List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3883762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prognostic impact of Schlafen 11 in bladder cancer patients treated with platinumâ€based chemotherapy. Cancer Science, 2022, 113, 784-795.	1.7	10
2	The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin. Nature Cell Biology, 2022, 24, 62-73.	4.6	66
3	Topoisomerase I (TOP1) dynamics: conformational transition from open to closed states. Nature Communications, 2022, 13, 59.	5.8	11
4	Human topoisomerases and their roles in genome stability and organization. Nature Reviews Molecular Cell Biology, 2022, 23, 407-427.	16.1	125
5	Synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as tyrosyl-DNA phosphodiesterase 1 inhibitors and their anticancer activity. Bioorganic Chemistry, 2022, 123, 105789.	2.0	4
6	SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Frontiers in Molecular Biosciences, 2022, 9, 871161.	1.6	7
7	Cancer/Testis Antigen 55 is required for cancer cell proliferation and mitochondrial DNA maintenance. Mitochondrion, 2022, 64, 19-26.	1.6	2
8	2-Arylquinolines as novel anticancer agents with dual EGFR/FAK kinase inhibitory activity: synthesis, biological evaluation, and molecular modelling insights. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 355-378.	2.5	15
9	TOP1-DNA Trapping by Exatecan and Combination Therapy with ATR Inhibitor. Molecular Cancer Therapeutics, 2022, 21, 1090-1102.	1.9	13
10	From Antarctica to cancer research: a novel human DNA topoisomerase 1B inhibitor from Antarctic sponge <i>Dendrilla antarctica</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1404-1410.	2.5	5
11	Replication Stress Defines Distinct Molecular Subtypes Across Cancers. Cancer Research Communications, 2022, 2, 503-517.	0.7	12
12	Structural, molecular, and functional insights into Schlafen proteins. Experimental and Molecular Medicine, 2022, 54, 730-738.	3.2	17
13	CDK7 Inhibition Synergizes with Topoisomerase I Inhibition in Small Cell Lung Cancer Cells by Inducing Ubiquitin-Mediated Proteolysis of RNA Polymerase II. Molecular Cancer Therapeutics, 2022, 21, 1430-1438.	1.9	3
14	Resolution of R-loops by topoisomerase III-β (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Reports, 2022, 40, 111067.	2.9	19
15	Immunohistochemical analysis of SLFN11 expression uncovers potential non-responders to DNA-damaging agents overlooked by tissue RNA-seq. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 569-579.	1.4	25
16	An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes and Development, 2021, 35, 250-260.	2.7	19
17	Small molecule microarray identifies inhibitors of tyrosyl-DNA phosphodiesterase 1 that simultaneously access the catalytic pocket and two substrate binding sites. Chemical Science, 2021, 12, 3876-3884.	3.7	18
18	Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair–targeted therapies. Science Translational Medicine, 2021, 13, .	5.8	35

#	Article	IF	CITATIONS
19	SLFN11 promotes CDT1 degradation by CUL4 in response to replicative DNA damage, while its absence leads to synthetic lethality with ATR/CHK1 inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
20	Exonuclease VII repairs quinolone-induced damage by resolving DNA gyrase cleavage complexes. Science Advances, 2021, 7, .	4.7	6
21	SLFN11 Inactivation Induces Proteotoxic Stress and Sensitizes Cancer Cells to Ubiquitin Activating Enzyme Inhibitor TAK-243. Cancer Research, 2021, 81, 3067-3078.	0.4	23
22	Discovery of 4-alkoxy-2-aryl-6,7-dimethoxyquinolines as a new class of topoisomerase I inhibitors endowed with potent inÂvitro anticancer activity. European Journal of Medicinal Chemistry, 2021, 215, 113261.	2.6	24
23	Autophagy-Dependent Sensitization of Triple-Negative Breast Cancer Models to Topoisomerase II Poisons by Inhibition of the Nucleosome Remodeling Factor. Molecular Cancer Research, 2021, 19, 1338-1349.	1.5	9
24	Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell, 2021, 39, 566-579.e7.	7.7	107
25	Synthesis of Methoxy-, Methylenedioxy-, Hydroxy-, and Halo-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors and Their Biological Activity for Drug-Resistant Cancer. Journal of Medicinal Chemistry, 2021, 64, 7617-7629.	2.9	14
26	Novel and Highly Potent ATR Inhibitor M4344 Kills Cancer Cells With Replication Stress, and Enhances the Chemotherapeutic Activity of Widely Used DNA Damaging Agents. Molecular Cancer Therapeutics, 2021, 20, 1431-1441.	1.9	58
27	Design and synthesis of C-aryl angular luotonins via a one-pot aza-Nazarov–Friedlander sequence and their Topo-I inhibition studies along with C-aryl vasicinones and luotonins. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127998.	1.0	5
28	PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation. Nature Communications, 2021, 12, 5010.	5.8	26
29	Precision Oncology with Drugs Targeting the Replication Stress, ATR, and Schlafen 11. Cancers, 2021, 13, 4601.	1.7	19
30	Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics, 2021, 53, 1348-1359.	9.4	81
31	Schlafen 11 Expression in Human Acute Leukemia Cells with Gain-of-Function Mutations in the Interferon-JAK Signaling Pathway. IScience, 2021, 24, 103173.	1.9	6
32	Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1–DNA complexes. Nucleic Acids Research, 2021, 49, 10493-10506.	6.5	16
33	Epigenetic suppression of SLFN11 in germinal center B-cells during B-cell development. PLoS ONE, 2021, 16, e0237554.	1.1	20
34	A polymer index-matched to water enables diverse applications in fluorescence microscopy. Lab on A Chip, 2021, 21, 1549-1562.	3.1	18
35	Functions of the CSB Protein at Topoisomerase 2 Inhibitors-Induced DNA Lesions. Frontiers in Cell and Developmental Biology, 2021, 9, 727836.	1.8	0
36	Multiview confocal super-resolution microscopy. Nature, 2021, 600, 279-284.	13.7	55

