List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3886747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronary Artery Pattern and Outcome of Arterial Switch Operation for Transposition of the Great Arteries. Circulation, 2002, 106, 2575-2580.	1.6	258
2	An empirically based tool for analyzing morbidity associated with operations for congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1046-1057.e1.	0.8	210
3	Variation in Outcomes for Benchmark Operations: An Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2011, 92, 2184-2192.	1.3	200
4	Variation in Prenatal Diagnosis of Congenital Heart Disease in Infants. Pediatrics, 2015, 136, e378-e385.	2.1	179
5	Transplantation-Free Survival and Interventions at 3 Years in the Single Ventricle Reconstruction Trial. Circulation, 2014, 129, 2013-2020.	1.6	178
6	Association of Center Volume With Mortality and Complications in Pediatric Heart Surgery. Pediatrics, 2012, 129, e370-e376.	2.1	172
7	Gestational Age at Birth and Outcomes After Neonatal Cardiac Surgery. Circulation, 2014, 129, 2511-2517.	1.6	155
8	The Society of Thoracic Surgeons Congenital HeartÂSurgery Database Mortality Risk Model: PartÂ1—Statistical Methodology. Annals of Thoracic Surgery, 2015, 100, 1054-1062.	1.3	146
9	Trends in endocarditis hospitalizations at US children's hospitals: Impact of the 2007 American Heart Association Antibiotic Prophylaxis Guidelines. American Heart Journal, 2012, 163, 894-899.	2.7	135
10	Linking clinical registry data with administrative data using indirect identifiers: Implementation and validation in the congenital heart surgery population. American Heart Journal, 2010, 160, 1099-1104.	2.7	133
11	Mortality Trends in Pediatric and Congenital Heart Surgery: An Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2016, 102, 1345-1352.	1.3	132
12	The Society of Thoracic Surgeons Congenital HeartÂSurgery Database Mortality Risk Model: PartÂ2—Clinical Application. Annals of Thoracic Surgery, 2015, 100, 1063-1070.	1.3	128
13	Corticosteroids and Outcome in Children Undergoing Congenital Heart Surgery. Circulation, 2010, 122, 2123-2130.	1.6	127
14	Evaluation of Failure to Rescue as a Quality Metric in Pediatric Heart Surgery: An Analysis of The STS Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2012, 94, 573-580.	1.3	123
15	Collaborative quality improvement in the cardiac intensive care unit: development of the Paediatric Cardiac Critical Care Consortium (PC ⁴). Cardiology in the Young, 2015, 25, 951-957.	0.8	121
16	Variation in Outcomes for Risk-Stratified Pediatric Cardiac Surgical Operations: An Analysis of the STS Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2012, 94, 564-572.	1.3	117
17	Variation in Congenital Heart Surgery Costs Across Hospitals. Pediatrics, 2014, 133, e553-e560.	2.1	114
18	Quality Measures for Congenital and Pediatric Cardiac Surgery. World Journal for Pediatric & Congenital Heart Surgery, 2012, 3, 32-47.	0.8	110

#	Article	IF	CITATIONS
19	Differential Case Ascertainment in Clinical Registry Versus Administrative Data and Impact on Outcomes Assessment for Pediatric Cardiac Operations. Annals of Thoracic Surgery, 2013, 95, 197-203.	1.3	105
20	Perioperative mechanical circulatory support in children: An analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 658-665.	0.8	102
21	Perioperative Methylprednisolone and Outcome in Neonates Undergoing Heart Surgery. Pediatrics, 2012, 129, e385-e391.	2.1	101
22	Comparative analysis of antifibrinolytic medications in pediatric heart surgery. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 550-557.	0.8	99
23	Variation in perioperative care across centers for infants undergoing the Norwood procedure. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 915-921.	0.8	95
24	The Complex Relationship Between Center Volume and Outcome in Patients Undergoing the Norwood Operation. Annals of Thoracic Surgery, 2012, 93, 1556-1562.	1.3	95
