Ge Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3884359/publications.pdf

Version: 2024-02-01

56	2,734	201674	175258
papers	2,734 citations	h-index	g-index
57	57	57	4541
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Near Infrared Light Triggered Hydrogenated Black TiO ₂ for Cancer Photothermal Therapy. Advanced Healthcare Materials, 2015, 4, 1526-1536.	7.6	326
2	Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 2450-2458.	30.8	246
3	Slightly hydrogenated TiO ₂ with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 12708-12716.	10.3	188
4	One-Pot Synthesis of Carbon Nanotube@SnO ₂ â^'Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability. Chemistry of Materials, 2008, 20, 6951-6956.	6.7	160
5	Facile Synthesis of Coâ^'Pt Hollow Sphere Electrocatalyst. Chemistry of Materials, 2007, 19, 1840-1844.	6.7	142
6	Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. Journal of Materials Chemistry A, 2013, 1, 14507.	10.3	138
7	Synthesis of Anatase TiO ₂ Nanosheets with Enhanced Pseudocapacitive Contribution for Fast Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6285-6291.	8.0	92
8	Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery. Journal of Power Sources, 2008, 184, 432-436.	7.8	89
9	A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. Journal of Materials Chemistry A, 2020, 8, 20849-20869.	10.3	88
10	Self-floating nanostructured Ni–NiO _x /Ni foam for solar thermal water evaporation. Journal of Materials Chemistry A, 2019, 7, 8485-8490.	10.3	82
11	Substitutionally Dispersed Highâ€Oxidation CoO <i>_x</i> Clusters in the Lattice of Rutile TiO ₂ Triggering Efficient Coï₺¿Ti Cooperative Catalytic Centers for Oxygen Evolution Reactions. Advanced Functional Materials, 2021, 31, 2009610.	14.9	82
12	Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. Journal of Power Sources, 2008, 177, 296-302.	7.8	78
13	Electrocatalytic Hydrogenation of 4-Chlorophenol on the Glassy Carbon Electrode Modified by Composite Polypyrrole/Palladium Film. Journal of Physical Chemistry B, 2006, 110, 4863-4868.	2.6	64
14	Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy, 2020, 73, 104739.	16.0	55
15	Influence of the surfactant and temperature on the morphology and physico-chemical properties of hydrothermally synthesized composite oxide BiVO4. Materials Chemistry and Physics, 2009, 114, 69-72.	4.0	51
16	Mesoscopically Bi-continuous Agâ€"Au Hybrid Nanosponges with Tunable Plasmon Resonances as Bottom-Up Substrates for Surface-Enhanced Raman Spectroscopy. Chemistry of Materials, 2016, 28, 7673-7682.	6.7	45
17	Inâ€Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy. Angewandte Chemie - International Edition, 2019, 58, 18627-18633.	13.8	45
18	Synthesis of Ordered Intermetallic PtBi2Nanoparticles for Methanol-Tolerant Catalyst in Oxygen Electroreduction. Chemistry of Materials, 2006, 18, 5746-5749.	6.7	44

#	Article	IF	CITATIONS
19	Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium. Electrochimica Acta, 2004, 50, 933-937.	5.2	43
20	Electrochemically codeposited palladium/molybdenum oxide electrode for electrocatalytic reductive dechlorination of 4-chlorophenol. Electrochemistry Communications, 2004, 6, 268-272.	4.7	43
21	Plasma Hydrogenated TiO ₂ /Nickel Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 885-894.	6.7	40
22	Post-redox engineering electron configurations of atomic thick C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 270, 118855.	20.2	40
23	Protein-Mediated Layer-by-Layer Synthesis of TiO ₂ (B)/Anatase/Carbon Coating on Nickel Foam as Negative Electrode Material for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2013, 5, 3631-3637.	8.0	38
24	Proteinâ€Mediated Synthesis of Nanostructured Titania with Different Polymorphs at Room Temperature. Advanced Materials, 2010, 22, 1258-1262.	21.0	35
25	Water management by hierarchical structures for highly efficient solar water evaporation. Journal of Materials Chemistry A, 2021, 9, 7122-7128.	10.3	34
26	Studies on the electrocatalytic properties of PtRu/C-TiO2 toward the oxidation of methanol. Journal of Alloys and Compounds, 2008, 450, 148-151.	5 . 5	33
27	The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature. Materials Chemistry and Physics, 2008, 111, 313-316.	4.0	31
28	High active platinum clusters on titanium dioxide supports toward carbon monoxide oxidation. Applied Catalysis B: Environmental, 2020, 266, 118629.	20.2	25
29	Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries. Nanoscale, 2013, 5, 10472.	5. 6	23
30	Ni ₃ N-Coated Ni Nanorod Arrays for Hydrogen and Oxygen Evolution in Electrochemical Water Splitting. ACS Applied Nano Materials, 2020, 3, 10986-10995.	5.0	23
31	Improving photocatalytic hydrogen production via ultrafine-grained precipitates formed nearby surface defects of NiFe-LDH nanosheets. Chemical Engineering Journal, 2022, 446, 137301.	12.7	23
32	Bio-inspired synthesis of titania with polyamine induced morphology and phase transformation at room-temperature: Insight into the role of the protonated amino group. Dalton Transactions, 2013, 42, 12179.	3.3	21
33	<i>In situ</i> liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting. Journal of Materials Chemistry A, 2021, 9, 13056-13064.	10.3	21
34	Preparation and Li-Intercalation Properties of Mesoporous Anatase-TiO[sub 2] Spheres. Electrochemical and Solid-State Letters, 2007, 10, A77.	2.2	20
35	A Biomineralization Strategy for "Netâ€â€Like Interconnected TiO ₂ Nanoparticles Conformably Covering Reduced Graphene Oxide with Reversible Interfacial Lithium Storage. Advanced Science, 2015, 2, 1500176.	11.2	19
36	External Water-Free Approach toward TiO ₂ Nanoparticles Embedded in Biomass-Derived Nitrogen-Doped Carbon. ACS Sustainable Chemistry and Engineering, 2016, 4, 844-850.	6.7	19