#	Article	IF	CITATIONS
37	Novel deazaflavin tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. DNA Repair, 2020, 85, 102747.	1.3	15
38	SCLC-CellMiner: A Resource for Small Cell Lung Cancer Cell Line Genomics and Pharmacology Based on Genomic Signatures. Cell Reports, 2020, 33, 108296.	2.9	86
39	Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways. DNA Repair, 2020, 94, 102926.	1.3	48
40	Resistance to the CHK1 inhibitor prexasertib involves functionally distinct CHK1 activities in BRCA wild-type ovarian cancer. Oncogene, 2020, 39, 5520-5535.	2.6	28
41	The first evidence for SLFN11 expression as an independent prognostic factor for patients with esophageal cancer after chemoradiotherapy. BMC Cancer, 2020, 20, 1123.	1.1	21
42	Recifin A, Initial Example of the Tyr-Lock Peptide Structural Family, Is a Selective Allosteric Inhibitor of Tyrosyl-DNA Phosphodiesterase I. Journal of the American Chemical Society, 2020, 142, 21178-21188.	6.6	7
43	A conserved SUMO pathway repairs topoisomerase DNA-protein cross-links by engaging ubiquitin-mediated proteasomal degradation. Science Advances, 2020, 6, .	4.7	76
44	MGMT Status as a Clinical Biomarker in Glioblastoma. Trends in Cancer, 2020, 6, 380-391.	3.8	131
45	Response to Letter to the Editor by Yang etÂal Journal of Thoracic Oncology, 2020, 15, e91.	0.5	0
46	The Indenoisoquinoline LMP517: A Novel Antitumor Agent Targeting both TOP1 and TOP2. Molecular Cancer Therapeutics, 2020, 19, 1589-1597.	1.9	10
47	Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14412-14420.	3.3	16
48	Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC). DNA Repair, 2020, 89, 102837.	1.3	62
49	Chromatin Remodeling and Immediate Early Gene Activation by SLFN11 in Response to Replication Stress. Cell Reports, 2020, 30, 4137-4151.e6.	2.9	48
50	BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers. Science Translational Medicine, 2020, 12, .	5.8	86
51	Sensitivity of Mesothelioma Cells to PARP Inhibitors Is Not Dependent on BAP1 but Is Enhanced by Temozolomide in Cells With High-Schlafen 11 and Low-O6-methylguanine-DNA Methyltransferase Expression. Journal of Thoracic Oncology, 2020, 15, 843-859.	0.5	51
52	BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks. Epigenetics and Chromatin, 2020, 13, 21.	1.8	40
53	DNA and RNA Cleavage Complexes and Repair Pathway for TOP3B RNA- and DNA-Protein Crosslinks. Cell Reports, 2020, 33, 108569.	2.9	27
54	Acquired SETD2 mutation and impaired CREB1 activation confer cisplatin resistance in metastatic non-small cell lung cancer. Oncogene, 2019, 38, 180-193.	2.6	35

#	Article	IF	CITATIONS
55	The Indenoisoquinoline TOP1 Inhibitors Selectively Target Homologous Recombination-Deficient and Schlafen 11-Positive Cancer Cells and Synergize with Olaparib. Clinical Cancer Research, 2019, 25, 6206-6216.	3.2	34
56	Beyond the unwinding: role of TOP1MT in mitochondrial translation. Cell Cycle, 2019, 18, 2377-2384.	1.3	11
57	Discovery of Novel Integrase Inhibitors Acting outside the Active Site Through High-Throughput Screening. Molecules, 2019, 24, 3675.	1.7	5
58	ldentification of Schlafen-11 as a Target of CD47 Signaling That Regulates Sensitivity to Ionizing Radiation and Topoisomerase Inhibitors. Frontiers in Oncology, 2019, 9, 994.	1.3	22
59	Dual Processing of R-Loops and Topoisomerase I Induces Transcription-Dependent DNA Double-Strand Breaks. Cell Reports, 2019, 28, 3167-3181.e6.	2.9	108
60	Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening. Nucleic Acids Research, 2019, 47, 10134-10150.	6.5	27
61	Targeting Topoisomerase I in the Era of Precision Medicine. Clinical Cancer Research, 2019, 25, 6581-6589.	3.2	184
62	Mammalian Tyrosyl-DNA Phosphodiesterases in the Context of Mitochondrial DNA Repair. International Journal of Molecular Sciences, 2019, 20, 3015.	1.8	6
63	Synthesis and biological evaluation of 5-aminoethyl benzophenanthridone derivatives as DNA topoisomerase IB inhibitors. European Journal of Medicinal Chemistry, 2019, 178, 81-92.	2.6	11
64	Topoisomerase II-Induced Chromosome Breakage and Translocation Is Determined by Chromosome Architecture and Transcriptional Activity. Molecular Cell, 2019, 75, 252-266.e8.	4.5	145
65	Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies. , 2019, 201, 94-102.		106
66	Phosphatase 1 Nuclear Targeting Subunit, a Novel DNA Repair Partner of PARP1. Cancer Research, 2019, 79, 2460-2461.	0.4	3
67	Novel Deazaflavin Analogues Potently Inhibited Tyrosyl DNA Phosphodiesterase 2 (TDP2) and Strongly Sensitized Cancer Cells toward Treatment with Topoisomerase II (TOP2) Poison Etoposide. Journal of Medicinal Chemistry, 2019, 62, 4669-4682.	2.9	13
68	The antitumor activity of CYB-L10, a human topoisomerase IB catalytic inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 818-822.	2.5	5
69	Mitochondrial tyrosyl― <scp>DNA</scp> phosphodiesterase 2 and its <scp>TDP</scp> 2 ^S short isoform. EMBO Reports, 2018, 19, .	2.0	19
70	SLFN11 Blocks Stressed Replication Forks Independently of ATR. Molecular Cell, 2018, 69, 371-384.e6.	4.5	177
71	Overcoming Resistance to DNA-Targeted Agents by Epigenetic Activation of Schlafen 11 (<i>SLFN11)</i> Expression with Class I Histone Deacetylase Inhibitors. Clinical Cancer Research, 2018, 24, 1944-1953.	3.2	65
72	PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Research, 2018, 46, 5601-5617.	6.5	40