25	Center Variation in Hospital Costs for Patients Undergoing Congenital Heart Surgery. Circulation: Cardiovascular Quality and Outcomes, 2011, 4, 306-312.	2.2	92
26	Contemporary outcomes of complete atrioventricular septal defect repair: Analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 2526-2531.	0.8	92
27	The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2019ÂUpdate on Outcomes and Quality. Annals of Thoracic Surgery, 2019, 107, 691-704.	1.3	90
28	Stage 1 hybrid palliation for hypoplastic left heart syndrome—assessment of contemporary patterns of use: An analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 195-202.e1.	0.8	89
29	The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2016 Update on Outcomes and Quality. Annals of Thoracic Surgery, 2016, 101, 850-862.	1.3	87
30	Excess Costs Associated With Complications and Prolonged Length of Stay After Congenital Heart Surgery. Annals of Thoracic Surgery, 2014, 98, 1660-1666.	1.3	79
31	Long-Term Survival and Reintervention After the Ross Procedure Across the Pediatric Age Spectrum. Annals of Thoracic Surgery, 2015, 99, 2086-2095.	1.3	79
32	Status of the Pediatric Clinical Trials Enterprise: An Analysis of the US ClinicalTrials.gov Registry. Pediatrics, 2012, 130, e1269-e1277.	2.1	78
33	The Importance of Patient-Specific Preoperative Factors: An Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2014, 98, 1653-1659.	1.3	78
34	Surgeon and Center Volume Influence on Outcomes After Arterial Switch Operation: Analysis of the STS Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2014, 98, 904-911.	1.3	76
35	The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2017 Update on Outcomes and Quality. Annals of Thoracic Surgery, 2017, 103, 699-709.	1.3	73
36	Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery. Annals of Thoracic Surgery, 2014, 98, 2138-2144.	1.3	68

#	Article	IF	CITATIONS
37	Prevalence of Noncardiac and Genetic Abnormalities in Neonates Undergoing Cardiac Operations: Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2016, 102, 1607-1614.	1.3	68
38	Estimating Mortality Risk for Adult Congenital Heart Surgery: An Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2015, 100, 1728-1736.	1.3	67
39	The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2018 Update on Outcomes and Quality. Annals of Thoracic Surgery, 2018, 105, 680-689.	1.3	65
40	Reoperations for Pediatric and Congenital Heart Disease: An Analysis of the Society of Thoracic Surgeons (STS) Congenital Heart Surgery Database. Pediatric Cardiac Surgery Annual, 2014, 17, 2-8.	1.2	64
41	National Variation in Congenital Heart Surgery Outcomes. Circulation, 2020, 142, 1351-1360.	1.6	62
42	Acute Kidney Injury Severity and Long-Term Readmission and Mortality After Cardiac Surgery. Annals of Thoracic Surgery, 2016, 102, 1482-1489.	1.3	59
43	Epidemiology of Stroke in Pediatric Cardiac Surgical Patients Supported With Extracorporeal Membrane Oxygenation. Annals of Thoracic Surgery, 2015, 100, 1751-1757.	1.3	57
44	Improvement in Pediatric Cardiac Surgical Outcomes Through InterhospitalÂCollaboration. Journal of the American College of Cardiology, 2019, 74, 2786-2795.	2.8	55
45	Updating an Empirically Based Tool for Analyzing Congenital Heart Surgery Mortality. World Journal for Pediatric & Congenital Heart Surgery, 2021, 12, 246-281.	0.8	55
46	Benchmark Outcomes for Pulmonary Valve Replacement Using The Society of Thoracic Surgeons Databases. Annals of Thoracic Surgery, 2015, 100, 138-146.	1.3	54
47	Adverse cardiac events in children with Williams syndrome undergoing cardiovascular surgery: An analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 1516-1522.e1.	0.8	53
48	Refining The Society of Thoracic Surgeons Congenital Heart Surgery Database Mortality Risk Model With Enhanced Risk Adjustment for Chromosomal Abnormalities, Syndromes, and Noncardiac Congenital Anatomic Abnormalities. Annals of Thoracic Surgery, 2019, 108, 558-566.	1.3	53
49	Safety of Aprotinin in Congenital Heart Operations: Results from a Large Multicenter Database. Annals of Thoracic Surgery, 2010, 90, 14-21.	1.3	52
