Marco A Pizo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3881342/publications.pdf

Version: 2024-02-01

147801 161849 3,683 125 31 54 citations h-index g-index papers 127 127 127 4239 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Defaunation affects carbon storage in tropical forests. Science Advances, 2015, 1, e1501105.	10.3	285
2	The dimensionality of ecological networks. Ecology Letters, 2013, 16, 577-583.	6.4	246
3	Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecology Letters, 2011, 14, 773-781.	6.4	243
4	Seedâ€dispersal interactions in fragmented landscapes – a metanetwork approach. Ecology Letters, 2018, 21, 484-493.	6.4	115
5	Seed dispersal and predation in two populations of <i>Cabralea canjerana</i> (Meliaceae) in the Atlantic Forest of southeastern Brazil. Journal of Tropical Ecology, 1997, 13, 559-577.	1.1	102
6	Polinização e dispersão de sementes em Myrtaceae do Brasil. Revista Brasileira De Botanica, 2006, 29, 509-530.	1.3	102
7	Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic Forest. Ecology, 2017, 98, 1729-1729.	3.2	89
8	Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology, 2014, 95, 3440-3447.	3.2	88
9	Frugivory by Toucans (Ramphastidae) at Two Altitudes in the Atlantic Forest of Brazil 1. Biotropica, 2000, 32, 842-850.	1.6	80
10	Size and lipid content of nonmyrmecochorous diaspores: effects on the interaction with litter-foraging ants in the Atlantic rain forest of Brazil. Plant Ecology, 2001, 157, 37-52.	1.6	79
11	Big Fish are the Best: Seed Dispersal of <i>Bactris glaucescens</i> by the Pacu Fish (<i>Piaractus) Tj ETQq1 1 0.7</i>	784314 rg 1.6	BT /Qverlock
12	Interaction between ants and seeds of a nonmyrmecochorous neotropical tree, Cabralea canjerana (Meliaceae), in the Atlantic forest of southeast Brazil. American Journal of Botany, 1998, 85, 669-674.	1.7	71
13	Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia, 2014, 175, 1247-1256.	2.0	69
14	The Use of Fruits and Seeds by Ants in the Atlantic Forest of Southeast Brazil 1. Biotropica, 2000, 32, 851-861.	1.6	68
15	Variation in seed dispersal effectiveness: the redundancy of consequences in diversified tropical frugivore assemblages. Oikos, 2016, 125, 336-342.	2.7	68
16	The restoration of tropical seed dispersal networks. Restoration Ecology, 2015, 23, 852-860.	2.9	65
17	Maximizing biodiversity conservation and carbon stocking in restored tropical forests. Conservation Letters, 2018, 11, e12454.	5.7	59
18	Fruit and seed exploitation by small rodents of the Brazilian Atlantic forest. Mammalia, 2003, 67, .	0.7	58

#	Article	IF	Citations
19	Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotropica, 2011, 11, 181-193.	1.0	56
20	Seed size variation inÂtheÂpalm EuterpeÂedulis andÂtheÂeffects ofÂseed predators onÂgermination andÂseedling survival. Acta Oecologica, 2006, 29, 311-315.	1.1	53
21	Effects of bamboo stands on seed rain and seed limitation in a rainforest. Forest Ecology and Management, 2009, 257, 885-892.	3.2	51
22	Frugivory, Post-feeding Flights of Frugivorous Birds and the Movement of Seeds in a Brazilian Fragmented Landscape. Biotropica, 2011, 43, 335-342.	1.6	48
23	<scp>ATLANTIC BIRDS</scp> : a data set of bird species from the Brazilian Atlantic Forest. Ecology, 2018, 99, 497-497.	3.2	46
24	Seedâ€dispersal networks are more specialized in the Neotropics than in the Afrotropics. Global Ecology and Biogeography, 2019, 28, 248-261.	5.8	45
25	Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis. Forest Ecology and Management, 2014, 324, 117-125.	3.2	44
26	Seed deposition patterns and the survival of seeds and seedlings of the palm Euterpe edulis. Acta Oecologica, 2001, 22, 229-233.	1.1	43