#	Article	IF	CITATIONS
73	New fluorescence-based high-throughput screening assay for small molecule inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). European Journal of Pharmaceutical Sciences, 2018, 118, 67-79.	1.9	14
74	Synthesis, anti-cancer screening and tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibition activity of novel piperidinyl sulfamides. European Journal of Pharmaceutical Sciences, 2018, 111, 337-348.	1.9	13
75	Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the Benzo[<i>c</i>]pyrrolo[2,3- <i>h</i>][1,6]naphthyridin-5-one (BPN) Series. Journal of Medicinal Chemistry, 2018, 61, 10440-10462.	2.9	14
76	CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. IScience, 2018, 10, 247-264.	1.9	117
77	Discovery, Synthesis, and Evaluation of Oxynitidine Derivatives as Dual Inhibitors of DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1), and Potential Antitumor Agents. Journal of Medicinal Chemistry, 2018, 61, 9908-9930.	2.9	37
78	Probing the evolutionary conserved residues Y204, F259, S400 and W590 that shape the catalytic groove of human TDP1 for 3′- and 5′-phosphodiester-DNA bond cleavage. DNA Repair, 2018, 66-67, 64-71.	1.3	4
79	NCI Comparative Oncology Program Testing of Non-Camptothecin Indenoisoquinoline Topoisomerase I Inhibitors in Naturally Occurring Canine Lymphoma. Clinical Cancer Research, 2018, 24, 5830-5840.	3.2	36
80	HIV-1 Integrase-Targeted Short Peptides Derived from a Viral Protein R Sequence. Molecules, 2018, 23, 1858.	1.7	3
81	Novel Fluoroindenoisoquinoline Non-Camptothecin Topoisomerase I Inhibitors. Molecular Cancer Therapeutics, 2018, 17, 1694-1704.	1.9	30
82	Endogenous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae. Nucleic Acids Research, 2018, 46, 10649-10668.	6.5	12
83	Characterization and structure-activity relationships of indenoisoquinoline-derived topoisomerase I inhibitors in unsilencing the dormant Ube3a gene associated with Angelman syndrome. Molecular Autism, 2018, 9, 45.	2.6	28
84	TDP1 suppresses mis-joining of radiomimetic DNA double-strand breaks and cooperates with Artemis to promote optimal nonhomologous end joining. Nucleic Acids Research, 2018, 46, 8926-8939.	6.5	15
85	The evolving landscape of predictive biomarkers of response to PARP inhibitors. Journal of Clinical Investigation, 2018, 128, 1727-1730.	3.9	47
86	Novel screen for anti-cancer drugs that elevate chromosome instability (CIN) using human artificial chromosome (HAC). Oncotarget, 2018, 9, 36833-36835.	0.8	2
87	Novel clinical indenoisoquinoline topoisomerase I inhibitors: a twist around the camptothecins. Oncotarget, 2018, 9, 37286-37288.	0.8	19
88	DNA-Targeted Precision Medicine; Have We Been Caught Sleeping?. Trends in Cancer, 2017, 3, 2-6.	3.8	18
89	A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nature Medicine, 2017, 23, 461-471.	15.2	379
90	Temozolomide in the Era of Precision Medicine. Cancer Research, 2017, 77, 823-826.	0.4	91