50	Contemporary Outcomes of Surgical Repair of Total Anomalous Pulmonary Venous Connection in Patients With Heterotaxy Syndrome. Annals of Thoracic Surgery, 2015, 99, 2134-2140.	1.3	51
51	Cardiac Networks United: an integrated paediatric and congenital cardiovascular research and improvement network. Cardiology in the Young, 2019, 29, 111-118.	0.8	51
52	Cardiac Surgery in Patients With Trisomy 13 and 18: An Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Journal of the American Heart Association, 2019, 8, e012349.	3.7	49
53	Long-term functional health status and exercise test variables for patients with pulmonary atresia with intact ventricular septum: AÂCongenital Heart Surgeons Society study. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1018-1027.e3.	0.8	47
54	Delayed Sternal Closure in Infant Heart Surgery—The Importance of Where and When: An Analysis of the STS Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2016, 102, 1565-1572.	1.3	47

#	Article	IF	CITATIONS
55	Development of a Congenital Heart Surgery Composite Quality Metric: Part 1—Conceptual Framework. Annals of Thoracic Surgery, 2019, 107, 583-589.	1.3	47
56	Hospital Distribution and Patient Travel Patterns for Congenital Cardiac Surgery in the United States. Annals of Thoracic Surgery, 2019, 107, 574-581.	1.3	45
57	Socioeconomic Status and Long-term Outcomes in Single Ventricle Heart Disease. Pediatrics, 2020, 146,	2.1	45
58	Critical Care Nursing's Impact on Pediatric Patient Outcomes. Annals of Thoracic Surgery, 2016, 102, 1375-1380.	1.3	44
59	Regionalization of Congenital Heart Surgery in the United States. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 128-137.	0.6	44
60	Measuring Hospital Performance in Congenital Heart Surgery: Administrative Versus Clinical Registry Data. Annals of Thoracic Surgery, 2015, 99, 932-938.	1.3	43
61	Hospital Variation in Postoperative Infection and Outcome After Congenital Heart Surgery. Annals of Thoracic Surgery, 2013, 96, 657-663.	1.3	42
62	Globalization of Pediatric Research: Analysis of Clinical Trials Completed for Pediatric Exclusivity. Pediatrics, 2010, 126, e687-e692.	2.1	40
63	Clinical Databases and Registries in Congenital and Pediatric Cardiac Surgery, Cardiology, Critical Care, and Anesthesiology Worldwide. World Journal for Pediatric & Congenital Heart Surgery, 2017, 8, 77-87.	0.8	39
64	Long-Term Outcomes of Balloon Valvuloplasty for Isolated Pulmonary Valve Stenosis. Pediatric Cardiology, 2017, 38, 247-254.	1.3	37
65	Quality-Cost Relationship in Congenital Heart Surgery. Annals of Thoracic Surgery, 2015, 100, 1416-1421.	1.3	36
66	Surgical Management and Outcomes of Ebstein Anomaly in Neonates and Infants: A Society of Thoracic Surgeons Congenital Heart Surgery Database Analysis. Annals of Thoracic Surgery, 2018, 106, 785-791.	1.3	36
67	Improving National Outcomes in Congenital Heart Surgery. Circulation, 2020, 141, 943-945.	1.6	35
68	Variability in noncardiac surgical procedures in children with congenital heart disease. Journal of Pediatric Surgery, 2014, 49, 1564-1569.	1.6	33
69	Impact of Patient Characteristics on Hospital-Level Outcomes Assessment in Congenital Heart Surgery. Annals of Thoracic Surgery, 2015, 100, 1071-1077.	1.3	33
70	Report of the National Heart, Lung, and Blood Institute Working Group. Circulation, 2016, 133, 1410-1418.	1.6	33
71	Prevalence and risk factors associated with non-attendance in neurodevelopmental follow-up clinic among infants with CHD. Cardiology in the Young, 2018, 28, 554-560.	0.8	33
72	Impact of the COVID-19 pandemic on CHD care and emotional wellbeing. Cardiology in the Young, 2021, 31, 822-828.	0.8	32

#	Article	IF	CITATIONS
73	The Society of Thoracic Surgeons CongenitalÂHeart Surgery Database: 2017 Update on Research. Annals of Thoracic Surgery, 2017, 104, 731-741.	1.3	30
74	Sustainability of Infant Cardiac Surgery Early Extubation Practices After Implementation and Study. Annals of Thoracic Surgery, 2019, 107, 1427-1433.	1.3	30
