Timo Repo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3887865/publications.pdf

Version: 2024-02-01

	147801	114465
4,459	31	63
citations	h-index	g-index
123	123	4128
docs citations	times ranked	citing authors
	citations 123	4,459 31 citations h-index 123 123

#	Article	IF	CITATIONS
1	Molecular Tweezers for Hydrogen: Synthesis, Characterization, and Reactivity. Journal of the American Chemical Society, 2008, 130, 14117-14119.	13.7	356
2	A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nature Chemistry, 2013, 5, 718-723.	13.6	343
3	Liquid organic hydrogen carriers for transportation and storing of renewable energy – Review and discussion. Journal of Power Sources, 2018, 396, 803-823.	7.8	301
4	Facile Heterolytic H ₂ Activation by Amines and B(C ₆ F ₅) ₃ . Angewandte Chemie - International Edition, 2008, 47, 6001-6003.	13.8	290
5	Highly Active Metalâ€Free Catalysts for Hydrogenation of Unsaturated Nitrogenâ€Containing Compounds. Advanced Synthesis and Catalysis, 2011, 353, 2093-2110.	4.3	175
6	Chiral Molecular Tweezers: Synthesis and Reactivity in Asymmetric Hydrogenation. Journal of the American Chemical Society, 2015, 137, 4038-4041.	13.7	151
7	TEMPO-Copper(II) Diimine-Catalysed Oxidation of Benzylic Alcohols in Aqueous Media. Advanced Synthesis and Catalysis, 2007, 349, 1173-1179.	4.3	145
8	Aerobic Oxidation of Benzylic Alcohols in Water by 2,2,6,6â€Tetramethylpiperidineâ€1â€oxyl (TEMPO)/Copper(II) 2â€ <i>N</i> â€Arylpyrrolecarbaldimino Complexes. Advanced Synthesis and Catalysis, 2009, 351, 2625-2632.	4.3	145
9	Metal-Free sp ² -C–H Borylation as a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes. Journal of the American Chemical Society, 2016, 138, 4860-4868.	13.7	115
10	Enantioselective Incorporation of CO ₂ : Status and Potential. ACS Catalysis, 2017, 7, 7231-7244.	11.2	105
11	Hydrogen activation by 2-boryl-N,N-dialkylanilines: a revision of Piers' ansa-aminoborane. Dalton Transactions, 2012, 41, 9029.	3.3	104
12	Intramolecular Frustrated Lewis Pair with the Smallest Boryl Site: Reversible H ₂ Addition and Kinetic Analysis. Angewandte Chemie - International Edition, 2015, 54, 1749-1753.	13.8	89
13	Molecular Hydrogen Tweezers: Structure and Mechanisms by Neutron Diffraction, NMR, and Deuterium Labeling Studies in Solid and Solution. Journal of the American Chemical Society, 2011, 133, 20245-20257.	13.7	64
14	Mechanistic Insights into the Oxidation of Veratryl Alcohol with Co(salen) and Oxygen in Aqueous Media: An in-situ Spectroscopic Study. European Journal of Inorganic Chemistry, 2005, 2005, 2591-2599.	2.0	62
15	Efficient and Selective Oxidation of Primary and Secondary Alcohols Using an Iron(III)/Phenanthroline Complex: Structural Studies and Catalytic Activity. European Journal of Inorganic Chemistry, 2012, 2012, 4479-4485.	2.0	62
16	The Role of Salts and BrÃ,nsted Acids in Lewis Acidâ€Catalyzed Aqueousâ€Phase Glucose Dehydration to 5â€Hydroxymethylfurfural. ChemCatChem, 2015, 7, 501-507.	3.7	62
17	Microwave-enhanced aqueous biphasic dehydration of carbohydrates to 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 18973-18979.	3.6	61
18	Multicomb Polymeric Supramolecules and Their Self-Organization: Combination of Coordination and Ionic Interactions. Macromolecular Rapid Communications, 2003, 24, 556-560.	3.9	56