#	Article	IF	CITATIONS
91	Synthesis and Biological Evaluation of the First Triple Inhibitors of Human Topoisomerase 1, Tyrosyl–DNA Phosphodiesterase 1 (Tdp1), and Tyrosyl–DNA Phosphodiesterase 2 (Tdp2). Journal of Medicinal Chemistry, 2017, 60, 3275-3288.	2.9	43
92	The NCI-60 Methylome and Its Integration into CellMiner. Cancer Research, 2017, 77, 601-612.	0.4	48
93	Topoisomerase lâ€mediated cleavage at unrepaired ribonucleotides generates DNA doubleâ€strand breaks. EMBO Journal, 2017, 36, 361-373.	3.5	59
94	Effects of camptothecin or TOP1 overexpression on genetic stability in Saccharomyces cerevisiae. DNA Repair, 2017, 59, 69-75.	1.3	9
95	HTLV-1 bZIP factor suppresses TDP1 expression through inhibition of NRF-1 in adult T-cell leukemia. Scientific Reports, 2017, 7, 12849.	1.6	13
96	Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription. Journal of Biological Chemistry, 2017, 292, 20162-20172.	1.6	17
97	Distribution bias and biochemical characterization of TOP1MT single nucleotide variants. Scientific Reports, 2017, 7, 8614.	1.6	12
98	Genome Organization Drives Chromosome Fragility. Cell, 2017, 170, 507-521.e18.	13.5	311
99	Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 7315-7332.	2.9	44
100	TDP1 is Critical for the Repair of DNA Breaks Induced by Sapacitabine, a Nucleoside also Targeting ATM- and BRCA-Deficient Tumors. Molecular Cancer Therapeutics, 2017, 16, 2543-2551.	1.9	25
101	Identification of Natural Products That Inhibit the Catalytic Function of Human Tyrosyl-DNA Phosphodiesterase (TDP1). SLAS Discovery, 2017, 22, 1093-1105.	1.4	12
102	Design and Synthesis of Chlorinated and Fluorinated 7-Azaindenoisoquinolines as Potent Cytotoxic Anticancer Agents That Inhibit Topoisomerase I. Journal of Medicinal Chemistry, 2017, 60, 5364-5376.	2.9	29
103	Cytidine Deaminase Deficiency Reveals New Therapeutic Opportunities against Cancer. Clinical Cancer Research, 2017, 23, 2116-2126.	3.2	28
104	Phosphorylated fraction of H2AX as a measurement for DNA damage in cancer cells and potential applications of a novel assay. PLoS ONE, 2017, 12, e0171582.	1.1	72
105	ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair. PLoS ONE, 2017, 12, e0188320.	1.1	34
106	The dominant role of proofreading exonuclease activity of replicative polymerase Îμ in cellular tolerance to cytarabine (Ara-C). Oncotarget, 2017, 8, 33457-33474.	0.8	24
107	Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 <i>in vitro</i> and <i>in vivo</i> . Nucleic Acids Research, 2016, 44, 7714-7721.	6.5	15
108	Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget, 2016, 7, 3084-3097.	0.8	120

#	Article	IF	CITATIONS
109	Characterization of DNA topoisomerase I in three SN-38 resistant human colon cancer cell lines reveals a new pair of resistance-associated mutations. Journal of Experimental and Clinical Cancer Research, 2016, 35, 56.	3.5	23
110	Clinical and pharmacologic evaluation of two dosing schedules of indotecan (LMP400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2016, 78, 73-81.	1.1	32
111	RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription. Cell, 2016, 165, 357-371.	13.5	211
112	Investigation of the Structure–Activity Relationships of Aza-A-Ring Indenoisoquinoline Topoisomerase I Poisons. Journal of Medicinal Chemistry, 2016, 59, 3840-3853.	2.9	35
113	Design, Synthesis, and Biological Evaluation of Potential Prodrugs Related to the Experimental Anticancer Agent Indotecan (LMP400). Journal of Medicinal Chemistry, 2016, 59, 4890-4899.	2.9	42
114	Deazaflavin Inhibitors of Tyrosyl-DNA Phosphodiesterase 2 (TDP2) Specific for the Human Enzyme and Active against Cellular TDP2. ACS Chemical Biology, 2016, 11, 1925-1933.	1.6	32
115	Selectivity for strand-transfer over 3′-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme–DNA interactions in the active site. Nucleic Acids Research, 2016, 44, 6896-6906.	6.5	16
116	Novel TDP2-ubiquitin interactions and their importance for the repair of topoisomerase II-mediated DNA damage. Nucleic Acids Research, 2016, 44, gkw719.	6.5	17
117	RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Research, 2016, 44, 6335-6349.	6.5	63
118	Phenanthriplatin Acts As a Covalent Poison of Topoisomerase II Cleavage Complexes. ACS Chemical Biology, 2016, 11, 2996-3001.	1.6	19
119	Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nature Reviews Molecular Cell Biology, 2016, 17, 703-721.	16.1	695
120	Small cell lung cancer: Time to revisit DNA-damaging chemotherapy. Science Translational Medicine, 2016, 8, 346fs12.	5.8	40
121	Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Science Translational Medicine, 2016, 8, 362ps17.	5.8	518
122	<i>toplb</i> , a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB. Nucleic Acids Research, 2016, 44, 2795-2805.	6.5	5
123	F10 cytotoxicity via topoisomerase I cleavage complex repair consistent with a unique mechanism for thymineless death. Future Oncology, 2016, 12, 2183-2188.	1.1	10
124	Chromatin Regulators as a Guide for Cancer Treatment Choice. Molecular Cancer Therapeutics, 2016, 15, 1768-1777.	1.9	18
125	rcellminer: exploring molecular profiles and drug response of the NCI-60 cell lines in R. Bioinformatics, 2016, 32, 1272-1274.	1.8	39
126	HIV-1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases. ACS Chemical Biology, 2016, 11, 1074-1081.	1.6	35