75	Centre variation in cost and outcomes for congenital heart surgery. Cardiology in the Young, 2012, 22, 796-799.	0.8	29
76	International quality improvement initiatives. Cardiology in the Young, 2017, 27, S61-S68.	0.8	28
77	A Novel Model Demonstrates Variation in Risk-Adjusted Mortality Across Pediatric Cardiac ICUs After Surgery*. Pediatric Critical Care Medicine, 2019, 20, 136-142.	0.5	28
78	Procedure-Based Complications to Guide InformedÂConsent: Analysis of Society of Thoracic Surgeons-Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2014, 97, 1838-1851.	1.3	27
79	Time for a More Unified Approach to Pediatric Health Care Policy?. JAMA - Journal of the American Medical Association, 2015, 314, 1689.	7.4	27
80	Clinical epidemiology and centre variation in chylothorax rates after cardiac surgery in children: a report from the Pediatric Cardiac Critical Care Consortium. Cardiology in the Young, 2017, 27, 1678-1685.	0.8	27
81	Shunt Failure—Risk Factors and Outcomes: An Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2018, 105, 857-864.	1.3	26
82	Hospital Costs Related to Early Extubation After Infant Cardiac Surgery. Annals of Thoracic Surgery, 2019, 107, 1421-1426.	1.3	26
83	Duration of Postoperative Mechanical Ventilation as a Quality Metric for Pediatric Cardiac Surgical Programs. Annals of Thoracic Surgery, 2018, 105, 615-621.	1.3	25
84	Variation in Implementation and Outcomes of Early Extubation Practices After Infant Cardiac Surgery. Annals of Thoracic Surgery, 2019, 107, 1434-1440.	1.3	25
85	Databases for Congenital Heart Defect Public Health Studies Across the Lifespan. Journal of the American Heart Association, 2016, 5, .	3.7	24
86	Completeness and Accuracy of Local Clinical Registry Data for Children Undergoing Heart Surgery. Annals of Thoracic Surgery, 2017, 103, 629-636.	1.3	24
87	Trends in infective endocarditis hospitalisations at United States children's hospitals from 2003 to 2014: impact of the 2007 American Heart Association antibiotic prophylaxis guidelines. Cardiology in the Young, 2017, 27, 686-690.	0.8	24
88	Relationship Between Time to Left Atrial Decompression and Outcomes in Patients Receiving Venoarterial Extracorporeal Membrane Oxygenation Support. Pediatric Critical Care Medicine, 2019, 20, 728-736.	0.5	24
89	The Impact of Differential Case Ascertainment in Clinical Registry Versus Administrative Data on Assessment of Resource Utilization in Pediatric Heart Surgery. World Journal for Pediatric & Congenital Heart Surgery, 2014, 5, 398-405.	0.8	22
90	Seminal Postoperative Complications and Mode of Death After Pediatric Cardiac Surgical Procedures. Annals of Thoracic Surgery, 2016, 102, 628-635.	1.3	22

#	Article	IF	CITATIONS
91	Design and initial results of a programme for routine standardised longitudinal follow-up after congenital heart surgery. Cardiology in the Young, 2016, 26, 1590-1596.	0.8	21
92	Cost Variation Across Centers for the Norwood Operation. Annals of Thoracic Surgery, 2018, 105, 851-856.	1.3	21
93	Development of a Congenital Heart Surgery Composite Quality Metric: Part 2—Analytic Methods. Annals of Thoracic Surgery, 2019, 107, 590-596.	1.3	21
94	Congenital Heart Surgery Case Mix Across North American Centers and Impact on Performance Assessment. Annals of Thoracic Surgery, 2016, 102, 1580-1587.	1.3	20
95	Associations Between Unplanned Cardiac Reinterventions and Outcomes After Pediatric Cardiac Operations. Annals of Thoracic Surgery, 2018, 105, 1255-1263.	1.3	20
96	The Quest for Precision Medicine: Unmeasured Patient Factors and Mortality After Congenital Heart Surgery. Annals of Thoracic Surgery, 2019, 108, 1889-1894.	1.3	20
97	The Utility of Intracardiac Echocardiography Following Melodyâ"¢ Transcatheter Pulmonary Valve Implantation. Pediatric Cardiology, 2015, 36, 1754-1760.	1.3	19
98	Impact of postoperative complications on hospital costs following the Norwood operation. Cardiology in the Young, 2016, 26, 1303-1309.	0.8	19