#	Article	IF	Citations
19	Intramolecular substitutions of secondary and tertiary alcohols with chirality transfer by an iron(III) catalyst. Nature Communications, 2019, 10, 3826.	12.8	54
20	Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols. Chemical Communications, 2018, 54, 3166-3169.	4.1	48
21	On In Situ Prepared Cu–Phenanthroline Complexes in Aqueous Alkaline Solutions and Their Use in the Catalytic Oxidation of Veratryl Alcohol. European Journal of Inorganic Chemistry, 2007, 2007, 2465-2471.	2.0	46
22	Antibiotics from Carbon Dioxide: Sustainable Pathways to Pharmaceutically Relevant Cyclic Carbamates. European Journal of Organic Chemistry, 2019, 2019, 1180-1188.	2.4	46
23	Hydrogen release from liquid organic hydrogen carriers catalysed by platinum on rutile-anatase structured titania. Chemical Communications, 2020, 56, 1657-1660.	4.1	37
24	Tweezers for Parahydrogen: A Metal-Free Probe of Nonequilibrium Nuclear Spin States of H ₂ Molecules. Journal of the American Chemical Society, 2014, 136, 598-601.	13.7	36
25	Schiff base Cu(I) catalyst for aerobic oxidation of primary alcohols. Molecular Catalysis, 2019, 468, 75-79.	2.0	35
26	Homo- and Copolymerization of Strained Cyclic Olefins with New Palladium(II) Complexes Bearing Ethylene-Bridged Heterodonor Ligands. Macromolecular Chemistry and Physics, 2001, 202, 599-603.	2.2	34
27	Nuclear spin hyperpolarization with ansa-aminoboranes: a metal-free perspective for parahydrogen-induced polarization. Physical Chemistry Chemical Physics, 2016, 18, 27784-27795.	2.8	34
28	New Bulky Bis(amino)cyclodiphosph(III)azanes and Their Titanium(IV) Complexes: Synthesis, Structures and Ethene Polymerization Studies. European Journal of Inorganic Chemistry, 2004, 2004, 695-706.	2.0	32
29	Mn(<scp>ii</scp>) acetate: an efficient and versatile oxidation catalyst for alcohols. Catalysis Science and Technology, 2014, 4, 2564-2573.	4.1	32
30	A Oneâ€Pot Synthesis of <i>N</i> àê€Arylâ€2â€Oxazolidinones and Cyclic Urethanes by the Lewis Base Catalyzed Fixation of Carbon Dioxide into Anilines and Bromoalkanes. Chemistry - A European Journal, 2016, 22, 10355-10359.	3.3	32
31	Atomâ€Efficient Synthesis of Alkynylfluoroborates Using BF ₃ â€Based Frustrated Lewis Pairs. Angewandte Chemie - International Edition, 2016, 55, 14146-14150.	13.8	32
32	Bis(salicylaldiminato)titanium Complexes Containing Bulky Imine Substituents: Synthesis, Characterization and Ethene Polymerization Studies. European Journal of Inorganic Chemistry, 2005, 2005, 2100-2109.	2.0	29
33	Oxidation of Elemental Gold in Alcohol Solutions. Inorganic Chemistry, 2007, 46, 3251-3256.	4.0	29
34	Selective oxidation of uronic acids into aldaric acids over gold catalyst. RSC Advances, 2015, 5, 19502-19507.	3.6	29
35	Tetrakis Sn(IV) alkoxides as novel initiators for living ring-opening polymerization of lactides. Journal of Polymer Science Part A, 2004, 42, 1901-1911.	2.3	27
36	Facile synthesis of vanillin from fractionated Kraft lignin. Industrial Crops and Products, 2020, 145, 112095.	5.2	27

