Michael W Parker

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3880420/publications.pdf
Version: 2024-02-01

Structural biology of cell surface receptors implicated in Alzheimerâ $€^{T M}$ S disease. Biophysical Reviews,
$2022,14,233-255$.

Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution
2 and genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .

Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator. Biochemical Journal, 2022, 479, 1181-1204.

Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy.
Science, 2022, 376, 1074-1079.

Cytokine Receptors and their Ligands. , 2022, , .

Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metabolism, 2022, 34, 919-936.e8.

7 Cholesterolâ€dependent cytolysins: The outstanding questions. IUBMB Life, 2022, 74, 1169-1179.

Repurposing of drugs as STAT3 inhibitors for cancer therapy. Seminars in Cancer Biology, 2021, 68,
31-46.

A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in
$9 \quad$ myocarditis, sepsis and myocardial infarction. Basic Research in Cardiology, 2021, 116, 17.

10 An ALYREF-MYCN coactivator complex drives neuroblastoma tumorigenesis through effects on USP3 and MYCN stability. Nature Communications, 2021, 12, 1881.

11 A novel combination therapy targeting ubiquitin-specific protease 5 in MYCN-driven neuroblastoma.
Oncogene, 2021, 40, 2367-2381.
Role of nicotinic acetylcholine receptor subunits in the mode of action of neonicotinoid, sulfoximine 12 and spinosyn insecticides in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2021, 131, 103547.

Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-lg
syndrome. Journal of Allergy and Clinical Immunology, 2021, 148, 585-598. syndrome. Journal of Allergy and Clinical Immunology, 2021, 148, 585-598.

Design of proteasome inhibitors with oral efficacy in vivo against <i>Plasmodium falciparum</i> and
14 selectivity over the human proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .

Development of [18F]MIPS15692, a radiotracer with inÂvitro proof-of-concept for the imaging of MER
tyrosine kinase (MERTK) in neuroinflammatory disease. European Journal of Medicinal Chemistry, 2021,
Development of [18F]MIPS15692, a radiotracer with inÂvitro proof-of-concept for the imaging of MER
tyrosine kinase (MERTK) in neuroinflammatory disease. European Journal of Medicinal Chemistry, 2021, 226, 113822.

17 X-ray crystallography shines a light on pore-forming toxins. Methods in Enzymology, 2021, 649, 1-46.
5.8

62

Drug repurposing: Misconceptions, challenges, and opportunities for academic researchers. Science

Translational Medicine, 2021, 13, eabd5524.
eabj5715.
19 Messing with $\hat{1}^{2}$ c: A unique receptor with many goals. Seminars in Immunology, 2021, 54, 101513.

20 A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins. MBio, 2020, 11,.
1.8

15
Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK ̂̂¹ isoforms.
Nature Metabolism, 2020, 2, 873-881.

22 CaMKK2 is inactivated by cAMP-PKA signaling and 14-3-3 adaptor proteins. Journal of Biological 1.6 Chemistry, 2020, 295, 16239-16250.

24

23 A structural view of PA2G4 isoforms with opposing functions in cancer. Journal of Biological
1.6

Chemistry, 2020, 295, 16100-16112.

The structure of the extracellular domains of human interleukin $11 \hat{l} \pm$ receptor reveals mechanisms of cytokine engagement. Journal of Biological Chemistry, 2020, 295, 8285-8301.
1.6

33

25 Sequence comparisons of cytochrome P450 aromatases from Australian animals predict differences in
enzymatic activity and/or efficiencyâ€. Biology of Reproduction, 2020, 102, 1261-1269.
1.2

Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. PLoS ONE,
2020, 15, e0229000.

Discovery of Acylsulfonohydrazide-Derived Inhibitors of the Lysine Acetyltransferase, KAT6A, as
Potent Senescence-Inducing Anti-Cancer Agents. Journal of Medicinal Chemistry, 2020, 63, 4655-4684.