99	Early and Midterm Outcomes in High-risk Single-ventricle Patients: Hybrid Vs Norwood Palliation. Annals of Thoracic Surgery, 2019, 108, 1849-1855.	1.3	19
100	Mortality Prediction After Cardiac Surgery in Children: An STS Congenital Heart Surgery Database Analysis. Annals of Thoracic Surgery, 2022, 114, 785-798.	1.3	19
101	Preventing Cardiac Arrest in the Pediatric Cardiac Intensive Care Unit Through Multicenter Collaboration. JAMA Pediatrics, 2022, 176, 1027.	6.2	19
102	Determinants of Variation in Pneumonia Rates After Coronary Artery Bypass Grafting. Annals of Thoracic Surgery, 2018, 105, 513-520.	1.3	18
103	National Benchmarks for Proportions of Patients Receiving Blood Transfusions During Pediatric and Congenital Heart Surgery: An Analysis of the STS Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2018, 106, 1197-1203.	1.3	18
104	Congenital Heart Operations Performed in the First Year of Life: Does Geographic Variation Exist?. Annals of Thoracic Surgery, 2014, 98, 912-918.	1.3	16
105	Theoretical Model for Delivery of Congenital Heart Surgery in the UnitedÂStates. Annals of Thoracic Surgery, 2021, 111, 1628-1635.	1.3	16
106	Association between Z-score for birth weight and postoperative outcomes in neonates and infants with congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 1838-1847.e4.	0.8	16
107	The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2016 Update on Research. Annals of Thoracic Surgery, 2016, 102, 688-695.	1.3	14
108	Variation in care for infants undergoing the Stage II palliation for hypoplastic left heart syndrome. Cardiology in the Young, 2018, 28, 1109-1115.	0.8	14

#	Article	IF	CITATIONS
109	Estimating Resource Utilization in Congenital Heart Surgery. Annals of Thoracic Surgery, 2020, 110, 962-968.	1.3	14
110	Trajectories in Neurodevelopmental, Health-Related Quality of Life, and Functional Status Outcomes by Socioeconomic Status and Maternal Education in Children with Single Ventricle Heart Disease. Journal of Pediatrics, 2021, 229, 289-293.e3.	1.8	14
111	The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2018 Update on Research. Annals of Thoracic Surgery, 2018, 106, 654-663.	1.3	13
112	The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2019ÂUpdate on Research. Annals of Thoracic Surgery, 2019, 108, 671-679.	1.3	13
113	Novel Biomarkers Improve Prediction of 365-Day Readmission After Pediatric Congenital Heart Surgery. Annals of Thoracic Surgery, 2020, 109, 164-170.	1.3	13
114	Center Variation in Chest Tube Duration and Length of Stay After Congenital HeartÂSurgery. Annals of Thoracic Surgery, 2020, 110, 221-227.	1.3	13
115	Hospital Performance Assessment in Congenital Heart Surgery: Where Do We Go From Here?. Annals of Thoracic Surgery, 2020, 109, 621-626.	1.3	13
116	Factors Associated With Adverse Outcomes After Repair of Anomalous Coronary From Pulmonary Artery. Annals of Thoracic Surgery, 2019, 108, 785-791.	1.3	12
117	National Practice Patterns and Early Outcomes of Aortic Valve Replacement in Children and Teens. Annals of Thoracic Surgery, 2019, 108, 544-551.	1.3	12
118	Readmission After Pediatric Cardiothoracic Surgery: An Analysis of The Society of Thoracic Surgeons Database. Annals of Thoracic Surgery, 2019, 107, 1816-1823.	1.3	12
119	Successful Reduction of Postoperative Chest Tube Duration and Length of Stay After Congenital Heart Surgery: A Multicenter Collaborative Improvement Project. Journal of the American Heart Association, 2021, 10, e020730.	3.7	12
120	Evolving Cost-Quality Relationship in Pediatric Heart Surgery. Annals of Thoracic Surgery, 2022, 113, 866-873.	1.3	11
121	Biomarkers improve prediction of 30-day unplanned readmission or mortality after paediatric congenital heart surgery. Cardiology in the Young, 2019, 29, 1051-1056.	0.8	10
122	Intensive Care Unit and Acute Care Unit Length of Stay After Congenital Heart Surgery. Annals of Thoracic Surgery, 2020, 110, 1396-1403.	1.3	10