27	Effects of Land Cover on the Movement of Frugivorous Birds in a Heterogeneous Landscape. PLoS ONE, 2016, 11, e0156688.	2.5	42
28	<scp>ATLANTIC BIRD TRAITS</scp> : a data set of bird morphological traits from the Atlantic forests of South America. Ecology, 2019, 100, e02647.	3.2	40
29	Seed Rain and Seed Limitation in a Planted Gallery Forest in Brazil. Restoration Ecology, 2006, 14, 504-515.	2.9	39
30	Removal of seeds from vertebrate faeces by ants: effects of seed species and deposition site. Canadian Journal of Zoology, 1999, 77, 1595-1602.	1.0	38
31	<scp>ATLANTIC EPIPHYTES</scp> : a data set of vascular and nonâ€vascular epiphyte plants and lichens from the Atlantic Forest. Ecology, 2019, 100, e02541.	3.2	38
32	Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Science Advances, 2019, 5, eaav6699.	10.3	38
33	Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica, 2020, 52, 81-89.	1.6	38
34	Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied Ecology, 2020, 57, 2329-2339.	4.0	38
35	Demographic bottlenecks in tropical plant regeneration: A comparative analysis of causal influences. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 86-96.	2.7	33
36	Bamboo thickets alter the demographic structure of Euterpe edulis population: A keystone, threatened palm species of the Atlantic forest. Acta Oecologica, 2016, 70, 96-102.	1.1	32

#	Article	IF	CITATIONS
37	Noise and tree species richness modulate the bird community inhabiting small public urban green spaces of a Neotropical city. Urban Ecosystems, 2021, 24, 71-81.	2.4	29
38	The Use of Fruits and Seeds by Ants in the Atlantic Forest of Southeast Brazil 1. Biotropica, 2000, 32, 851.	1.6	28
39	Forest and connectivity loss drive changes in movement behavior of bird species. Ecography, 2020, 43, 1203-1214.	4.5	28
40	Frugivory and habitat use by thrushes (Turdus spp.) in a suburban area in south Brazil. Urban Ecosystems, 2009, 12, 425-436.	2.4	27
41	Birds and bats diverge in the qualitative and quantitative components of seed dispersal of a pioneer tree. Acta Oecologica, 2010, 36, 493-496.	1.1	27
42	Can network metrics predict vulnerability and species roles in birdâ€dispersed plant communities? Not without behaviour. Ecology Letters, 2020, 23, 348-358.	6.4	27
43	Divergent flows of avian-mediated ecosystem services across forest-matrix interfaces in human-modified landscapes. Landscape Ecology, 2019, 34, 879-894.	4.2	26
44	Asymmetrical Dependence Between a Neotropical Mistletoe and its Avian Seed Disperser. Biotropica, 2014, 46, 285-293.	1.6	25
45	Matrix type and landscape attributes modulate avian taxonomic and functional spillover across habitat boundaries in the Brazilian Atlantic Forest. Oikos, 2019, 128, 1600-1612.	2.7	25
46	A new rainâ€operated seed dispersal mechanism in <i>Bertolonia mosenii</i> (Melastomataceae), a Neotropical rainforest herb. American Journal of Botany, 2002, 89, 169-171.	1.7	24
47	Foraging behavior of tyrant flycatchers (Aves, Tyrannidae) in Brazil. Revista Brasileira De Zoologia, 2005, 22, 1072-1077.	0.5	24
48	THE USE OF FRUITS BY THE NEOTROPICAL HARVESTMAN NEOSADOCUS VARIABILIS (OPILIONES, LANIATORES,)	Tj ETQq0 (0 0 ggBT /Ove
49	Seed predation under high seed density condition: the palm Euterpe edulis in the Brazilian Atlantic Forest. Journal of Tropical Ecology, 2004, 20, 471-474.	1.1	23
50	Movement Patterns of Frugivorous Birds Promote Functional Connectivity among Chaco Serrano Woodland Fragments in Argentina. Biotropica, 2015, 47, 475-483.	1.6	22
51	Joint species movement modeling: how do traits influence movements?. Ecology, 2019, 100, e02622.	3.2	22
