Etienne Bucher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3886799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimentally heatâ€induced transposition increases drought tolerance in <i>Arabidopsis thaliana</i> . New Phytologist, 2022, 236, 182-194.	7.3	12
2	Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Research, 2021, 49, 10431-10447.	14.5	60
3	Skin Color in Apple Fruit (Malus × domestica): Genetic and Epigenetic Insights. Epigenomes, 2020, 4, 13.	1.8	8
4	Divergent DNA Methylation Signatures of Juvenile Seedlings, Grafts and Adult Apple Trees. Epigenomes, 2020, 4, 4.	1.8	12
5	The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana. PLoS Genetics, 2020, 16, e1008324.	3.5	13
6	Title is missing!. , 2020, 16, e1008324.		0
7	Title is missing!. , 2020, 16, e1008324.		0
8	Title is missing!. , 2020, 16, e1008324.		0
9	Title is missing!. , 2020, 16, e1008324.		0
10	Title is missing!. , 2020, 16, e1008324.		0
11	Title is missing!. , 2020, 16, e1008324.		0
12	Title is missing!. , 2020, 16, e1008324.		0
13	Title is missing!. , 2020, 16, e1008324.		0
14	The NRPD1 N-terminus contains a Pol IV-specific motif that is critical for genome surveillance in Arabidopsis. Nucleic Acids Research, 2019, 47, 9037-9052.	14.5	14
15	The SCOOP12 peptide regulates defense response and root elongation in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2019, 70, 1349-1365.	4.8	59
16	A largeâ€scale circular <scp>RNA</scp> profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant Journal, 2019, 98, 697-713.	5.7	99
17	Functional and molecular characterization of the conserved Arabidopsis PUMILIO protein, APUM9. Plant Molecular Biology, 2019, 100, 199-214.	3.9	14
18	Apple whole genome sequences: recent advances and new prospects. Horticulture Research, 2019, 6, 59.	6.3	77

ETIENNE BUCHER

#	Article	IF	CITATIONS
19	Biotic Stress-Induced Priming and De-Priming of Transcriptional Memory in Arabidopsis and Apple. Epigenomes, 2019, 3, 3.	1.8	13
20	Transposable Elements as Tool for Crop Improvement. Advances in Botanical Research, 2018, , 165-202.	1.1	11
21	The 5′-3′ Exoribonuclease XRN4 Regulates Auxin Response via the Degradation of Auxin Receptor Transcripts. Genes, 2018, 9, 638.	2.4	7
22	Epigenetic Regulations of Fleshy Fruit Development and Ripening and Their Potential Applications to Breeding Strategies. Advances in Botanical Research, 2018, 88, 327-360.	1.1	7
23	A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants, 2018, 4, 473-484.	9.3	224
24	Ecological plant epigenetics: Evidence from model and nonâ€model species, and the way forward. Ecology Letters, 2017, 20, 1576-1590.	6.4	279
25	High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017, 49, 1099-1106.	21.4	693
26	Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biology, 2017, 18, 134.	8.8	84
27	Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biology, 2016, 17, 209.	8.8	77
28	Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nature Plants, 2015, 1, 15092.	9.3	91
29	HISTONE DEACETYLASE6 Controls Gene Expression Patterning and DNA Methylation-Independent Euchromatic Silencing. Plant Physiology, 2015, 168, 1298-1308.	4.8	21
30	The return of Lamarck?. Frontiers in Genetics, 2013, 4, .	2.3	1
31	Loss of DNA methylation affects the recombination landscape in <i>Arabidopsis</i> . Proceedings of the United States of America, 2012, 109, 5880-5885.	7.1	186
32	Epigenetic control of transposon transcription and mobility in Arabidopsis. Current Opinion in Plant Biology, 2012, 15, 503-510.	7.1	110
33	An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 2011, 472, 115-119.	27.8	550
34	MOM1 and Pol-IV/V interactions regulate the intensity and specificity of transcriptional gene silencing. EMBO Journal, 2010, 29, 340-351.	7.8	63
35	RNAâ€directed DNA methylation and plant development require an IWR1â€ŧype transcription factor. EMBO Reports, 2010, 11, 65-71.	4.5	77
36	Stress-Induced Activation of Heterochromatic Transcription. PLoS Genetics, 2010, 6, e1001175.	3.5	207

ETIENNE BUCHER

#	Article	IF	CITATIONS
37	Compromised stability of DNA methylation and transposon immobilization in mosaic <i>Arabidopsis</i> epigenomes. Genes and Development, 2009, 23, 939-950.	5.9	380
38	A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO Journal, 2009, 28, 48-57.	7.8	162
39	Selective epigenetic control of retrotransposition in Arabidopsis. Nature, 2009, 461, 427-430.	27.8	315
40	A structural-maintenance-of-chromosomes hinge domain–containing protein is required for RNA-directed DNA methylation. Nature Genetics, 2008, 40, 670-675.	21.4	180
41	RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 358-374.	2.4	121
42	Multiple virus resistance at a high frequency using a single transgene construct. Journal of General Virology, 2006, 87, 3697-3701.	2.9	158
43	RNA Silencing: A Natural Resistance Mechanism in Plants. , 2006, , 45-72.		6
44	The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. Journal of General Virology, 2004, 85, 983-991.	2.9	163
45	Negative-Strand Tospoviruses and Tenuiviruses Carry a Gene for a Suppressor of Gene Silencing at Analogous Genomic Positions. Journal of Virology, 2003, 77, 1329-1336.	3.4	210
46	Resistance mechanisms to plant viruses: an overview. Virus Research, 2003, 92, 207-212.	2.2	175