123	Can linking databases answer questions about paediatric heart failure?. Cardiology in the Young, 2015, 25, 160-166.	0.8	9
124	Summary of the 2015 International Paediatric Heart Failure Summit of Johns Hopkins All Children's Heart Institute. Cardiology in the Young, 2015, 25, 8-30.	0.8	9
125	Recurrent Coarctation After Neonatal Univentricular and Biventricular Norwood-Type Arch Reconstruction. Annals of Thoracic Surgery, 2016, 102, 2087-2094.	1.3	9
126	Examining variation in interstage mortality rates across the National Pediatric Cardiology Quality Improvement Collaborative: do lower-mortality centres have lower-risk patients?. Cardiology in the Young, 2018, 28, 1031-1036.	0.8	9

#	Article	IF	CITATIONS
127	Reexamining Interstage Home Monitoring After the Norwood Operation. Circulation, 2015, 132, 475-478.	1.6	8
128	Potential benefits and consequences of public reporting of pediatric cardiac surgery outcomes. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 904-907.	0.8	8
129	Registry-based trials: a potential model for cost savings?. Cardiology in the Young, 2020, 30, 807-817.	0.8	8
130	Reevaluating Congenital Heart Surgery Center Performance Using Operative Mortality. Annals of Thoracic Surgery, 2022, 114, 776-784.	1.3	8
131	Platelet Activity Associated with Concomitant Use of Clopidogrel and Proton Pump Inhibitors in Children with Cardiovascular Disease. Congenital Heart Disease, 2010, 5, 552-555.	0.2	7
132	Optimizing Public Reporting of Congenital Heart Surgery Outcomes. Annals of Thoracic Surgery, 2017, 104, 16-17.	1.3	7
133	Site of interstage outpatient care and growth after the Norwood operation. Cardiology in the Young, 2015, 25, 1340-1347.	0.8	6
134	Lessons learned in the use of clinical registry data in a multi-centre prospective study: the Pediatric Heart Network Residual Lesion Score Study. Cardiology in the Young, 2019, 29, 930-938.	0.8	6
135	Prediction of extubation failure in the paediatric cardiac ICU using machine learning and high-frequency physiologic data. Cardiology in the Young, 2022, 32, 1649-1656.	0.8	6
136	The Path Forward in Congenital Heart Surgery Public Reporting. Annals of Thoracic Surgery, 2022, 114, 534-535.	1.3	5
137	Utility of administrative and clinical data for cardiac surgery research: A case-based approach to guide choice. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 1157-1165.	0.8	5
138	Spillover of Early Extubation Practices From the Pediatric Heart Network Collaborative Learning Study*. Pediatric Critical Care Medicine, 2021, 22, 204-212.	0.5	5
139	Oral antihypertensive trial design and analysis under the pediatric exclusivity provision. American Heart Journal, 2002, 144, 608-614.	2.7	4
140	Out of many, one: integrating data in the paediatric cardiovascular environment. Cardiology in the Young, 2017, 27, 757-763.	0.8	4
141	Assessment of Costs in Congenital Heart Surgery. World Journal for Pediatric & Congenital Heart Surgery, 2014, 5, 363-364.	0.8	3
142	The Pediatric Heart Network Scholar Award programme: a unique mentored award embedded within a multicentre network. Cardiology in the Young, 2018, 28, 854-861.	0.8	3
143	Enhancing efficiency and scientific impact of a clinical trials network: the Pediatric Heart Network Integrated CARdiac Data and Outcomes (iCARD) Collaborative. Cardiology in the Young, 2019, 29, 1121-1126.	0.8	2
144	Combining clinical databases with genetic studies to help advance the causation model of congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1380-1381.	0.8	1

#	Article	IF	CITATIONS
145	Quality Measures for Congenital and Pediatric Cardiac Surgery. , 0, .		1
146	Operational and Ethical Considerations for a National Adult Congenital Heart Disease Database. Journal of the American Heart Association, 2022, 11, e022338.	3.7	1
147	How Good Is Good Enough?. Annals of Thoracic Surgery, 2022, 114, 1737-1738.	1.3	1
148	Transforming Data Into Information. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 178-179.	0.8	0
149	Reply. Annals of Thoracic Surgery, 2020, 109, 989.	1.3	0