The Crystal Structure of the Manganese Superoxide Dismutase from Geobacillus stearothermophilus:
Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in
Monoubiquitination by the human
filamentous arrays. ELife, 2020, 9, .
2.8

52

Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. , 2020, 15, e0229000.

Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. , 2020, 15, e0229000.

Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. , 2020, 15,

Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. , 2020, 15,

Bridging Crystal Engineering and Drug Discovery by Utilizing Intermolecular Interactions and
Molecular Shapes in Crystals. Angewandte Chemie, 2019, 131, 16936-16940.

Small Molecule Binding to Alzheimer Risk Factor CD33 Promotes Â̂² Phagocytosis. IScience, 2019, 19,
110-118.
37

> Bridging Crystal Engineering and Drug Discovery by Utilizing Intermolecular Interactions and
> Molecular Shapes in Crystals. Angewandte Chemie - International Edition, 2019, 58, 16780-16784.
7.2

26

Discovery of Benzoylsulfonohydrazides as Potent Inhibitors of the Histone Acetyltransferase KAT6A.
38 Journal of Medicinal Chemistry, 2019, 62, 7146-7159.
2.9

21

> An Intermolecular Ï€-Stacking Interaction Drives Conformational Changes Necessary to ̂̂2-Barrel Formation in a Pore-Forming Toxin. MBio, 2019, 10,.

Structure and Function of the Proteasome Activator PA28 of the Malaria Parasite Plasmodium
$40 \quad$ Structure and Function of the Proteasome Activator PA28 of the
0.2

A Family of Dual-Activity Clycosyltransferase-Phosphorylases Mediates Mannogen Turnover and
Virulence in Leishmania Parasites. Cell Host and Microbe, 2019, 26, 385-399.e9.
$5.1 \quad 33$
A Family of Dual-Activity Clycosyltransferase-Phosphorylases Mediates Mannogen
Virulence in Leishmania Parasites. Cell Host and Microbe, 2019, 26, 385-399.e9.

Cholesterol-Dependent Cytolysins: Membrane and Protein Structural Requirements for Pore
Formation. Chemical Reviews, 2019, 119, 7721-7736.
$23.0 \quad 35$

A structure-based mechanism of cisplatin resistance mediated by glutathione transferase P1-1.
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13943-13951.
3.3

76
43

44 The Structural Basis for a Transition State That Regulates Pore Formation in a Bacterial Toxin. MBio, 2019, 10, .
1.8

10

$$
\begin{aligned}
& \text { Repurposing the selective estrogen receptor modulator <i> bazedoxifene</i> to suppress } \\
& \text { gastrointestinal cancer growth. EMBO Molecular Medicine, 2019, 11,. }
\end{aligned}
$$

Drugging MYCN Oncogenic Signaling through the MYCN-PA2G4 Binding Interface. Cancer Research,
46 2019, 79, 5652-5667.
0.4

24

> The genetics, structure and function of the M1 aminopeptidase oxytocinase subfamily and their
> therapeutic potential in immune-mediated disease. Human Immunology, 2019, 80, 281-289.

Reaction mechanism of the bioluminescent protein mnemiopsin1 revealed by X-ray crystallography and QM/MM simulations. Journal of Biological Chemistry, 2019, 294, 20-27.
1.6

9

Fluorescence Microscopy Assay to Measure HIV-1 Capsid Uncoating Kinetics in vitro. Bio-protocol,
0.2

10
$49 \quad 2019,9$, e3297.

The structure of the <i>Plasmodium falciparum</i>20S proteasome in complex with the PA28 activator. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, al18-a118.