#	Article	IF	CITATIONS
37	Disordered surface formation of WS ₂ <i>via</i> hydrogen plasma with enhanced anode performances for lithium and sodium ion batteries. Sustainable Energy and Fuels, 2019, 3, 865-874.	4.9	19
38	Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction. Materials Today Energy, 2021, 20, 100653.	4.7	19
39	Biomimetic layer-by-layer deposition assisted synthesis of Cu, N co-doped TiO ₂ nanosheets with enhanced visible light photocatalytic performance. Dalton Transactions, 2014, 43, 14054.	3.3	18
40	Ligand Charge Donation–Acquisition Balance: A Unique Strategy to Boost Single Pt Atom Catalyst Mass Activity toward the Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 5970-5978.	11.2	18
41	An Electrocatalyst for Methanol Oxidation in DMFC: PtBi/XC-72 with Pt Solid-Solution Structure. Journal of the Electrochemical Society, 2010, 157, B580.	2.9	16
42	A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/Nickel Foam catalyst. Materials Advances, 2021, 2, 2104-2111.	5.4	15
43	Biomimetic synthesis of titania with chitosan-mediated phase transformation at room temperature. Journal of Materials Chemistry, 2011, 21, 10755.	6.7	13
44	The effects of confinement on TiO2@SnO2@TiO2 hollow spheres for high reversible lithium storage capacity. Journal of Alloys and Compounds, 2019, 778, 375-381.	5.5	12
45	Stability, electrochemical behaviors and electronic structures of iron hydroxyl-phosphate. Materials Chemistry and Physics, 2010, 123, 28-34.	4.0	10
46	Integrating the hierarchical structure with well-dispersed conductive agents to realize synergistically enhanced electrode performance. Journal of Materials Chemistry A, 2015, 3, 10275-10283.	10.3	10
47	N-doped TiO ₂ with a disordered surface layer fabricated <i>via</i> plasma treatment as an anode with clearly enhanced performance for rechargeable sodium ion batteries. Sustainable Energy and Fuels, 2019, 3, 2688-2696.	4.9	7
48	Theoretical screening of novel electrode materials for lithium–ion batteries from industrial polymers. lonics, 2019, 25, 4161-4170.	2.4	6
49	Coating of multi-walled carbon nanotubes with SnO2 films of controlled thickness. Materials Letters, 2008, 62, 2855-2857.	2.6	5
50	Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO2. Applied Surface Science, 2016, 388, 401-405.	6.1	5
51	Hydrogen–nitrogen plasma assisted synthesis of titanium dioxide with enhanced performance as anode for sodium ion batteries. Scientific Reports, 2020, 10, 11817.	3.3	5
52	Hydrogenated TiO ₂ Nanoparticles Loaded with Au Nanoclusters Demonstrating Largely Enhanced Performance for Electrochemical Reduction of Nitrogen to Ammonia. Energy Technology, 2022, 10, .	3.8	5
53	Cancer Treatment: A Near Infrared Light Triggered Hydrogenated Black TiO ₂ for Cancer Photothermal Therapy (Adv. Healthcare Mater. 10/2015). Advanced Healthcare Materials, 2015, 4, 1576-1576.	7.6	3
54	Reply to Comment on "Synthesis of Ordered Intermetallic PtBi2Nanoparticles for Methanol-Tolerant Catalyst in Oxygen Electroreduction― Chemistry of Materials, 2007, 19, 1530-1530.	6.7	1

#	Article	IF	CITATIONS
55	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	4.1	1

Biomineralization: A Biomineralization Strategy for "Net―Like Interconnected TiO2 Nanoparticles
Conformably Covering Reduced Graphene Oxide with Reversible Interfacial Lithium Storage (Adv. Sci.) Tj ETQq0 0 OttogBT /Overlock 10 Te