#	Article	IF	CITATIONS
127	Isoquinoline-1,3-diones as Selective Inhibitors of Tyrosyl DNA Phosphodiesterase II (TDP2). Journal of Medicinal Chemistry, 2016, 59, 2734-2746.	2.9	52
128	Synthesis and biological evaluation of new fluorinated and chlorinated indenoisoquinoline topoisomerase I poisons. Bioorganic and Medicinal Chemistry, 2016, 24, 1469-1479.	1.4	22
129	Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget, 2016, 7, 76534-76550.	0.8	219
130	Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair. Oncotarget, 2016, 7, 13984-14001.	0.8	30
131	Camptothecin targets WRN protein: mechanism and relevance in clinical breast cancer. Oncotarget, 2016, 7, 13269-13284.	0.8	38
132	Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA doubleâ€strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes To Cells, 2015, 20, 1059-1076.	0.5	46
133	Activation of RAF1 (c-RAF) by the Marine Alkaloid Lasonolide A Induces Rapid Premature Chromosome Condensation. Marine Drugs, 2015, 13, 3625-3639.	2.2	15
134	Topoisomerase I Alone Is Sufficient to Produce Short DNA Deletions and Can Also Reverse Nicks at Ribonucleotide Sites. Journal of Biological Chemistry, 2015, 290, 14068-14076.	1.6	52
135	Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers. European Journal of Medicinal Chemistry, 2015, 106, 132-143.	2.6	10
136	Single-Molecule Supercoil Relaxation Assay as a Screening Tool to Determine the Mechanism and Efficacy of Human Topoisomerase IB Inhibitors. Molecular Cancer Therapeutics, 2015, 14, 2552-2559.	1.9	13
137	Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair, 2015, 28, 107-115.	1.3	55
138	Using CellMiner 1.6 for Systems Pharmacology and Genomic Analysis of the NCI-60. Clinical Cancer Research, 2015, 21, 3841-3852.	3.2	80
139	Interfacial inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3961-3965.	1.0	34
140	Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors. European Journal of Medicinal Chemistry, 2015, 101, 525-533.	2.6	15
141	Discovery of Potent Indenoisoquinoline Topoisomerase I Poisons Lacking the 3-Nitro Toxicophore. Journal of Medicinal Chemistry, 2015, 58, 3997-4015.	2.9	40
142	Synthesis and Biological Evaluation of Nitrated 7-, 8-, 9-, and 10-Hydroxyindenoisoquinolines as Potential Dual Topoisomerase I (Top1)–Tyrosyl-DNA Phosphodiesterase I (TDP1) Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 3188-3208.	2.9	50
143	<i>N</i> -Substituted Quinolinonyl Diketo Acid Derivatives as HIV Integrase Strand Transfer Inhibitors and Their Activity against RNase H Function of Reverse Transcriptase. Journal of Medicinal Chemistry, 2015, 58, 4610-4623.	2.9	38
144	<i>SLFN11</i> Is a Transcriptional Target of EWS-FLI1 and a Determinant of Drug Response in Ewing Sarcoma. Clinical Cancer Research, 2015, 21, 4184-4193.	3.2	89

#	Article	IF	CITATIONS
145	Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Reports, 2015, 11, 1749-1759.	2.9	135
146	Lack of mitochondrial topoisomerase I (<i>TOP1mt</i>) impairs liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11282-11287.	3.3	50
147	Topoisomeraseâ€Induced DNA Cleavage at Ribonucleotide Misincorporation Sites. FASEB Journal, 2015, 29, 371.3.	0.2	0
148	Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1). Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15816-15820.	3.3	16
149	Proteolytic Degradation of Topoisomerase II (Top2) Enables the Processing of Top2·DNA and Top2·RNA Covalent Complexes by Tyrosyl-DNA-Phosphodiesterase 2 (TDP2). Journal of Biological Chemistry, 2014, 289, 17960-17969.	1.6	103
150	Increased negative supercoiling of mtDNA in TOP1mt knockout mice and presence of topoisomerases IIÂ and IIÂ in vertebrate mitochondria. Nucleic Acids Research, 2014, 42, 7259-7267.	6.5	67
151	Poisoning of Mitochondrial Topoisomerase I by Lamellarin D. Molecular Pharmacology, 2014, 86, 193-199.	1.0	56
152	ATR Inhibitors VE-821 and VX-970 Sensitize Cancer Cells to Topoisomerase I Inhibitors by Disabling DNA Replication Initiation and Fork Elongation Responses. Cancer Research, 2014, 74, 6968-6979.	0.4	131
153	Differential and Common DNA Repair Pathways for Topoisomerase I- and II-Targeted Drugs in a Genetic DT40 Repair Cell Screen Panel. Molecular Cancer Therapeutics, 2014, 13, 214-220.	1.9	116
154	Stereospecific PARP Trapping by BMN 673 and Comparison with Olaparib and Rucaparib. Molecular Cancer Therapeutics, 2014, 13, 433-443.	1.9	627
155	Rationale for Poly(ADP-ribose) Polymerase (PARP) Inhibitors in Combination Therapy with Camptothecins or Temozolomide Based on PARP Trapping versus Catalytic Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 408-416.	1.3	237
156	PARP1–TDP1 coupling for the repair of topoisomerase l–induced DNA damage. Nucleic Acids Research, 2014, 42, 4435-4449.	6.5	163
157	Mitochondrial Topoisomerase I (Top1mt) Is a Novel Limiting Factor of Doxorubicin Cardiotoxicity. Clinical Cancer Research, 2014, 20, 4873-4881.	3.2	102
158	Biochemical Assays for the Discovery of TDP1 Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 2116-2126.	1.9	18
159	Mapping Topoisomerase Sites in Mitochondrial DNA with a Poisonous Mitochondrial Topoisomerase I (Top1mt). Journal of Biological Chemistry, 2014, 289, 18595-18602.	1.6	25
160	Epigenetic and genetic inactivation of tyrosyl-DNA-phosphodiesterase 1 (TDP1) in human lung cancer cells from the NCI-60 panel. DNA Repair, 2014, 13, 1-9.	1.3	28
161	Identification of novel PARP inhibitors using a cell-based TDP1 inhibitory assay in a quantitative high-throughput screening platform. DNA Repair, 2014, 21, 177-182.	1.3	21
162	Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair, 2014, 19, 114-129.	1.3	253

