Judith Aron-Wisnewsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882260/publications.pdf

Version: 2024-02-01

82 papers

7,577 citations

39 h-index 82 g-index

88 all docs 88 docs citations

88 times ranked 11307 citing authors

#	Article	IF	CITATIONS
1	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	12.1	53
2	Interactions entre les traitements du diab \tilde{A} te et le microbiote intestinal \hat{A} : \tilde{A} ©tat des connaissances et perspectives. Medecine Des Maladies Metaboliques, 2022, 16, 148-159.	0.1	1
3	Persistence of severe liver fibrosis despite substantial weight loss with bariatric surgery. Hepatology, 2022, 76, 456-468.	7.3	22
4	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	30.7	102
5	Fibrogenesis Marker PRO-C3 Is Higher in Advanced Liver Fibrosis and Improves in Patients Undergoing Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1356-e1366.	3.6	6
6	The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes, 2022, 14, 2050635.	9.8	15
7	Intermittent Hypoxia Rewires the Liver Transcriptome and Fires up Fatty Acids Usage for Mitochondrial Respiration. Frontiers in Medicine, 2022, 9, 829979.	2.6	5
8	Effect of COVID-19 Lockdowns on Physical Activity, Eating Behavior, Body Weight and Psychological Outcomes in a Post-Bariatric Cohort. Obesity Surgery, 2022, 32, 1-9.	2.1	8
9	Effect of exercise training after bariatric surgery: A 5-year follow-up study of a randomized controlled trial. PLoS ONE, 2022, 17, e0271561.	2.5	11
10	Weight Loss After Sleeve Gastrectomy: Does Type 2 Diabetes Status Impact Weight and Body Composition Trajectories?. Obesity Surgery, 2021, 31, 1046-1054.	2.1	12
11	Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 2021, 160, 573-599.	1.3	169
12	Senescence-associated \hat{l}^2 -galactosidase in subcutaneous adipose tissue associates with altered glycaemic status and truncal fat in severe obesity. Diabetologia, 2021, 64, 240-254.	6.3	45
13	COVIDâ€19 and its Severity in Bariatric Surgeryâ€Operated Patients. Obesity, 2021, 29, 24-28.	3.0	18
14	Resting-state connectivity within the brain's reward system predicts weight loss and correlates with leptin. Brain Communications, 2021, 3, fcab005.	3.3	15
15	Altered subcutaneous adipose tissue parameters after switching ART-controlled HIV+ patients to raltegravir/maraviroc. Aids, 2021, 35, 1625-1630.	2.2	7
16	Adipose tissue fibrosis assessed by high resolution ex vivo MRI as a hallmark of tissue alteration in morbid obesity. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2162-2168.	2.0	2
17	Diagnostic approach to sleep disordered-breathing among patients with grade III obesity. Sleep Medicine, 2021, 82, 18-22.	1.6	6
18	Abdominal adipose tissue components quantification in MRI as a relevant biomarker of metabolic profile. Magnetic Resonance Imaging, 2021, 80, 14-20.	1.8	4