#	Article	IF	CITATIONS
37	Iron(II)- and Cobalt(II) Complexes with Tridentate Bis(imino)pyridine Nitrogen Ligands Bearing Chiral Bulky Aliphatic and Aromatic Substituents: Crystal Structure of [CoCl2{2, 6-bis[R-(+)-(bornylimino)methyl]pyridine}]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 763-768.	1.2	26
38	The Polymerization of Tetrahydrofuran Initiated by Niobium(V) and Tantalum(V) Halides. European Journal of Inorganic Chemistry, 2008, 2008, 2107-2112.	2.0	26
39	One-step Pd/C and Eu(OTf) 3 catalyzed hydrodeoxygenation of branched C 11 and C 12 biomass-based furans to the corresponding alkanes. Applied Catalysis A: General, 2017, 534, 40-45.	4.3	26
40	From DNA to catalysis: a thymine-acetate ligated non-heme iron(<scp>iii</scp>) catalyst for oxidative activation of aliphatic Câ€"H bonds. Chemical Communications, 2016, 52, 2043-2046.	4.1	25
41	Replacing C ₆ F ₅ groups with Cl and H atoms in frustrated Lewis pairs: H ₂ additions and catalytic hydrogenations. Dalton Transactions, 2017, 46, 2263-2269.	3.3	25
42	Iron-based catalysts bearing bis(imido)-pyridine ligands for the polymerization oftert-butyl acrylate. Journal of Polymer Science Part A, 2003, 41, 1380-1389.	2.3	24
43	Origin of Stereoselectivity in FLP-Catalyzed Asymmetric Hydrogenation of Imines. ACS Catalysis, 2020, 10, 14290-14301.	11.2	24
44	Titanium and Zirconium Benzyl Complexes Bearing Bulky Bis(amido)cyclodiphosph(III)azanes:  Synthesis, Structure, Activation, and Ethene Polymerization Studies. Organometallics, 2006, 25, 463-471.	2.3	23
45	[Bis(amido)cyclodiphosph(III)azane]dichlorozirconium Complexes for Ethene Polymerization. European Journal of Inorganic Chemistry, 2004, 2004, 4702-4709.	2.0	22
46	Ironâ€Catalysed Selective Aerobic Oxidation of Alcohols to Carbonyl and Carboxylic Compounds. ChemPlusChem, 2016, 81, 1160-1165.	2.8	22
47	Synthesis, structure and catalytic activity of bis(phenoxyiminato)iron(III) complexes in coupling reaction of CO2 and epoxides. Inorganica Chimica Acta, 2016, 442, 81-85.	2.4	22
48	Pyridinethiolâ€Assisted Dissolution of Elemental Gold in Organic Solutions. Angewandte Chemie - International Edition, 2018, 57, 17104-17109.	13.8	22
49	In situ ATR-IR spectroscopy: a powerful tool to elucidate the catalytic oxidation of veratryl alcohol in aqueous media. Physical Chemistry Chemical Physics, 2003, 5, 4450-4454.	2.8	21
50	Bis(amido)cyclodiphosph(III)azane Hafnium Complexes and Their Activation by Tris(perfluorophenyl)borane. Organometallics, 2005, 24, 1336-1343.	2.3	21
51	On the Mechanism of Palladium-Catalyzed Cross-Coupling of Diazonium Salts with Aryltrifluoroborates: A Combined ESI-MS/NMR Study. European Journal of Inorganic Chemistry, 2007, 2007, 4645-4652.	2.0	21
52	Direct Assembly of 2â€Oxazolidinones by Chemical Fixation of Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 8867-8871.	3.3	21
53	Diverting Hydrogenations with Wilkinson's Catalyst towards Highly Reactive Rhodium(I) Species. Angewandte Chemie - International Edition, 2015, 54, 14321-14325.	13.8	21
54	Metalâ€Free Câ^'H Borylation of Nâ€Heteroarenes by Boron Trifluoride. Chemistry - A European Journal, 2020, 26, 13873-13879.	3.3	21