#	Article	IF	CITATIONS
163	High Resolution Copy Number Variation Data in the NCI-60 Cancer Cell Lines from Whole Genome Microarrays Accessible through CellMiner. PLoS ONE, 2014, 9, e92047.	1.1	36
164	Gene Expression Correlations in Human Cancer Cell Lines Define Molecular Interaction Networks for Epithelial Phenotype. PLoS ONE, 2014, 9, e99269.	1.1	76
165	The Exomes of the NCI-60 Panel: A Genomic Resource for Cancer Biology and Systems Pharmacology. Cancer Research, 2013, 73, 4372-4382.	0.4	239
166	Drugging Topoisomerases: Lessons and Challenges. ACS Chemical Biology, 2013, 8, 82-95.	1.6	698
167	Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I. Nucleic Acids Research, 2013, 41, 9848-9857.	6.5	37
168	TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs. Nucleic Acids Research, 2013, 41, 7793-7803.	6.5	86
169	Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Repairs DNA Damage Induced by Topoisomerases I and II and Base Alkylation in Vertebrate Cells. Journal of Biological Chemistry, 2012, 287, 12848-12857.	1.6	155
170	A kinetic clutch governs religation by type IB topoisomerases and determines camptothecin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16125-16130.	3.3	47
171	Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15030-15035.	3.3	252
172	Biochemical Characterization of Human Tyrosyl-DNA Phosphodiesterase 2 (TDP2/TTRAP). Journal of Biological Chemistry, 2012, 287, 30842-30852.	1.6	54
173	TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Research, 2012, 40, 8371-8380.	6.5	86
174	Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Research, 2012, 72, 5588-5599.	0.4	1,657
175	Structural basis for recognition of 5′-phosphotyrosine adducts by Tdp2. Nature Structural and Molecular Biology, 2012, 19, 1372-1377.	3.6	53
176	Interfacial inhibitors: targeting macromolecular complexes. Nature Reviews Drug Discovery, 2012, 11, 25-36.	21.5	204
177	Mitochondrial Topoisomerase I is Critical for Mitochondrial Integrity and Cellular Energy Metabolism. PLoS ONE, 2012, 7, e41094.	1.1	93
178	Synthesis and Biological Evaluation of the First Dual Tyrosyl-DNA Phosphodiesterase I (Tdp1)–Topoisomerase I (Top1) Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4457-4478.	2.9	85
179	Biological evaluation of imidazolium- and ammonium-based salts as HIV-1 integrase inhibitors. MedChemComm, 2011, 2, 143-150.	3.5	20
180	Mutagenic Processing of Ribonucleotides in DNA by Yeast Topoisomerase I. Science, 2011, 332, 1561-1564.	6.0	251

#	Article	IF	CITATIONS
181	Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) inhibitors. Expert Opinion on Therapeutic Patents, 2011, 21, 1285-1292.	2.4	78
182	Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I–DNA complexes. Journal of Cell Biology, 2011, 195, 739-749.	2.3	138
183	Coordinated regulation of mitochondrial topoisomerase IB with mitochondrial nuclear encoded genes and MYC. Nucleic Acids Research, 2011, 39, 6620-6632.	6.5	22
184	Poly(ADP-ribose) polymerase and XPF–ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Research, 2011, 39, 3607-3620.	6.5	132
185	Virtual screening using ligand-based pharmacophores for inhibitors of human tyrosyl-DNA phospodiesterase (hTdp1). Bioorganic and Medicinal Chemistry, 2010, 18, 2347-2355.	1.4	6
186	DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chemistry and Biology, 2010, 17, 421-433.	6.2	1,507
187	Role of tyrosyl-DNA phosphodiesterase (TDP1) in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19790-19795.	3.3	124
188	DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle, 2010, 9, 274-278.	1.3	47
189	The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: update and perspectives. Molecular Cancer Therapeutics, 2009, 8, 1008-1014.	1.9	144
190	Implication of Checkpoint Kinase-dependent Up-regulation of Ribonucleotide Reductase R2 in DNA Damage Response. Journal of Biological Chemistry, 2009, 284, 18085-18095.	1.6	116
191	Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO Journal, 2009, 28, 3667-3680.	3.5	125
192	Ataxia telangiectasia mutated activation by transcription―and topoisomerase lâ€induced DNA doubleâ€strand breaks. EMBO Reports, 2009, 10, 887-893.	2.0	208
193	Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biology, 2009, 11, 1315-1324.	4.6	445
194	DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition. Chemical Reviews, 2009, 109, 2894-2902.	23.0	609
195	CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics, 2009, 10, 277.	1.2	273
196	DNA cleavage assay for the identification of topoisomerase I inhibitors. Nature Protocols, 2008, 3, 1736-1750.	5.5	92
197	Î ³ H2AX and cancer. Nature Reviews Cancer, 2008, 8, 957-967.	12.8	1,423
198	Hyperphosphorylation of RNA Polymerase II in Response to Topoisomerase I Cleavage Complexes and Its Association with Transcription- and BRCA1-dependent Degradation of Topoisomerase I. Journal of Molecular Biology, 2008, 381, 540-549.	2.0	55

