
Konrad Hochedlinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/388353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced Pluripotent Stem Cells Generated Without Viral Integration. Science, 2008, 322, 945-949.	12.6	1,504
2	Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 2010, 28, 848-855.	17.5	1,080
3	Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 2009, 460, 1145-1148.	27.8	794
4	Ectopic Expression of Oct-4 Blocks Progenitor-Cell Differentiation and Causes Dysplasia in Epithelial Tissues. Cell, 2005, 121, 465-477.	28.9	780
5	Defining Molecular Cornerstones during Fibroblast to iPS Cell Reprogramming in Mouse. Cell Stem Cell, 2008, 2, 230-240.	11.1	764
6	The Sox Family of Transcription Factors: Versatile Regulators of Stem and Progenitor Cell Fate. Cell Stem Cell, 2013, 12, 15-30.	11.1	763
7	A Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells. Cell, 2012, 151, 1617-1632.	28.9	762
8	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	5.9	678
9	Sox2+ Adult Stem and Progenitor Cells Are Important for Tissue Regeneration and Survival of Mice. Cell Stem Cell, 2011, 9, 317-329.	11.1	635
10	Epigenetic reprogramming and induced pluripotency. Development (Cambridge), 2009, 136, 509-523.	2.5	478
11	Nuclear reprogramming and pluripotency. Nature, 2006, 441, 1061-1067.	27.8	440
12	Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis, 2006, 44, 23-28.	1.6	432
13	Reprogramming to recover youthful epigenetic information and restore vision. Nature, 2020, 588, 124-129.	27.8	424
14	Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell, 2019, 176, 928-943.e22.	28.9	411
15	Oct4 Expression Is Not Required for Mouse Somatic Stem Cell Self-Renewal. Cell Stem Cell, 2007, 1, 403-415.	11.1	376
16	Chromatin dynamics during cellular reprogramming. Nature, 2013, 502, 462-471.	27.8	355
17	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	27.8	338
18	Tgfl̂² Signal Inhibition Cooperates in the Induction of iPSCs and Replaces Sox2 and cMyc. Current Biology, 2009, 19, 1718-1723.	3.9	328

#	Article	IF	CITATIONS
19	Reprogramming of a melanoma genome by nuclear transplantation. Genes and Development, 2004, 18, 1875-1885.	5.9	321
20	Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all–iPS cell mice from terminally differentiated B cells. Nature Genetics, 2012, 44, 398-405.	21.4	250
21	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	27.8	244
22	A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nature Biotechnology, 2015, 33, 1173-1181.	17.5	235
23	Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature, 2017, 548, 219-223.	27.8	211
24	Genome-wide Chromatin Interactions of the Nanog Locus in Pluripotency, Differentiation, and Reprogramming. Cell Stem Cell, 2013, 12, 699-712.	11.1	194
25	A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nature Methods, 2010, 7, 53-55.	19.0	192
26	Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem Cell, 2018, 23, 727-741.e9.	11.1	156
27	The histone deacetylase SIRT6 controls embryonic stemÂcell fate via TET-mediated production of 5-hydroxymethylcytosine. Nature Cell Biology, 2015, 17, 545-557.	10.3	137
28	Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling. Cell, 2018, 172, 106-120.e21.	28.9	123
29	Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Molecular Cell, 2014, 53, 32-48.	9.7	112
30	Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming. Cell Stem Cell, 2016, 18, 611-624.	11.1	112
31	Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nature Biotechnology, 2015, 33, 761-768.	17.5	100
32	Small molecules facilitate rapid and synchronous iPSC generation. Nature Methods, 2014, 11, 1170-1176.	19.0	91
33	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	5.5	84
34	The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis. Cell Stem Cell, 2019, 25, 622-638.e13.	11.1	82
35	Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nature Communications, 2014, 5, 4719.	12.8	80
36	Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. Stem Cell Reports, 2018, 10, 1505-1521.	4.8	74

Konrad Hochedlinger

#	Article	IF	CITATIONS
37	Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nature Methods, 2018, 15, 732-740.	19.0	74
38	Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nature Communications, 2019, 10, 5530.	12.8	71
39	Nanog Is Dispensable for the Generation of Induced Pluripotent Stem Cells. Current Biology, 2014, 24, 347-350.	3.9	69
40	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	6.4	64
41	DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell, 2017, 20, 706-719.e7.	11.1	63
42	Sox2 Suppresses Gastric Tumorigenesis in Mice. Cell Reports, 2016, 16, 1929-1941.	6.4	61
43	Prospective Isolation of Poised iPSC Intermediates Reveals Principles of Cellular Reprogramming. Cell Stem Cell, 2018, 23, 289-305.e5.	11.1	60
44	When Fibroblasts MET iPSCs. Cell Stem Cell, 2010, 7, 5-6.	11.1	59
45	Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs. Cell Stem Cell, 2014, 15, 281-294.	11.1	58
46	A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports, 2016, 6, 704-716.	4.8	50
47	An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell, 2018, 22, 851-864.e5.	11.1	47
48	Reprogramming: identifying the mechanisms that safeguard cell identity. Development (Cambridge), 2019, 146, .	2.5	45
49	Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9545-9550.	7.1	43
50	Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nature Cell Biology, 2019, 21, 1449-1461.	10.3	40
51	Phf8 loss confers resistance to depression-like and anxiety-like behaviors in mice. Nature Communications, 2017, 8, 15142.	12.8	35
52	Emerging roles of the histone chaperone CAF-1 in cellular plasticity. Current Opinion in Genetics and Development, 2017, 46, 83-94.	3.3	35
53	Chromatin-state barriers enforce an irreversible mammalian cell fate decision. Cell Reports, 2021, 37, 109967.	6.4	28
54	Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells. Genes and Development, 2021, 35, 1209-1228.	5.9	20

Konrad Hochedlinger

#	Article	IF	CITATIONS
55	De Novo DNA Methylation at Imprinted Loci during Reprogramming intoÂNaive and Primed Pluripotency. Stem Cell Reports, 2019, 12, 1113-1128.	4.8	19
56	Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency. PLoS ONE, 2015, 10, e0140192.	2.5	19
57	Probabilistic Modeling of Reprogramming to Induced Pluripotent Stem Cells. Cell Reports, 2016, 17, 3395-3406.	6.4	13
58	Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. Genes and Development, 2021, 35, 1527-1547.	5.9	11
59	Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes and Development, 2022, 36, 38-52.	5.9	11
60	Regulation of chromatin accessibility by the histone chaperone CAF-1 sustains lineage fidelity. Nature Communications, 2022, 13, 2350.	12.8	8
61	Brain versus brawn. Nature, 2016, 534, 332-333.	27.8	5
62	Novel Roles for SUMOylation in Cellular Plasticity. Trends in Cell Biology, 2018, 28, 971-973.	7.9	3
63	Embryonic Stem Cells: Testing the Germ-Cell Theory. Current Biology, 2011, 21, R850-R852.	3.9	2
64	Reduced MEK inhibition preserves genomic stability in na $ ilde{A}$ ve human ES cells. Protocol Exchange, 0, , .	0.3	2
65	ISSCR 2013: Back to Bean Town. Stem Cell Reports, 2013, 1, 479-485.	4.8	0