0
$1.2 \quad 22$

51 Abstract 4962: Repurposing<i>bazedoxifene</i>to suppress gastrointestinal cancer growth. , 2019, , .
0

Structural Determinants for Small-Molecule Activation of Skeletal Muscle AMPK $\hat{I} \pm 2 \hat{\imath}^{2} 2 \hat{1} 31$ by the Glucose
Importagog SC4. Cell Chemical Biology, 2018, 25, 728-737.e9.
2.5

40

53 A dual role for the N-terminal domain of the IL-3 receptor in cell signalling. Nature Communications,
$2018,9,386$.
5.8

28

Targeting of Câ€type lectinâ€like receptorÂ2 or P2Y12 for the prevention of platelet activation by
immunotherapeutic CpG oligodeoxynucleotides: comment. Journal of Thrombosis and Haemostasis 2018, 16, 181-185.
$56 \quad$ AMP and adenosine are both ligands for adenosine $2 B$ receptor signaling. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 202-206.

Accumulation of JAK activation loop phosphorylation is linked to type I JAK inhibitor withdrawal syndrome in myelofibrosis. Science Advances, 2018,4 , eaat3834.

Protein structure and computational drug discovery. Biochemical Society Transactions, 2018, 46, 1367-1379.

Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure, 2018, 26,
948-959.e5.

The mechanism of GM-CSF inhibition by human GM-CSF auto-antibodies suggests novel therapeutic opportunities. MAbs, 2018, 10, 1-12.

Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth.
Nature, 2018, 560, 253-257.
13.7

182

62 Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. ELife, 2018, 7, .
2.8

EPO does not promote interaction between the erythropoietin and beta-common receptors. Scientific
Reports, 2018, 8, 12457.

Cholesterol-dependent cytolysins: from water-soluble state to membrane pore. Biophysical Reviews, 2018, 10, 1337-1348.

Cyclic Hexapeptide Mimics of the LEDGF Integrase Recognition Loop in Complex with HIVâ€ I Integrase.
ChemMedChem, 2018, 13, 1555-1565.

Accumulation of JAK Activation-Loop Phosphorylation Promotes Type I JAK Inhibitor Withdrawal Syndrome in Myelofibrosis. Blood, 2018, 132, 1787-1787.
0.6

Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites.
Nature Communications, 2017, 8, 14188.

Glutathione transferase Plâ€ \mathfrak{l} as an arsenic drugâ€sequestering enzyme. Protein Science, 2017, 26, 317-326.
3.1

20

Ex vivo $180-l a b e l i n g ~ m a s s ~ s p e c t r o m e t r y ~ i d e n t i f i e s ~ a ~ p e r i p h e r a l ~ a m y l o i d ~ \hat{\imath} 2$ clearance pathway. Molecular
Neurodegeneration, 2017, 12, 18.

Nitric Oxide Interacting with Glutathione Transferases. , 2017, , 191-195.

Control of Virulence Gene Expression by the Master Regulator, CfaD, in the Prototypical
Enterotoxigenic Escherichia coli Strain, H10407. Frontiers in Microbiology, 2017, 8, 1525.

Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. Nucleic Acids Research, 2017, 45, 1130-1143.

```
73 QM/MM simulations provide insight into the mechanism of bioluminescence triggering in ctenophore
photoproteins. PLoS ONE, 2017, 12, e0182317.

A Homodimer Model Can Resolve the Conundrum as to How Cytochrome P450 Oxidoreductase and
74 Cytochrome b5 Compete for the Same Binding Site on Cytochrome P450c17. Current Protein and
75 The GM-CSF receptor â€" mechanisms for affinity conversion and signalling. Acta Crystallographica
Section A: Foundations and Advances, 2017, 73, C1279-C1279.

76 Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity
1.6

Conversion and Receptor Signaling. Structure, 2016, 24, 1271-1281.
46

The C-terminal extension of human telomerase reverse transcriptase is necessary for high affinity
binding to telomeric DNA. Biochimie, 2016, 128-129, 114-121.

Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent
Cytolysins. Structure, 2016, 24, 1488-1498.
1.6

Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target.
Structure, 2016, 24, 1282-1291.
1.6

34

80 Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2
binding. Nature Communications, 2016, 7, 10912.
5.8

69
81 Mechanism of JAK2 Activation by the Archetype Class I Cytokine Receptor, the Growth Hormone
Receptor. Biophysical Journal, 2016, 110, 31 a.
0.2

0

82 The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements. Journal of Biological Chemistry, 2016, 291, 9411-9424.
1.6
83 CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the
83 common \(\hat{\imath}^{2}\) chain of the IL-3, GM-CSF and IL-5 receptors. MAbs, 2016, 8, 436-453.

Propargyloxyproline Regio- and Stereoisomers for Click-Conjugation of Peptides: Synthesis and Application in Linear and Cyclic Peptides. Australian Journal of Chemistry, 2015, 68, 1365.
0.5

11

Structure of the lysine specific protease <scp>K</scp> gp from <scp> <i>P</i><|scp><i>orphyromonas
85 gingivalis</i>, a target for improved oral health. Protein Science, 2015, 24, 162-166.

86 Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation. Scientific Reports, 2015, 5, 14352.
1.6

62

Two-step mechanism involving active-site conformational changes regulates human telomerase DNA
binding. Biochemical Journal, 2015, 465, 347-357.
1.7

18

Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators.
Journal of Experimental Medicine, 2015, 212, 129-137.

\section*{An intermolecular electrostatic interaction controls the prepore-to-pore transition in a}

89 cholesterol-dependent cytolysin. Proceedings of the National Academy of Sciences of the United
3.3

44
States of America, 2015, 112, 2204-2209.

Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated
\begin{tabular}{|c|c|c|c|}
\hline 91 & Molecular basis for mid-region amyloid-1̂2 capture by leading Alzheimer's disease immunotherapies. Scientific Reports, 2015, 5, 9649. & 1.6 & 73 \\
\hline 92 & A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nature Communications, 2015, 6, 6442. & 5.8 & 112 \\
\hline 93 & The \(\hat{1}^{2}\) c receptor family â€" Structural insights and their functional implications. Cytokine, 2015, 74, 247-258. & 1.4 & 65 \\