#	Article	IF	CITATIONS
199	Tyrosyl-DNA Phosphodiesterase as a Target for Anticancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 381-389.	0.9	133
200	Role of a tryptophan anchor in human topoisomerase I structure, function and inhibition. Biochemical Journal, 2008, 411, 523-530.	1.7	20
201	Nonclassic Functions of Human Topoisomerase I: Genome-Wide and Pharmacologic Analyses. Cancer Research, 2007, 67, 8752-8761.	0.4	93
202	Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer, 2006, 6, 789-802.	12.8	1,824
203	Repair of Topoisomerase lâ€Mediated DNA Damage. Progress in Molecular Biology and Translational Science, 2006, 81, 179-229.	1.9	247
204	Chk2 Molecular Interaction Map and Rationale for Chk2 Inhibitors: Fig. 1 Clinical Cancer Research, 2006, 12, 2657-2661.	3.2	78
205	Integrase inhibitors to treat HIV/Aids. Nature Reviews Drug Discovery, 2005, 4, 236-248.	21.5	612
206	Interfacial Inhibitors of Protein-Nucleic Acid Interactions. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 421-429.	7.0	65
207	Structures of Three Classes of Anticancer Agents Bound to the Human Topoisomerase lâ^'DNA Covalent Complex. Journal of Medicinal Chemistry, 2005, 48, 2336-2345.	2.9	447
208	Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery. Trends in Pharmacological Sciences, 2005, 26, 138-145.	4.0	161
209	Synthesis and Mechanism of Action Studies of a Series of Norindenoisoquinoline Topoisomerase I Poisons Reveal an Inhibitor with a Flipped Orientation in the Ternary DNAâ^Enzymeâ^Inhibitor Complex As Determined by X-ray Crystallographic Analysis. Journal of Medicinal Chemistry, 2005, 48, 4803-4814.	2.9	102
210	Camptothecins and Topoisomerase I; A Foot in the Door. Targeting the Genome Beyond Topoisomerase I with Camptothecins and Novel Anticancer Drugs; Importance of DNA Replication, Repair and Cell Cycle Checkpoints. Anti-Cancer Agents in Medicinal Chemistry, 2004, 4, 429-434.	7.0	87
211	Thirteen-exon-motif signature for vertebrate nuclear and mitochondrial type IB topoisomerases. Nucleic Acids Research, 2004, 32, 2087-2092.	6.5	34
212	Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 2004, 23, 2934-2949.	2.6	524
213	Mechanisms of Camptothecin Resistance by Human Topoisomerase I Mutations. Journal of Molecular Biology, 2004, 339, 773-784.	2.0	129
214	Structural Impact of the Leukemia Drug 1-ॆ-d-Arabinofuranosylcytosine (Ara-C) on the Covalent Human Topoisomerase I-DNA Complex. Journal of Biological Chemistry, 2003, 278, 12461-12466.	1.6	41
215	Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Research, 2002, 30, 1198-1204.	6.5	119
216	8-Oxoguanine rearranges the active site of human topoisomerase I. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12102-12107.	3.3	68

#	Article	IF	CITATIONS
217	Different Effects on Human Topoisomerase I by Minor Groove and Intercalated Deoxyguanosine Adducts Derived from Two Polycyclic Aromatic Hydrocarbon Diol Epoxides at or Near a Normal Cleavage Site. Journal of Biological Chemistry, 2002, 277, 13666-13672.	1.6	36
218	Gemcitabine (2',2'-difluoro-2'-deoxycytidine), an antimetabolite that poisons topoisomerase I. Clinical Cancer Research, 2002, 8, 2499-504.	3.2	82
219	Antisense inhibition of Chk2/hCds1 expression attenuates DNA damage-induced S and G2 checkpoints and enhances apoptotic activity in HEK-293 cells. FEBS Letters, 2001, 505, 7-12.	1.3	62
220	Quantitative Structure-Antitumor Activity Relationships of Camptothecin Analogues:  Cluster Analysis and Genetic Algorithm-Based Studies. Journal of Medicinal Chemistry, 2001, 44, 3254-3263.	2.9	171
221	Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nature Medicine, 2001, 7, 961-966.	15.2	339
222	Activation of the Fas pathway independently of Fas ligand during apoptosis induced by camptothecin in p53 mutant human colon carcinoma cells. Oncogene, 2001, 20, 1852-1859.	2.6	80
223	Topoisomerase I-mediated DNA damage. Advances in Cancer Research, 2001, 80, 189-216.	1.9	182
224	Bay-Region Diol Epoxides of Benzo[a]Pyrene are Stealth Poisons of Topoisomerase I. Polycyclic Aromatic Compounds, 2000, 21, 53-62.	1.4	0
225	A gene expression database for the molecular pharmacology of cancer. Nature Genetics, 2000, 24, 236-244.	9.4	1,357
226	Identification and proposed mechanism of action of thymidine kinase inhibition associated with cellular exposure to camptothecin analogs. Cancer Chemotherapy and Pharmacology, 2000, 45, 409-416.	1.1	11
227	Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5â€2-Phosphorylated DNA Double-Strand Breaks by Replication Runoff. Molecular and Cellular Biology, 2000, 20, 3977-3987.	1.1	314
228	Mutations in the HIV Type 1 Integrase of Patients Receiving Long-Term Dideoxynucleoside Therapy Do Not Confer Resistance to Zidovudine. AIDS Research and Human Retroviruses, 2000, 16, 1417-1422.	0.5	5
229	Substitutions of Asn-726 in the Active Site of Yeast DNA Topoisomerase I Define Novel Mechanisms of Stabilizing the Covalent Enzyme-DNA Intermediate. Journal of Biological Chemistry, 2000, 275, 15246-15253.	1.6	35
230	The Novel Silatecan 7-tert-Butyldimethylsilyl-10-hydroxycamptothecin Displays High Lipophilicity, Improved Human Blood Stability, and Potent Anticancer Activity. Journal of Medicinal Chemistry, 2000, 43, 3970-3980.	2.9	147
231	How Do Drug-Induced Topoisomerase I-DNA Lesions Signal to the Molecular Interaction Network that Regulates Cell Cycle Checkpoints, DNA Replication, and DNA Repair?. Cell Biochemistry and Biophysics, 2000, 33, 175-180.	0.9	26
232	Molecular and Biological Determinants of the Cytotoxic Actions of Camptothecins: Perspective for the Development of New Topoisomerase I Inhibitors. Annals of the New York Academy of Sciences, 2000, 922, 11-26.	1.8	64
233	Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro. Nucleic Acids Research, 1999, 27, 1919-1925.	6.5	34
234	Induction of Reversible Complexes between Eukaryotic DNA Topoisomerase I and DNA-containing Oxidative Base Damages. Journal of Biological Chemistry, 1999, 274, 8516-8523.	1.6	168