#	Article	IF	CITATIONS
55	Catalytic Oxidation of Alkanes and Alkenes by H ₂ O ₂ with a Î⅓â€Oxido Diiron(III) Complex as Catalyst/Catalyst Precursor. European Journal of Inorganic Chemistry, 2015, 2015, 3590-3601.	2.0	20
56	Oneâ∈Pot Transformation of Carbohydrates into Valuable Furan Derivatives via 5â∈Hydroxymethylfurfural. ChemCatChem, 2017, 9, 4244-4255.	3.7	20
57	Selective Aerobic Oxidation of Alcohols with NO ₃ ^{â^'} Activated Nitroxyl Radical/Manganese Catalyst System. ChemCatChem, 2018, 10, 2908-2914.	3.7	20
58	Copolymerization of carbon monoxide withexo-methylenecycloalkane and dienes: synthesis of functionalized aliphatic polyketones. Polymer International, 2001, 50, 1223-1227.	3.1	19
59	Titanium Alkoxide Complexes as Catalysts for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. European Journal of Inorganic Chemistry, 2015, 2015, 5363-5367.	2.0	19
60	Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers. Drug Development and Industrial Pharmacy, 2016, 42, 378-388.	2.0	19
61	Alkyl Chain Length Defines 2D Architecture of Salophen Complexes on Liquid–Graphite Interface. European Journal of Inorganic Chemistry, 2007, 2007, 4028-4034.	2.0	18
62	Isosorbide synthesis from cellulose with an efficient and recyclable ruthenium catalyst. Green Chemistry, 2017, 19, 4563-4570.	9.0	18
63	Practical Aerobic Oxidation of Alcohols: A Ligandâ€Enhanced 2,2,6,6â€Tetramethylpiperidineâ€1â€oxy/Manganese Nitrate Catalyst System. ChemCatChem, 2017, 9, 3880-388	37 ^{3.7}	17
64	Copolymerization of vinylcyclohexane with ethene and propene using zirconocene catalysts. Journal of Polymer Science Part A, 2006, 44, 6569-6574.	2.3	16
65	Amine-Borane Mediated Metal-Free Hydrogen Activation and Catalytic Hydrogenation. Topics in Current Chemistry, 2012, 332, 111-155.	4.0	16
66	Catalytic polymerization of $\hat{l}\mu$ -caprolactone in air. Polymer Chemistry, 2010, 1, 834.	3.9	15
67	A catalytic approach <i>via</i> retro-aldol condensation of glucose to furanic compounds. Green Chemistry, 2021, 23, 5481-5486.	9.0	15
68	Mechanistic insights into carbamate formation from CO ₂ and amines: the role of guanidine–CO ₂ adducts. Catalysis Science and Technology, 2021, 11, 6877-6886.	4.1	15
69	Alternative Coordination Modes in Palladium(II)-Diimino-Bispyridine Complexes with an Axially Chiral Biphenyl Backbone. European Journal of Inorganic Chemistry, 2005, 2005, 1081-1089.	2.0	14
70	Spontaneous ¹⁵ N Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers. Journal of Physical Chemistry Letters, 2018, 9, 903-907.	4.6	14
71	Oneâ€Step Synthesis of 3,4â€Disubstituted 2â€Oxazolidinones by Baseâ€Catalyzed CO ₂ Fixation ar Azaâ€Michael Addition. Chemistry - A European Journal, 2019, 25, 10284-10289.	nd 3.3	14
72	Parahydrogenâ€Induced Polarization in Hydrogenation Reactions Mediated by a Metalâ€Free Catalyst. Chemistry - A European Journal, 2022, 28, .	3.3	13