\hline 94 & Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta Neuropathologica, 2015, 130, 713-729. & 3.9 & 53 \\
\hline 95 & Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9. Bioorganic and Medicinal Chemistry, 2015, 23, 6280-6296. & 1.4 & 34 \\
\hline 96 & Evolutionary comparisons predict that dimerization of human cytochrome P450 aromatase increases its enzymatic activity and efficiency. Journal of Steroid Biochemistry and Molecular Biology, 2015, 154, 294-301. & 1.2 & 9 \\
\hline 97 & Crystal structure of human insulinâ€regulated aminopeptidase with specificity for cyclic peptides. Protein Science, 2015, 24, 190-199. & 3.1 & 51 \\
\hline
\end{tabular}

98 Abstract 5371: PRMT5 inhibitors as novel treatment for cancers. Cancer Research, 2015, 75, 5371-5371.
\(0.4 \quad 4\)
\[
99 \text { Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome }
\]
\(99 \quad\) P450c17 (CYP17A1, P450 17A1). PLoS ONE, 2015, 10, e0141252.

100 Activity-Modulating Monoclonal Antibodies to the Human Serine Protease HtrA3 Provide Novel
Insights into Regulating HtrA Proteolytic Activities. PLoS ONE, 2014, 9, e108235.
1.1

13

101 Computational Analysis of Amiloride Analogue Inhibitors of Coxsackie Virus B3 RNA Polymerase.
Journal of Proteomics and Bioinformatics, 2014, s9, 004.
Crystallization and preliminary X-ray diffraction analysis of the Fab portion of the Alzheimer's disease
102 immunotherapy candidate bapineuzumab complexed with amyloid- \(\hat{I}^{2}\). Acta Crystallographica Section F,
0.4

Structural Biology Communications, 2014, 70, 374-377.
103 Unexpected mechanisms of action for a cytokine receptor-blocking antibody. Molecular and Cellular
\(0.3 \quad 1\)
Oncology, 2014, 1, e969129.

Discovery of Phosphodiesterase-4 Inhibitors: Serendipity and Rational Drug Design. Australian Journal of Chemistry, 2014, 67, 1780.
0.5

2

Anti-A \(\hat{l}^{2}\) antibody target engagement: a response to Siemers et al.. Acta Neuropathologica, 2014, 128,
105 611-614.
3.9

Crystallization and preliminary X-ray diffraction analysis of the interleukin-3 alpha receptor bound to
106 the Fab fragment of antibody CSL362. Acta Crystallographica Section F, Structural Biology
\(0.4 \quad 8\) Communications, 2014, 70, 358-361.

107 Synthesis, Structureâ€"Activity Relationships and Brain Uptake of a Novel Series of Benzopyran
Inhibitors of Insulin-Regulated Aminopeptidase. Journal of Medicinal Chemistry, 2014, 57, 1368-1377.
2.9

46
\begin{tabular}{|c|c|c|c|}
\hline 113 & Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody. Cell Reports, 2014, 8, 410-419. & 2.9 & 46 \\
\hline 114 & Do current therapeutic anti-A \(\hat{1}^{2}\) antibodies for Alzheimerâ \(€^{\text {TM }}\) s disease engage the target?. Acta Neuropathologica, 2014, 127, 803-810. & 3.9 & 52 \\
\hline 115 & The role of Rdl in resistance to phenylpyrazoles in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2014, 54, 11-21. & 1.2 & 30 \\
\hline 116 & Structural Studies of Streptococcus pyogenes Streptolysin O Provide Insights into the Early Steps of Membrane Penetration. Journal of Molecular Biology, 2014, 426, 785-792. & 2.0 & 61 \\
