2.5	40
255	The zinc finger protein and transcriptional repressor Gfi1 as a regulator of the innate immune response. Immunobiology, 2008, 213, 341-352.	1.9	19
256	Ceramide-induced cell death in malignant cells. Cancer Letters, 2008, 264, 1-10.	7.2	112
257	Acid Sphingomyelinase Amplifies Redox Signaling in <i>Pseudomonas aeruginosa</i> -Induced Macrophage Apoptosis. Journal of Immunology, 2008, 181, 4247-4254.	0.8	92
258	Suicidal Death of Erythrocytes Due to Selenium-Compounds. Cellular Physiology and Biochemistry, 2008, 22, 387-394.	1.6	42
259	Highlight: sphingolipids – signals and disease. Biological Chemistry, 2008, 389, 1347-1348.	2.5	3
260	DNA Quantification and Fragmentation in Sputum after Inhalation of Recombinant Human Deoxyribonuclease. Cellular Physiology and Biochemistry, 2008, 22, 347-352.	1.6	9
261	Influence of Amitriptyline on Eryptosis, Parasitemia and Survival of <i>Plasmodium Berghei</i> -Infected Mice. Cellular Physiology and Biochemistry, 2008, 22, 405-412.	1.6	60
262	Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proceedings of the United States of America, 2008, 105, 14861-14866.	7.1	194
263	Sphingolipids in the Lungs. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1100-1114.	5.6	139
264	Eryptosis, a Window to Systemic Disease. Cellular Physiology and Biochemistry, 2008, 22, 373-380.	1.6	228
265	Ceramide-Enriched Membrane Domains in Infectious Biology and Development. Sub-Cellular Biochemistry, 2008, 49, 523-538.	2.4	25
266	Ion Channels, Cell Volume, Cell Proliferation and Apoptotic Cell Death. Springer Series in Biophysics, 2008, , 69-84.	0.4	5
267	Acid Sphingomyelinase and Its Redox Amplification in Formation of Lipid Raft Redox Signaling Platforms in Endothelial Cells. Antioxidants and Redox Signaling, 2007, 9, 817-828.	5.4	107
268	Ceramide: A Novel Player in Reactive Oxygen Species-Induced Signaling?. Antioxidants and Redox Signaling, 2007, 9, 1535-1540.	5.4	59
269	Cisplatin-Induced Apoptosis Involves Membrane Fluidification via Inhibition of NHE1 in Human Colon Cancer Cells. Cancer Research, 2007, 67, 7865-7874.	0.9	145
270	Infections with Human Rhinovirus Induce the Formation of Distinct Functional Membrane Domains. Cellular Physiology and Biochemistry, 2007, 20, 241-254.	1.6	47

#	Article	IF	CITATIONS
271	Amyloid Induced Suicidal Erythrocyte Death. Cellular Physiology and Biochemistry, 2007, 19, 175-184.	1.6	84
272	Biological aspects of ceramide-enriched membrane domains. Progress in Lipid Research, 2007, 46, 161-170.	11.6	170
273	Plasma membrane ion channels in suicidal cell death. Archives of Biochemistry and Biophysics, 2007, 462, 189-194.	3.0	39
274	Ceramide: Physiological and pathophysiological aspects. Archives of Biochemistry and Biophysics, 2007, 462, 171-175.	3.0	90
275	Lipid Rafts and Redox Signaling. Antioxidants and Redox Signaling, 2007, 9, 1411-1416.	5.4	32
276	Cell Volume Regulatory Ion Channels in Cell Proliferation and Cell Death. Methods in Enzymology, 2007, 428, 209-225.	1.0	174
277	Overexpression of Acid Sphingomyelinase Sensitizes Glioma Cells to Chemotherapy. Antioxidants and Redox Signaling, 2007, 9, 1449-1456.	5.4	41
278	Ceramide in <i>Pseudomonas aeruginosa</i> infections. European Journal of Lipid Science and Technology, 2007, 109, 998-1002.	1.5	0
279	Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nature Medicine, 2007, 13, 164-170.	30.7	406
280	Suicidal erythrocyte death in sepsis. Journal of Molecular Medicine, 2007, 85, 273-281.	3.9	277
281	Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 1533-1541.	4.9	57