#	Article	IF	Citations
19	Plasma Imidazole Propionate Is Positively Correlated with Blood Pressure in Overweight and Obese Humans. Nutrients, 2021, 13, 2706.	4.1	14
20	Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts. Nutrients, 2021, 13, 3159.	4.1	6
21	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	27.8	102
22	Laparoscopic Revision of Bariatric Surgeries in Two Patients with Severe Resistant Hypocalcemia After Endocrine Cervical Surgery. Obesity Surgery, 2020, 30, 1616-1620.	2.1	8
23	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	12.8	122
24	Bariatric Surgery is feasible in patients with Ehlers-Danlos Syndrome. Surgery for Obesity and Related Diseases, 2020, 16, 1328-1331.	1.2	1
25	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	27.8	283
26	Cholangiocarcinoma Following Bariatric Surgery: a Prospective Follow-Up Single-Center Audit. Obesity Surgery, 2020, 30, 3590-3594.	2.1	1
27	COVID-19 Digestive Symptoms Mimicking Internal Hernia Presentation After Roux-en-Y-Gastric Bypass; Comment on "Internal Hernia in the Times of COVID-19: to Laparoscope or Not to Laparoscope?― Obesity Surgery, 2020, 30, 3601-3602.	2.1	2
28	Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 279-297.	17.8	539
29	Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Scientific Reports, 2020, 10, 3850.	3.3	39
30	Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?. Gastroenterology, 2020, 158, 1881-1898.	1.3	123
31	Gut microbiota: a promising target against cardiometabolic diseases. Expert Review of Endocrinology and Metabolism, 2020, 15, 13-27.	2.4	35
32	Le transfert de microbiote fécalÂ: quel potentiel thérapeutique dans le traitement des maladies métaboliquesÂ?. Nutrition Clinique Et Metabolisme, 2020, 34, 108-115.	0.5	1
33	Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.	12.1	33
34	Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68, 70-82.	12.1	297
35	Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes Reports, 2019, 19, 51.	4.2	91
36	<i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	3.5	67

#	Article	IF	CITATIONS
37	Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.	3.0	26
38	Changes in Body Composition, Comorbidities, and Nutritional Status Associated with Lower Weight Loss After Bariatric Surgery in Older Subjects. Obesity Surgery, 2019, 29, 3589-3595.	2.1	17
39	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019, 8, 229-242.	8.4	85
40	Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome?. Seminars in Immunopathology, 2019, 41, 461-475.	6.1	27
41	The mid-infrared spectroscopy: A novel non-invasive diagnostic tool for NASH diagnosis in severe obesity. JHEP Reports, 2019, 1, 361-368.	4.9	10
42	A place for vitamin supplementation and functional food in bariatric surgery?. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 442-448.	2.5	3
43	Prediction of Long-Term Diabetes Remission After RYGB, Sleeve Gastrectomy, and Adjustable Gastric Banding Using DiaRem and Advanced-DiaRem Scores. Obesity Surgery, 2019, 29, 796-804.	2.1	37
44	Sleeve Gastrectomy in Morbidly Obese HIV Patients: Focus on Anti-retroviral Treatment Absorption After Surgery. Obesity Surgery, 2018, 28, 2886-2893.	2.1	22
45	Long-term Relapse of Type 2 Diabetes After Roux-en-Y Gastric Bypass: Prediction and Clinical Relevance. Diabetes Care, 2018, 41, 2086-2095.	8.6	90
46	Mucosalâ€associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders. FASEB Journal, 2018, 32, 5078-5089.	0.5	37
47	Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice Models: Age, Kinetic and Microbial Status Matter. Frontiers in Microbiology, 2018, 9, 3289.	3.5	77
48	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	2.8	39
49	A PDGFRα-Mediated Switch toward CD9high Adipocyte Progenitors Controls Obesity-Induced Adipose Tissue Fibrosis. Cell Metabolism, 2017, 25, 673-685.	16.2	195
50	Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut, 2017, 66, 1688-1696.	12.1	59
51	The FAT Score, a Fibrosis Score of Adipose Tissue: Predicting Weight-Loss Outcome After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2443-2453.	3.6	62
52	Nonalcoholic fatty liver disease in chronic obstructive pulmonary disease. European Respiratory Journal, 2017, 49, 1601923.	6.7	56
53	Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food Frequency Questionnaire. Journal of the Academy of Nutrition and Dietetics, 2017, 117, 878-888.	0.8	32
54	The advanced-DiaRem score improves prediction of diabetes remission 1Âyear post-Roux-en-Y gastric bypass. Diabetologia, 2017, 60, 1892-1902.	6.3	100