\hline 117 & Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Scientific Reports, 2014, 4, 4765. & 1.6 & 101 \\
\hline 118 & LymphotoxinÂ̂lı induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS Journal, 2013, 280, 5283-5297. & 2.2 & 57 \\
\hline 119 & The Impact of Nitric Oxide Toxicity on the Evolution of the Clutathione Transferase Superfamily. Journal of Biological Chemistry, 2013, 288, 24936-24947. & 1.6 & 31 \\
\hline
\end{tabular}

120 Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1
0.6

53
transcription. Blood, 2013, 122, 738-748.
.
121 Synthetic dityrosine-linked \({ }^{1} 2\)-amyloid dimers form stable, soluble, neurotoxic oligomers. Chemical
3.7

44
Science, 2013, 4, 4449.

Molecular determinants of common gating of a ClC chloride channel. Nature Communications, 2013,
5.8

34
4, 2507.
.


Parallel Screening of Low Molecular Weight Fragment Libraries: Do Differences in Methodology
Affect Hit Identification?. Journal of Biomolecular Screening, 2013, 18, 147-159.
2.6

61

Signalling by the \(\hat{2}^{2}\) c family of cytokines. Cytokine and Growth Factor Reviews, 2013, 24, 189-201.

Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the
ubiquitin-conjugating enzyme Cdc34. Cell Cycle, 2013, 12, 1732-1744.
127
\[
\begin{aligned}
& \text { Disarming Bacterial Virulence through Chemical Inhibition of the DNA Binding Domain of an AraC-like } \\
& \text { Transcriptional Activator Protein. Journal of Biological Chemistry, 2013, 288, 31115-31126. }
\end{aligned}
\]
1.6

23

Phosphorylation of Serine 779 in Fibroblast Growth Factor Receptor 1 and 2 by Protein Kinase Cï \(\mu\)
128 Regulates Ras/Mitogen-activated Protein Kinase Signaling and Neuronal Differentiation. Journal of
1.6

13
Biological Chemistry, 2013, 288, 14874-14885.
\(129 \begin{aligned} & \text { Characterization of pathogenic human monoclonal autoantibodies against CM-CSF. Proceedings of } \\ & \text { the National Academy of Sciences of the United States of America, 2013, 110, 7832-7837. } \\ & 130 \quad \text { Small Molecule Proprotein Convertase Inhibitors for Inhibition of Embryo Implantation. PLoS ONE, } \\ & \text { 2013, 8, e81380. }\end{aligned}\)
\(3.3 \quad 39\)
1.1

3
From Knock-Out Phenotype to Three-Dimensional Structure of a Promising Antibiotic Target from
131 Streptococcus pneumoniae. PLoS ONE, 2013, 8, e83419.
\(1.1 \quad 22\)

132 Abstract A19: The selective targeting of cell survival pathways in leukemia. , 2013, , .
o
Manipulating the Lewis antigen specificity of the cholesterol-dependent cytolysin lectinolysin.
Frontiers in Immunology, 2012, 3, 330.

Intracellular \(\hat{I}^{2}\)-Nicotinamide Adenine Dinucleotide Inhibits the Skeletal Muscle CIC-1 Chloride Channel.

Journal of Biological Chemistry, 2012, 287, 25808-25820.
1.6

22
135 The GM-CSF receptor family: Mechanism of activation and implications for disease. Growth Factors,
\(2012,30,63-75\).

Monomer-Monomer Interactions Propagate Structural Transitions Necessary for Pore Formation by the Cholesterol-dependent Cytolysins. Journal of Biological Chemistry, 2012, 287, 24534-24543.
1.6

50
```