282	Membrane rafts in host–pathogen interactions. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 2139-2147.	2.6	131
283	Lipid Raft Clustering and Redox Signaling Platform Formation in Coronary Arterial Endothelial Cells. Hypertension, 2006, 47, 74-80.	2.7	106
284	Lipid Raft Clustering and Redox Signaling Platform Formation in Coronary Arterial Endothelial Cells. Hypertension, 2006, 47, 74-80.	2.7	176
285	Regulation of pulmonary Pseudomonas aeruginosa infection by the transcriptional repressor Gfi1. Cellular Microbiology, 2006, 8, 1096-1105.	2.1	15
286	Ion Channels and Cell Volume in Regulation of Cell Proliferation and Apoptotic Cell Death. , 2006, 152, 142-160.		86
287	Stimulation of Erythrocyte Phosphatidylserine Exposure by Paclitaxel. Cellular Physiology and Biochemistry, 2006, 18, 151-164.	1.6	94
288	Physiological and pathophysiological aspects of ceramide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R11-R26.	1.8	202

#	Article	IF	CITATIONS
289	Phospholipase A 2 Functions in Pseudomonas aeruginosa - Induced Apoptosis. Infection and Immunity, 2006, 74, 850-860.	2.2	30
290	Rhinoviral Infections Activate p38MAP-Kinases Via Membrane Rafts and RhoA. Cellular Physiology and Biochemistry, 2006, 17, 159-166.	1.6	27
291	Ceramide-enriched membrane domains. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 284-294.	4.1	282
292	Ion Channels in Cell Proliferation and Apoptotic Cell Death. Journal of Membrane Biology, 2005, 205, 147-157.	2.1	286
293	High activity of acid sphingomyelinase in major depression. Journal of Neural Transmission, 2005, 112, 1583-1590.	2.8	126
294	Studying Mechanisms of Eryptosis. Cytotechnology, 2005, 49, 117-132.	1.6	5
295	TNFR1-induced sphingomyelinase activation modulates TCR signaling by impairing store-operated Ca2+ influx. Journal of Leukocyte Biology, 2005, 78, 266-278.	3.3	51
296	Rhinoviruses Infect Human Epithelial Cells via Ceramide-enriched Membrane Platforms. Journal of Biological Chemistry, 2005, 280, 26256-26262.	3.4	195
297	A Novel Potassium Channel in Lymphocyte Mitochondria. Journal of Biological Chemistry, 2005, 280, 12790-12798.	3.4	188
298	Annexin II is a novel receptor for Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 2005, 327, 900-906.	2.1	30
299	Kinases, Cell Volume, and the Regulation of Chloride Channels. , 2005, , 73-81.		0
300	PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nature Medicine, 2004, 10, 155-160.	30.7	276
301	Ion channels and membrane rafts in apoptosis. Pflugers Archiv European Journal of Physiology, 2004, 448, 304-312.	2.8	63
302	Ceramide, membrane rafts and infections. Journal of Molecular Medicine, 2004, 82, 357-363.	3.9	153
303	Cell volume and the regulation of apoptotic cell death. Journal of Molecular Recognition, 2004, 17, 473-480.	2.1	65
304	Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood, 2004, 104, 2557-2564.	1.4	176
305	Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene, 2003, 22, 5457-5470.	5.9	258
306	Raft ceramide in molecular medicine. Oncogene, 2003, 22, 7070-7077.	5.9	392

#	Article	IF	CITATIONS
307	Role of Mitochondria in Apoptosis. Experimental Physiology, 2003, 88, 85-90.	2.0	135
308	Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nature Medicine, 2003, 9, 322-330.	30.7	521
309	Regulation of death receptor signaling and apoptosis by ceramide. Pharmacological Research, 2003, 47, 393-399.	7.1	133
310	The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Letters, 2003, 534, 169-174.	2.8	60
311	Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochemical and Biophysical Research Communications, 2003, 305, 890-897.	2.1	101