#	Article	IF	Citations
73	High molar mass ethene/1â€olefin copolymers synthesized with acenaphthyl substituted metallocene catalysts. Journal of Polymer Science Part A, 2008, 46, 373-382.	2.3	12
74	Atomâ€Efficient Synthesis of Alkynylfluoroborates Using BF ₃ â€Based Frustrated Lewis Pairs. Angewandte Chemie, 2016, 128, 14352-14356.	2.0	12
75	Two- and three-dimensional packing diagrams of M(salophen) complexes. CrystEngComm, 2011, 13, 4701.	2.6	11
76	Oxidation of Vanillin with Supported Gold Nanoparticles. Topics in Catalysis, 2016, 59, 1138-1142.	2.8	11
77	Iodineâ€Catalysed Dissolution of Elemental Gold in Ethanol. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
78	Ethene Polymerization Behavior of MAO-Activated Dichloridotitanium Complexes Bearing Bi- and Tetradentate Salicylaldimine Derivatives. European Journal of Inorganic Chemistry, 2010, 2010, 266-274.	2.0	10
79	CO ₂ coupling with epoxides catalysed by using one-pot synthesised, <i>in situ</i> activated zinc ascorbate under ambient conditions. Dalton Transactions, 2020, 49, 7673-7679.	3.3	10
80	Polymerization of acrylate monomers by iron(II) complexes bearing bis(imido)pyridyl or phosphine ligands. Macromolecular Symposia, 2004, 213, 199-208.	0.7	9
81	Pyridinethiolâ€Assisted Dissolution of Elemental Gold in Organic Solutions. Angewandte Chemie, 2018, 130, 17350-17355.	2.0	9
82	Practical Method for 2â€Hydroxyphenylketimine Synthesis. Synthetic Communications, 2007, 37, 1765-1777.	2.1	8
83	Transition metal triflate catalyzed conversion of alcohols, ethers and esters to olefins. RSC Advances, 2018, 8, 15111-15118.	3.6	8
84	Heterolytic Scission of Hydrogen Within a Crystalline Frustrated Lewis Pair. Inorganic Chemistry, 2020, 59, 15295-15301.	4.0	8
85	Synthesis, Characterization and Polymerization Behavior of {(1R,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 {(1R,S)-Cyclohexyl-2-(î·5-octahydro-9-fluorenyl)-1[î·5-tetrahydro-(1R,S)-indenyl]ethane}zirconium Dichloride. Chemische Berichte. 1997, 130, 747-751.	272 Td (S 0.2)-2-(η5-9-Fluc 7
86	Cooperative Ligands in Dissolution of Gold. Chemistry - A European Journal, 2021, 27, 8668-8672.	3.3	7
87	Hydrothermal Depolymerization of Kraft Lignins with Green C ₁ –C ₃ Alcohol–Water Mixtures. Energy & Fuels, 2021, 35, 15770-15777.	5.1	7
88	Structural and spectroscopic characterization of Cu(salen) complexes bearing long alkoxy chains. Journal of Coordination Chemistry, 2010, 63, 4280-4289.	2.2	6
89	Copolymerization of propene with phenylnorbornene usingansa-bridged metallocene catalysts. Journal of Applied Polymer Science, 2002, 84, 2743-2752.	2.6	4
90	High-molar-mass polypropene with tunable elastic properties by hafnocene/borate catalysts. Journal of Polymer Science Part A, 2006, 44, 4743-4751.	2.3	4

#	Article	IF	Citations
91	Organocatalytic Oxidation of Secondary Alcohols Using 1,2â€Di(1â€naphthyl)â€1,2â€ethanediamine (NEDA). European Journal of Organic Chemistry, 2014, 2014, 6141-6144.	2.4	4
92	The Reactivity of Thymine and Thymidine 5,6-Epoxides with Organometallic Reagents – A Route to Thymidine (6-4) Photoproduct Analogues. Journal of Organic Chemistry, 2016, 81, 3848-3859.	3.2	4
93			

Тімо Repo

#	Article	IF	CITATIONS
109	The Use of Sustainable Transition Metals for the Cycloaddition of Epoxides and CO2 under Mild Reaction Conditions. European Journal of Inorganic Chemistry, 0, , .	2.0	1
110	Crystal structure of 1-(9-fluorenyl)-2-(1-indenyl)ethane, C24H2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2000, 215, 421-422.	0.3	0
111	Rücktitelbild: Intramolecular Frustrated Lewis Pair with the Smallest Boryl Site: Reversible H2Addition and Kinetic Analysis (Angew. Chem. 6/2015). Angewandte Chemie, 2015, 127, 1998-1998.	2.0	0
112	Cooperative Ligands in Dissolution of Gold. Chemistry - A European Journal, 2021, 27, 8604-8604.	3.3	0
113	Innentitelbild: Iodineâ€Catalysed Dissolution of Elemental Gold in Ethanol (Angew. Chem. 14/2022). Angewandte Chemie, 2022, 134, .	2.0	0