52	Frugivory by birds in degraded areas of Brazil , 2007, , 615-627.		22
53	Using tree population size structures to assess the impacts of cattle grazing and eucalypts plantations in subtropical South America. Biodiversity and Conservation, 2010, 19, 1683-1698.	2.6	21
54	Afforestation effects on vegetation structure and diversity of grasslands in southern Brazil: The first years. Journal for Nature Conservation, 2013, 21, 56-62.	1.8	21

#	Article	IF	CITATIONS
55	Determinants of fruit removal in <i>Geonoma pauciflora</i> , an understory palm of neotropical forests. Ecological Research, 2009, 24, 1179-1186.	1.5	20
56	Granivorous Birds as Potentially Important Post-dispersal Seed Predators in a Brazilian Forest Fragment1. Biotropica, 2004, 36, 417-423.	1.6	19
57	Palm harvesting affects seed predation of Euterpe edulis, a threatened palm of the Brazilian Atlantic Forest. Brazilian Journal of Biology, 2004, 64, 669-676.	0.9	18
58	Intra-tropical migration and wintering areas of Fork-tailed Flycatchers (Tyrannus savana) breeding in São Paulo, Brazil. Revista Brasileira De Ornitologia, 2016, 24, 116-121.	0.2	18
59	Living in a fragmented world: Birds in the Atlantic Forest. Condor, 2020, 122, .	1.6	18
60	Seed removal by ants from faeces produced by different vertebrate species. Ecoscience, 2005, 12, 136-140.	1.4	17
61	Avian assemblages in bamboo and non-bamboo habitats in a tropical rainforest. Emu, 2013, 113, 52-61.	0.6	17
62	Fruit resource provisioning for avian frugivores: The overlooked side of effectiveness in seed dispersal mutualisms. Journal of Ecology, 2020, 108, 1358-1372.	4.0	17
63	Frugivory Specialization in Birds and Fruit Chemistry Structure Mutualistic Networks across the Neotropics. American Naturalist, 2021, 197, 236-249.	2.1	16
64	Conservation puzzle: Endangered hyacinth macaw depends on its nest predator for reproduction. Biological Conservation, 2008, 141, 792-796.	4.1	15
65	Breeding latitude predicts timing but not rate of spring migration in a widespread migratory bird in South America. Ecology and Evolution, 2019, 9, 5752-5765.	1.9	14
66	Frugivory by Toucans (Ramphastidae) at Two Altitudes in the Atlantic Forest of Brazil 1. Biotropica, 2000, 32, 842.	1.6	13
67	Specialized Seed Dispersal in Epiphytic Cacti and Convergence with Mistletoes. Biotropica, 2013, 45, 465-473.	1.6	13
68	Molting while breeding? Lessons from New World Tyrannus Flycatchers. Journal of Ornithology, 2017, 158, 1061-1072.	1.1	13
69	Human-modified landscapes narrow the isotopic niche of neotropical birds. Oecologia, 2021, 196, 171-184.	2.0	11
70	Diversity of understory birds in old stands of native and <i>Eucalyptus</i> plantations. Restoration Ecology, 2015, 23, 662-669.	2.9	10
71	Buildings promote higher incubation temperatures and reduce nest attentiveness in a Neotropical thrush. Ibis, 2021, 163, 79-89.	1.9	10
72	Community-Wide Spatial and Temporal Discordances of Seed-Seedling Shadows in a Tropical Rainforest. PLoS ONE, 2015, 10, e0123346.	2.5	10

#	Article	IF	CITATIONS
73	THE DAWN LEK OF THE SWALLOW-TAILED HUMMINGBIRD. The Wilson Bulletin, 2001, 113, 388-397.	0.5	9
74	Anthropogenic Disturbances Affect the Interactions between Ants and Fleshy Fruits in Two Neotropical Biodiversity Hotspots., 0,, 133-156.		9
75	Isotopic niches of tropical birds reduced by anthropogenic impacts: a 100â€year perspective. Oikos, 2021, 130, 1892-1904.	2.7	9
76	ATLANTIC ANTS: a data set of ants in Atlantic Forests of South America. Ecology, 2022, 103, e03580.	3.2	9
77	Attack on Chestnut-bellied Euphonia Nestlings by Army Ants. The Wilson Bulletin, 2000, 112, 422-424.	0.5	8