312	CD95 Rapidly Clusters in Cells of Diverse Origins. Cancer Biology and Therapy, 2003, 2, 392-395.	3.4	56
313	Ceramide-Rich Membrane Rafts Mediate CD40 Clustering. Journal of Immunology, 2002, 168, 298-307.	0.8	239
314	Clustering of CD40 Ligand Is Required to Form a Functional Contact with CD40. Journal of Biological Chemistry, 2002, 277, 30289-30299.	3.4	84
315	Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochemical and Biophysical Research Communications, 2002, 295, 526-531.	2.1	70
316	Ceramide and cell death receptor clustering. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1585, 139-145.	2.4	132
317	Glycosylation processing inhibition by castanospermine prevents experimental autoimmune encephalomyelitis by interference with IL-2 receptor signal transduction. Journal of Neuroimmunology, 2002, 132, 1-10.	2.3	41
318	Acid Sphingomyelinase-derived Ceramide Signaling in Apoptosis. , 2002, 36, 229-244.		61
319	Ceramide-Mediated Receptor Clustering. Molecular Biology Intelligence Unit, 2002, , 21-27.	0.2	Ο
320	Molecular Mechanisms of Ceramide-Mediated CD95 Clustering. Biochemical and Biophysical Research Communications, 2001, 284, 1016-1030.	2.1	181
321	Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 431-439.	4.9	131
322	Molecular mechanisms of bacteria induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 441-445.	4.9	135
323	Niemann–Pick Disease versus acid sphingomyelinase deficiency. Cell Death and Differentiation, 2001, 8, 100-102.	11.2	27
324	C2-ceramide signaling in glioma cells: synergistic enhancement of CD95-mediated, caspase-dependent apoptosis. Cell Death and Differentiation, 2001, 8, 595-602.	11.2	26

#	Article	IF	CITATIONS
325	CCNU-dependent potentiation of TRAIL/Apo2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release. Oncogene, 2001, 20, 4128-4137.	5.9	104
326	Natural Ceramide Reverses Fas Resistance of Acid Sphingomyelinase â^'â^' Hepatocytes. Journal of Biological Chemistry, 2001, 276, 8297-8305.	3.4	114
327	Ceramide Enables Fas to Cap and Kill. Journal of Biological Chemistry, 2001, 276, 23954-23961.	3.4	354
328	Pseudomonas aeruginosa-Induced Apoptosis Involves Mitochondria and Stress-Activated Protein Kinases. Infection and Immunity, 2001, 69, 2675-2683.	2.2	83
329	CD95 Signaling via Ceramide-rich Membrane Rafts. Journal of Biological Chemistry, 2001, 276, 20589-20596.	3.4	559
330	Invasion of Human Epithelial Cells byPseudomonas aeruginosa Involves Src-Like Tyrosine Kinases p60Src and p59Fyn. Infection and Immunity, 2001, 69, 281-287.	2.2	83
331	Inhibition of CD95/Fas-Induced DNA Degradation by Osmotic Cell Shrinkage. Cellular Physiology and Biochemistry, 2000, 10, 219-228.	1.6	7
332	Tyrosine Kinases Open Lymphocyte Chloride Channels. Cellular Physiology and Biochemistry, 2000, 10, 307-312.	1.6	39
333	CD95-mediated apoptosis in vivo requires acid sphingomyelinase. Journal of Biological Chemistry, 2000, 275, 27316-23.	3.4	65
334	CD95/CD95 Ligand-Mediated Counterattack Does Not Block T Cell Cytotoxicity. Biochemical and Biophysical Research Communications, 2000, 272, 395-399.	2.1	3
335	Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis ofNeisseria gonorrhoeae. FEBS Letters, 2000, 478, 260-266.	2.8	107
336	CD95/CD95 Ligand Interactions on Epithelial Cells in Host Defense to Pseudomonas aeruginosa. Science, 2000, 290, 527-530.	12.6	248
337	Cell Volume in the Regulation of Cell Proliferation and Apoptotic Cell Death. Cellular Physiology and Biochemistry, 2000, 10, 417-428.	1.6	222
338	Measurement of Sphingomyelinase Activity. Methods in Enzymology, 2000, 322, 382-388.	1.0	26
339	CD95-mediated Apoptosis in Vivo Involves Acid Sphingomyelinase. Journal of Biological Chemistry, 2000, 275, 27316-27323.	3.4	112