145 Selective Inhibitors of Arginine Methyl Transferase 5 (PRMT5) As a Novel Treatment for î2-Thalassemia
and Sickle Cell Disease.. Blood, 2012, 120, 2129-2129.

```
149 \begin{tabular}{l} 
Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new \\
class of cognitive enhancers. British Journal of Pharmacology, 2011, 164,37-47.
\end{tabular}Thiophene inhibitors of PDE4: Crystal structures show a second binding mode at
151 of PDE4D2. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7089-7093.\(1.0 \quad 18\)
Preparation, crystallization and preliminary X-ray diffraction analysis of two intestinal fatty-acid 152 binding proteins in the presence of 11 -(dansylamino) undecanoic acid. Acta Crystallographica Section F: ..... 0.7 Structural Biology Communications, 2011, 67, 291-295.
Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of
153 the SH2 domain of the Csk-homologous kinase. Acta Crystallographica Section F: Structural Biology ..... 0.7 ..... 17 Communications, 2011, 67, 336-339.
Crystal structure of the <i>Leishmania major</i>MIX protein: A scaffold protein that mediatesproteinâ \(€\) "protein interactions. Protein Science, 2011, 20, 1060-1068.
\(3.1 \quad 4\)
155. Diuretic drug binding to human glutathione transferase Plâ€i: potential role of Cysâ€ 01 revealed in the double mutant C47S/Y108V. Journal of Molecular Recognition, 2011, 24, 220-234.1.113
Fragmentâ \(€\) Based Design of Ligands Targeting a Novel Site on the Integrase Enzyme of Human ..... 1.6 ..... 24
Immunodeficiency Virusâ€...1. ChemMedChem, 2011, 6, 258-261.Studies of Clutathione Transferase Plâ€ł Bound to a Platinum(IV)â€Based Anticancer Compound Reveal the157 Molecular Basis of Its Activation. Chemistry - A European Journal, 2011, 17, 7806-7816.
1.7 ..... 73
Amiloride Is a Competitive Inhibitor of Coxsackievirus B3 RNA Polymerase. Journal of Virology, 2011, 85,1.519
10364-10374.
\begin{tabular}{|c|c|c|c|}
\hline 165 & Crystallization of dihydrodipicolinate synthase from a clinical isolate ofStreptococcus pneumoniae. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 32-36. & 0.7 & 12 \\
\hline 166 & Cloning, expression and crystallization of dihydrodipicolinate reductase from methicillin-resistantStaphylococcus aureus. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 57-60. & 0.7 & 11 \\
\hline 167 & Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the psychrophile<i>Shewanella benthica</i>. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1511-1516. & 0.7 & 10 \\
\hline 168 & Substrate-mediated Stabilization of a Tetrameric Drug Target Reveals Achilles Heel in Anthrax. Journal of Biological Chemistry, 2010, 285, 5188-5195. & 1.6 & 44 \\
\hline 169 & Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Clutathione S-Transferase D1. Journal of Molecular Biology, 2010, 399, 358-366. & 2.0 & 62 \\
\hline 170 & Phenylalanine-544 Plays a Key Role in Substrate and Inhibitor Binding by Providing a Hydrophobic Packing Point at the Active Site of Insulin-Regulated Aminopeptidase. Molecular Pharmacology, 2010, 78, 600-607. & 1.0 & 21 \\
\hline 171 & Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor. Journal of Biological Chemistry, 2009, 284, 15557-15563. & 1.6 & 12 \\
\hline 172 & Zanamivir-Resistant Influenza Viruses with a Novel Neuraminidase Mutation. Journal of Virology, 2009, 83, 10366-10373. & 1.5 & 224 \\
\hline 173 & Rational Design of an Organometallic Clutathione Transferase Inhibitor. Angewandte Chemie International Edition, 2009, 48, 3854-3857. & 7.2 & 169 \\
\hline 174 & Influence of the Hâ€site residue 108 on human glutathione transferase Plâ€l ligand binding: Structureâ€thermodynamic relationships and thermal stability. Protein Science, 2009, 18, 2454-2470. & 3.1 & 15 \\
\hline 175 & Crystallization and preliminary X-ray analysis of dihydrodipicolinate synthase from<i>Clostridium botulinum</i> in the presence of its substrate pyruvate. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 253-255. & 0.7 & 14 \\
\hline
\end{tabular}

Expression, purification, crystallization and preliminary X-ray diffraction analysis of
176 dihydrodipicolinate synthase fromBacillus anthracisin the presence of pyruvate. Acta
\(0.7 \quad 17\)
Crystallographica Section F: Structural Biology Communications, 2009, 65, 188-191.
\[
\begin{aligned}
& \text { Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex } \\
& \text { with a neutralizing monoclonal antibody Fab fragment. Acta Crystallographica Section F: Structural } \\
& \text { Biology Communications, 2009, 65, 336-338. } \\
& 178 \quad \begin{array}{l}
\text { Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria. Acta } \\
\text { Crystallographica Section F: Structural Biology Communications, 2009, 65, 475-477. }