78	Padrão de deposição de sementes e sobrevivência de sementes e plântulas de duas espécies de Myrtaceae na Mata Atlântica. Revista Brasileira De Botanica, 2003, 26, 371-377.	1.3	8
79	Nest and Eggs of the Marsh Antwren (Stymphalornis acutirostris): The Only Marsh-Dwelling Thamnophilid. Wilson Journal of Ornithology, 2012, 124, 286-291.	0.2	8
80	Nutrients Drive Termite Nest Geophagy in Yellow-chevroned Parakeets (<i>Brotogeris chiriri</i>). Wilson Journal of Ornithology, 2015, 127, 506-510.	0.2	8
81	Ants as seed dispersers of fleshy diaspores in Brazilian Atlantic forests, 2005, , 315-329.		8
82	Trade-Offs in Male Display Activity with Lek Size. PLoS ONE, 2016, 11, e0162943.	2.5	8
83	Attendance and Co-Occurrence of Birds Following Army Ants in the Atlantic Rain Forest. Condor, 2010, 112, 571-578.	1.6	7
84	Lek phenology of the White-bearded Manakin (<i>Manacus manacus</i> , Aves: Passeriformes: Pipridae) in a subtropical region. Journal of Natural History, 2012, 46, 2999-3009.	0.5	7
85	Lek Behavior of the Plovercrest (Stephanoxis lalandi, Trochilidae). Wilson Journal of Ornithology, 2012, 124, 106-112.	0.2	7
86	Longevity Records and Signs of Aging in Marsh AntwrenFormicivora acutirostris(Thamnophilidae). Wilson Journal of Ornithology, 2015, 127, 98-102.	0.2	7
87	Nocturnal roosting behavior of the Pale-breasted Thrush (Turdus leucomelas) and its relation with daytime area of use. Wilson Journal of Ornithology, 2018, 130, 828-833.	0.2	7
88	The relative contribution of fruits and arthropods to the diet of three trogon species (Aves,) Tj ETQq0 0 0 rgBT	/Overlock 1	10 Tf 50 142 To
89	The Use of Seeds by a Twig-Dwelling Ant on the Floor of a Tropical Rain Forest. Biotropica, 2007, 40, 070507065322003-???.	1.6	6
90	Seed dispersal by the lek-forming white-bearded manakin (<i>Manacus manacus</i> , Pipridae) in the Brazilian Atlantic forest. Journal of Tropical Ecology, 2013, 29, 381-389.	1.1	6

#	Article	IF	CITATIONS
91	Court cleaning behavior of the White-Bearded Manakin (<i>Manacus manacus</i>) and a test of the anti-predation hypothesis. Wilson Journal of Ornithology, 2014, 126, 98-104.	0.2	6
92	Drivers of Spatial Variation in the Role of Ants as Secondary Seed Dispersers. Environmental Entomology, 2016, 45, 930-937.	1.4	6
93	Nest reuse by Paleâ€breasted Thrushes reduces the chance of cowbird parasitism and allows earlier initiation of breeding. Journal of Field Ornithology, 2021, 92, 105-114.	0.5	6
94	Female neophobia predicts the use of buildings as nesting sites in a Neotropical songbird. Animal Behaviour, 2022, 183, 151-157.	1.9	6
95	Lek Behavior of the Gray-Hooded Flycatcher. Condor, 1998, 100, 726-731.	1.6	5
96	Granivorous Birds as Potentially Important Post-dispersal Seed Predators in a Brazilian Forest Fragment1. Biotropica, 2004, 36, 417.	1.6	5
97	The use of auxiliary courts by the lek-forming White-bearded Manakin Manacus manacus (Aves,) Tj ETQq1 1	0.784314 rgBT	/gverlock 1
98	Context-dependence in seed removal by lekking and non-lekking frugivorous birds in Brazilian Atlantic forest. Wilson Journal of Ornithology, 2013, 125, 546-551.	0.2	5
99	Seedling Community in a Patchy Tropical Vegetation Under the Influence of Bamboos. Tropical Conservation Science, 2018, 11, 194008291876712.	1.2	5
100	Breeding biology of the Creamy-bellied Thrush (<i>Turdus amaurochalinus</i>) in southeast Brazil. Studies on Neotropical Fauna and Environment, 2020, 55, 233-241.	1.0	5
101	Forest cover and connectivity have pervasive effects on the maintenance of evolutionary distinct interactions in seed dispersal networks. Oikos, 0, , .	2.7	5