340	Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13795-13800.	7.1	174
341	The tyrosine kinase Lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation. Oncogene, 1999, 18, 4983-4992.	5.9	83
342	Cell volume regulatory mechanisms in apoptotic cell death. Herz, 1999, 24, 232-235.	1.1	17

#	Article	IF	CITATIONS
343	Intracellular mechanisms of ?-selectin induced capping. Cellular Signalling, 1999, 11, 301-308.	3.6	25
344	Ca2+-Activated K Channel of the BK-Type in the Inner Mitochondrial Membrane of a Human Glioma Cell Line. Biochemical and Biophysical Research Communications, 1999, 257, 549-554.	2.1	261
345	Selective Potentiation of Drug Cytotoxicity by NSAID in Human Glioma Cells: The Role of COX-1 and MRP. Biochemical and Biophysical Research Communications, 1999, 259, 600-605.	2.1	55
346	Tyrosine Phosphatase SHP-1 Is Involved in CD66-Mediated Phagocytosis of Opa ₅₂ -Expressing <i>Neisseria gonorrhoeae</i> . Infection and Immunity, 1999, 67, 5490-5494.	2.2	29
347	Chemosensitivity of human malignant glioma: modulation by p53 gene transfer. Journal of Neuro-Oncology, 1998, 39, 19-32.	2.9	41
348	Fas/CD95/Apo-I activates the acidic sphingomyelinase via Caspases. Cell Death and Differentiation, 1998, 5, 29-37.	11.2	128
349	Crm-A, bcl-2 and NDGA inhibit CD95L-induced apoptosis of malignant glioma cells at the level of caspase 8 processing. Cell Death and Differentiation, 1998, 5, 894-900.	11.2	52
350	Cellular stimulation via CD95 involves activation of phospho-inositide-3-kinase. Pflugers Archiv European Journal of Physiology, 1998, 435, 546.	2.8	14
351	Cellular taurine release triggered by stimulation of the Fas(CD95) receptor in Jurkat lymphocytes. Pflugers Archiv European Journal of Physiology, 1998, 436, 377-383.	2.8	74
352	L-Selectin Stimulates the Neutral Sphingomyelinase and Induces Release of Ceramide. Experimental Cell Research, 1998, 243, 123-128.	2.6	28
353	CD66-mediated phagocytosis of Opa52 Neisseria gonorrhoeae requires a Src-like tyrosine kinase- and Rac1-dependent signalling pathway. EMBO Journal, 1998, 17, 443-454.	7.8	129
354	Radiation-Induced Apoptosis in Human Lymphocytes and Lymphoma Cells Critically Relies on the Up-Regulation of CD95/Fas/APO-1 Ligand. Radiation Research, 1998, 149, 588.	1.5	76
355	The Tyrosine Kinase p56lck Mediates Activation of Swelling-induced Chloride Channels in Lymphocytes. Journal of Cell Biology, 1998, 141, 281-286.	5.2	164
356	Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6169-6174.	7.1	198
357	Fas or ceramide induce apoptosis by Ras-regulated phosphoinositide-3-kinase activation. Journal of Leukocyte Biology, 1998, 63, 253-263.	3.3	24
358	Functional Significance of Cell Volume Regulatory Mechanisms. Physiological Reviews, 1998, 78, 247-306.	28.8	1,706
359	Ion Channels, Cell Volume, and Apoptotic Cell Death. Cellular Physiology and Biochemistry, 1998, 8, 285-292.	1.6	44
360	Passive Deformability of Mature, Immature, and Active Neutrophils in Healthy and Septicemic Neonates. Pediatric Research, 1998, 44, 946-950.	2.3	53

#	Article	IF	CITATIONS
361	Fas- or Ceramide-induced Apoptosis Is Mediated by a Rac1-regulated Activation of Jun N-terminal Kinase/p38 Kinases and GADD153. Journal of Biological Chemistry, 1997, 272, 22173-22181.	3.4	282
362	Regulation of Kv1.3 during Fas-Induced Apoptosis. Cellular Physiology and Biochemistry, 1997, 7, 148-158.	1.6	13
363	p53 Accumulation Promotes Dephosphorylation and Proteolytic Cleavage of Retinoblastoma Protein in Human Malignant Glioma Cells. Cellular Physiology and Biochemistry, 1997, 7, 304-311.	1.6	6