#	Article	IF	Citations
55	Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Scientific Reports, 2016, 6, 24618.	3.3	28
56	Accumulation and Changes in Composition of Collagens in Subcutaneous Adipose Tissue After Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 293-304.	3.6	87
57	AdipoScan: A Novel Transient Elastography-Based Tool Used to Non-Invasively Assess Subcutaneous Adipose Tissue Shear Wave Speed in Obesity. Ultrasound in Medicine and Biology, 2016, 42, 2401-2413.	1.5	11
58	Nonalcoholic fatty liver disease and obstructive sleep apnea. Metabolism: Clinical and Experimental, 2016, 65, 1124-1135.	3.4	87
59	Impact of effective versus sham continuous positive airway pressure on liver injury in obstructive sleep apnoea: Data from randomized trials. Respirology, 2016, 21, 378-385.	2.3	43
60	Is Bariatric Surgery Effective in Reducing Comorbidities and Drug Costs?: Letter to the editor. Obesity Surgery, 2016, 26, 856-856.	2.1	0
61	The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology, 2016, 12, 169-181.	9.6	258
62	Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up. Obesity Surgery, 2016, 26, 785-796.	2.1	104
63	<i>Akkermansia muciniphila</i> i>and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	12.1	1,379
64	Nutritional and Protein Deficiencies in the Short Term following Both Gastric Bypass and Gastric Banding. PLoS ONE, 2016, 11, e0149588.	2.5	70
65	Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study. PLoS ONE, 2015, 10, e0125718.	2.5	60
66	Type 2 Diabetes Remission After Gastric Bypass: What Is the Best Prediction Tool for Clinicians?. Obesity Surgery, 2015, 25, 1128-1132.	2.1	25
67	New insights in the pathophysiology of chronic intermittent hypoxia-induced NASH: the role of gut–liver axis impairment. Thorax, 2015, 70, 713-715.	5.6	9
68	Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nature Medicine, 2015, 21, 610-618.	30.7	149
69	Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity. Journal of Hepatology, 2015, 62, 905-912.	3.7	89
70	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.	8.2	272
71	Association of Adipose Tissue and Liver Fibrosis With Tissue Stiffness in Morbid Obesity: Links With Diabetes and BMI Loss After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 898-907.	3.6	107
72	T Cell–Derived IL-22 Amplifies IL-1β–Driven Inflammation in Human Adipose Tissue: Relevance to Obesity and Type 2 Diabetes. Diabetes, 2014, 63, 1966-1977.	0.6	197

#	Article	IF	CITATIONS
73	The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454.	4.8	68
74	Medication Cost is Significantly Reduced After Roux-en-Y Gastric Bypass in Obese Patients. Obesity Surgery, 2014, 24, 1896-1903.	2.1	28
75	Nonalcoholic Fatty Liver Disease, Nocturnal Hypoxia, and Endothelial Function in Patients With Sleep Apnea. Chest, 2014, 145, 525-533.	0.8	70
76	Adaptive Expression of MicroRNA-125a in Adipose Tissue in Response to Obesity in Mice and Men. PLoS ONE, 2014, 9, e91375.	2.5	21
77	Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. American Journal of Clinical Nutrition, 2013, 98, 16-24.	4.7	351
78	Pharmacokinetics of Immunomodulator Treatments After Rouxâ€En‥ Bypass in Obese Patient. Journal of Clinical Pharmacology, 2013, 53, 779-784.	2.0	2
79	Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese. Journal of Hepatology, 2012, 56, 225-233.	3.7	214
80	The importance of the gut microbiota after bariatric surgery. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 590-598.	17.8	216
81	Effect of Bariatric Surgery-Induced Weight Loss on SR-BI-, ABCG1-, and ABCA1-Mediated Cellular Cholesterol Efflux in Obese Women. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1151-1159.	3.6	67
82	Human Adipose Tissue Macrophages: M1 and M2 Cell Surface Markers in Subcutaneous and Omental Depots and after Weight Loss. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4619-4623.	3.6	318