102	Frugivore diversity increases evenness in the seed rain on deforested tropical landscapes. Oikos, 2022, 2022, .	2.7	5
103	Frugivory by the White-bearded Manakin (Manacus manacus, Pipridae) in restinga forest, an ecosystem associated to the Atlantic forest. Biota Neotropica, 2013, 13, 345-350.	1.0	4
104	Future climate change will impact the size and location of breeding and wintering areas of migratory thrushes in South America. Condor, 2021, 123, .	1.6	4
105	A floodplain with artificially reversed flood pulse is important for migratory and rare bird species. Revista Brasileira De Ornitologia, 2017, 25, 155-168.	0.2	3
106	Temporal dynamics in the effectiveness of seed dispersal by birds visiting a tropical tree. Journal of Tropical Ecology, 2018, 34, 235-242.	1.1	3
107	Decoding Darwin's puzzle: avian dispersal of mimetic seeds. Ecology, 2020, 101, e03005.	3.2	3
108	Fruit availability at the individual and local levels influences fruit removal in Cecropia pachystachya. Brazilian Journal of Biology, 2019, 79, 758-759.	0.9	3

#	Article	IF	Citations
109	Display activity and foraging costs of a frugivorous lekking bird. Wilson Journal of Ornithology, 2018, 130, 869.	0.2	3
110	Forest regeneration may reduce the negative impacts of climate change on the biodiversity of a tropical hotspot. Diversity and Distributions, 2022, 28, 2956-2971.	4.1	3
111	Abundance predominates over niche factors as determinant of the frequency of interactions between frugivorous birds and plants. Biotropica, 2022, 54, 627-634.	1.6	3
112	Population structure and canopy use by <i>Coussapoa microcarpa</i> , a strangler hemiepiphyte from the Brazilian Atlantic Forest. Journal of Tropical Ecology, 2013, 29, 271-275.	1.1	2
113	Effects of bamboo dominance and palm-heart harvesting on the phylogenetic structure of the seed and seedling communities in an old-growth Atlantic Forest. Journal of Tropical Ecology, 2017, 33, 309-316.	1.1	2
114	Breeding biology of the Restinga Tyrannulet (Phylloscartes kronei). Wilson Journal of Ornithology, 2018, 130, 591-599.	0.2	2
115	Breeding biology of the Sayaca Tanager (Thraupis sayaca) in southeast Brazil. Journal of Natural History, 2019, 53, 2397-2412.	0.5	2
116	A comparison of bird communities in natural and revegetated grasslands in south Brazil. Revista Brasileira De Ornitologia, 2019, 27, 199-206.	0.2	2
117	First Egg and Standardized Nest Description of the Southern Bristle-Tyrant (Phylloscartes eximius). Wilson Journal of Ornithology, 2017, 129, 372-376.	0.2	1
118	Sex-specific seasonal body mass variation in the Pale-breasted Thrush (Turdus leucomelas). Ornithology Research, 2021, 29, 84-88.	1.4	1
119	Effects of the association between Mimus saturninus and Furnarius rufus on their foraging and alert behaviors. Ornithology Research, 0 , 1 .	1.4	1
120	Predation on artificial caterpillars following understorey fires in humanâ€modified Amazonian forests. Biotropica, 2022, 54, 754-763.	1.6	1
121	Joint Species Movement Modeling: How Do Traits Influence Movements?. Bulletin of the Ecological Society of America, 2019, 100, e01511.	0.2	0
122	Sugar and nitrogen digestive processing does not explain the specialized relationship between euphonias and lowâ€quality fruits. Journal of Avian Biology, 2021, 52, .	1.2	0
123	A Narrow-billed Woodcreeper, Lepidocolaptes angustirostris, nesting in a mailbox. Revista Brasileira De Ornitologia, 2018, 26, 189-191.	0.2	0
124	The location of thrush nests on buildings affects the chance of cowbird parasitism. Ecosistemas, 2022, 31, 2196.	0.4	0
125	Functional ecology of Neotropical frugivorous birds. Ornithology Research, 0, , .	1.4	0