364	CD95-Dependent T-Cell Killing by Glioma Cells Expressing CD95 Ligand: More on Tumor Immune Escape, the CD95 Counterattack, and the Immune Privilege of the Brain. Cellular Physiology and Biochemistry, 1997, 7, 282-288.	1.6	36
365	Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7661-7666.	7.1	183
366	L-Selectin Regulates Actin Polymerisation via Activation of the Small G-Protein Rac2. Biochemical and Biophysical Research Communications, 1997, 231, 802-807.	2.1	60
367	Mouse CD24 as a Signaling Molecule for Integrin-Mediated Cell Binding: Functional and Physical Association with src-Kinases. Biochemical and Biophysical Research Communications, 1997, 234, 330-334.	2.1	50
368	Inhibition of Fas-Induced Apoptotic Cell Death by Osmotic Cell Shrinkage. Biochemical and Biophysical Research Communications, 1997, 236, 517-521.	2.1	35
369	The CD40 Ligand Directly Activates T-Lymphocytes via Tyrosine Phosphorylation Dependent PKC Activation. Biochemical and Biophysical Research Communications, 1997, 239, 11-17.	2.1	48
370	Stimulation of TK1 Lymphoma Cells via α4β7Integrin Results in Activation of src-Tyrosine- and MAP-Kinases. Biochemical and Biophysical Research Communications, 1997, 239, 68-73.	2.1	10
371	Acidic Sphingomyelinase Mediates Entry of N. gonorrhoeae into Nonphagocytic Cells. Cell, 1997, 91, 605-615.	28.9	307
372	Lipoxygenase inhibitors block CD95 ligand-mediated apoptosis of human malignant glioma cells. FEBS Letters, 1997, 409, 17-23.	2.8	33
373	The CD40-ligand stimulates T-lymphocytes via the neutral sphingomyelinase : A novel function of the CD40-ligand as signalling molecule. FEBS Letters, 1997, 414, 444-448.	2.8	25
374	Evidence for a novel function of the CD40 ligand as a signalling molecule in T-lymphocytes. FEBS Letters, 1997, 417, 301-306.	2.8	52
375	Inhibitory effects of oxidants on n-type K + channels in T lymphocytes and Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 1997, 433, 626-632.	2.8	33
376	Effect of astroglial cell swelling on pH of acidic intracellular compartments. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1285, 212-218.	2.6	31
377	L-Selectin activates the Ras pathway via the tyrosine kinase p56lck. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15376-15381.	7.1	144
378	Activation of Src-family tyrosine kinases during Fas-induced apoptosis. Journal of Leukocyte Biology, 1996, 60, 546-554.	3.3	50

#	Article	IF	CITATIONS
379	Fas-induced Apoptosis Is Mediated by Activation of a Ras and Rac Protein-regulated Signaling Pathway. Journal of Biological Chemistry, 1996, 271, 26389-26394.	3.4	79
380	Tyrosine Phosphorylation-dependent Suppression of a Voltage-gated K+ Channel in T Lymphocytes upon Fas Stimulation. Journal of Biological Chemistry, 1996, 271, 20465-20469.	3.4	204
381	Heavy metal mediated inhibition of rBAT-induced amino acid transport. Kidney International, 1995, 47, 1677-1681.	5.2	18
382	Molecular Basis of IaK Protein Regulation by Oxidation or Chelation. Journal of Biological Chemistry, 1995, 270, 3638-3641.	3.4	29
383	FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity, 1995, 2, 341-351.	14.3	421
384	The Nitroso-Donor S-Nitrosocysteine Regulates IsK Expressed in Xenopus Oocytes via a c-GMP Independent Mechanism. Biochemical and Biophysical Research Communications, 1995, 207, 195-201.	2.1	8
385	Molecular Analysis of Ras Activation by Tyrosine Phosphorylated Vav. Biochemical and Biophysical Research Communications, 1995, 217, 876-885.	2.1	10
386	Improved specificity of RT-PCR amplifications using nested cDNA primers. Nucleic Acids Research, 1993, 21, 1329-1330.	14.5	26