YVES POMMIER

#	Article	IF	CITATIONS
235	Apoptotic response to camptothecin and 7-hydroxystaurosporine (UCN-01) in the 8 human breast cancer cell lines of the NCI anticancer drug screen: Multifactorial relationships with topoisomerase i, protein kinase C, Bcl-2, p53, MDM-2 and caspase pathways. , 1999, 82, 396-404.		111
236	Topoisomerase I inhibitors: selectivity and cellular resistance. Drug Resistance Updates, 1999, 2, 307-318.	6.5	158
237	Synthesis of Cytotoxic Indenoisoquinoline Topoisomerase I Poisons. Journal of Medicinal Chemistry, 1999, 42, 446-457.	2.9	122
238	Early Induction of Apoptosis in Hematopoietic Cell Lines After Exposure to Flavopiridol. Blood, 1998, 91, 458-465.	0.6	10
239	In vivo sequencing of camptothecin-induced topoisomerase I cleavage sites in human colon carcinoma cells. Nucleic Acids Research, 1997, 25, 4111-4116.	6.5	25
240	Effects of Uracil Incorporation, DNA Mismatches, and Abasic Sites on Cleavage and Religation Activities of Mammalian Topoisomerase I. Journal of Biological Chemistry, 1997, 272, 7792-7796.	1.6	164
241	Trapping of Mammalian Topoisomerase I and Recombinations Induced by Damaged DNA Containing Nicks or Gaps. Journal of Biological Chemistry, 1997, 272, 26441-26447.	1.6	153
242	Curcumin Analogs with Altered Potencies against HIV-1 Integrase as Probes for Biochemical Mechanisms of Drug Action. Journal of Medicinal Chemistry, 1997, 40, 3057-3063.	2.9	228
243	Ion Selective Folding of Loop Domains in a Potent Anti-HIV Oligonucleotideâ€. Biochemistry, 1997, 36, 12498-12505.	1.2	139
244	Differential cytotoxicity of clinically important camptothecin derivatives in P-glycoprotein-overexpressing cell lines. Cancer Chemotherapy and Pharmacology, 1997, 40, 433-438.	1.1	57
245	DNA Sequence- and Structure-Selective Alkylation of Guanine N2 in the DNA Minor Groove by Ecteinascidin 743, a Potent Antitumor Compound from the Caribbean TunicateEcteinascidia turbinata. Biochemistry, 1996, 35, 13303-13309.	1.2	288
246	Application of the electrotopological state index to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors. Pharmaceutical Research, 1996, 13, 1892-1895.	1.7	26
247	Cellular Resistance to Camptothecins. Annals of the New York Academy of Sciences, 1996, 803, 60-73.	1.8	21
248	Cellular pharmacology of azatoxins (topoisomerase-II and tubulin inhibitors) in P-glycoprotein-positive and -negative cell lines. International Journal of Cancer, 1995, 63, 268-275.	2.3	14
249	Detection of apoptosis-associated DNA fragmentation using a rapid and quantitative filter elution assay. Drug Development Research, 1995, 34, 138-144.	1.4	28
250	DNA recombinase activity of eukaryotic DNA topoisomerase I; effects of camptothecin and other inhibitors. Mutation Research DNA Repair, 1995, 337, 135-145.	3.8	47
251	Apoptosis Induced by DNA Topoisomerase I and II Inhibitors in Human Leukemic HL-60 Cells. Leukemia and Lymphoma, 1994, 15, 21-32.	0.6	78
252	Hydroxyrubicin, a deaminated derivative of doxorubicin, inhibits mammalian DNA topoisomerase II and partially circumvents multidrug resistance. International Journal of Cancer, 1994, 58, 85-94.	2.3	15

YVES POMMIER

#	Article	IF	CITATIONS
253	Cellular Determinants of Sensitivity and Resistance to DNA Topoisomerase Inhibitors. Cancer Investigation, 1994, 12, 530-542.	0.6	204
254	DNA Topoisomerases and Their Inhibition by Anthracyclines. ACS Symposium Series, 1994, , 183-203.	0.5	8
255	Local base sequence preferences for DNA cleavage by mammalian topoisomerase II in the presence of amsacrine or teniposide. Nucleic Acids Research, 1991, 19, 5973-5980.	6.5	136
256	Nucleosome positioning as a critical determinant for the DNA cleavage sites of mammalian DNA topoisomerase in reconstituted Simian virus 40 chromatin. Nucleic Acids Research, 1990, 18, 4553-4559.	6.5	56
257	Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. Nucleic Acids Research, 1990, 18, 6611-6619.	6.5	179