\end{array}
\end{aligned}
\]
\(0.7 \quad 4\)
181 Solid-phase synthesis of homodimeric peptides: preparation of covalently-linked dimers of amyloid \(\hat{\imath} 2\) ..... 2.2 peptide. Chemical Communications, 2009, , 6228.Structural Biology Communications, 2008, 64, 438-441.
187 Purification, crystalization and preliminary X-ray diffraction studies to near-atomic res ..... 0.7 ..... 20
Crystallographica Section F: Structural Biology Communications, 2008, 64, 659-661. ..... -
Crystallization and preliminary X-ray diffraction analysis of the ternary human GM-CSF receptorcomplex. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 711-714.
189 Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase. BMC0.856
190 Amyloid- -2 âé"Anti-Amyloid- \(\hat{I}^{2}\) Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope. Journal of Molecular Biology, 2008, 377, 181-192. ..... 2.0 ..... 49
The Anti-cancer Drug Chlorambucil as a Substrate for the Human Polymorphic Enzyme Glutathione of Molecular Biology, 2008, 380, 131-144. ..... 49The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor13.5
201 Structural Studies of the Alzheimerâ \(€^{T M}\) S Amyloid Precursor Protein Copper-binding Domain Reveal How
\(2.0 \quad 93\)
it Binds Copper lons. Journal of Molecular Biology, 2007, 367, 148-161.
201 Structural Studies of the Alzheimerâ \(€^{\mathrm{TM}_{s}}\) Amyloid Precursor Protein Cop
2.0

93

Structures of Perfringolysin O Suggest a Pathway for Activation of Cholesterol-dependent
202 Cytolysins. Journal of Molecular Biology, 2007, 367, 1227-1236.
2.0

87

203 Structure of the Janus Protein Human CLIC2. Journal of Molecular Biology, 2007, 374, 719-731.
2.0

64

204 Structure of Alzheimer's disease amyloid precursor protein copper-binding domain at atomic resolution. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 819-824.
\(0.7 \quad 28\)

Expression, purification, crystallization and preliminary X-ray diffraction analysis of chloride
205 intracellular channel 2 (CLIC2). Acta Crystallographica Section F: Structural Biology
\(0.7 \quad 8\) Communications, 2007, 63, 961-963.

206 Tropisetron modulation of the glycine receptor: femtomolar potentiation and a molecular determinant of inhibition. Journal of Neurochemistry, 2007, 100, 758-769.
1.2

161
2.1
59

208 Molecular Dissection of the Interaction between Amyloid Precursor Protein and Its Neuronal
 Trafficking Receptor SorLA/LR11. Biochemistry, 2006, 45, 2618-2628.
207 A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore.
207 A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. Journal of Neurochemistry, 2007, 103, 580-589. Journal of Neurochemistry, 2007, 103, 580-589.
209 Solution Conformation and Heparin-induced Dimerization of the Full-length Extracellular Domain of
209 Solution Conformation and Heparin-induced Dimerization of the Full-length Extracellular Domain of 209 the Human Amyloid Precursor Protein. Journal of Molecular Biology, 2006, 357, 493-508. 209 the Human Amyloid Precursor Protein. Journal of Molecular Biology, 2006, 357, 493-508.
63
210 Molecular determinants of ginkgolide binding in the glycine receptor pore. Journal of2.137210 Neurochemistry, 2006, 98, 395-407.2.1
determinant of inhibition. Journal of Neurochemistry, 2007, 100, 758-769.
-
\(3.5 \quad 95\)
\(\begin{array}{ll} & \text { A rivet mo } \\ 457-466\end{array}\)3.595Calorimetric and structural studies of the nitric oxide carrier S-nitrosoglutathione bound to human
213 Elucidation of the Substrate Binding Site of Siah Ubiquitin Ligase. Structure, 2006, 14, 695-701. 1.6 ..... 69
217 PREDICTION. , 2006, ,.Protein topology classification using two-stage support vector machines. Genome Informatics, 2006,
\(0.4 \quad 5\)
\(0.4 \quad 5\)

\section*{17, 259-69. \\ 218} Model for growth hormone receptor activation based on subunit rotation within a receptor dimer.
219 Nature Structural and Molecular Biology, 2005, 12, 814-821.
3.6

345

Structural Basis for Glycogen Recognition by AMP-Activated Protein Kinase. Structure, 2005, 13, 1453-1462.
1.6

175
\[
\begin{aligned}
& \text { Pore-forming protein toxins: from structure to function. Progress in Biophysics and Molecular } \\
& \text { Biology, 2005, 88, 91-142. }
\end{aligned}
\]
1.4

Crystallization of the glycogen-binding domain of the AMP-activated protein kinase \(\hat{l}^{2}\) subunit and
222 preliminary X-ray analysis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 39-42.
Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid
223 precursor protein of Alzheimer's disease. Acta Crystallographica Section F: Structural Biology ..... 0.7 Communications, 2005, 61, 93-95.\(0.7 \quad 12\)
224 Nitrosylation of Human Glutathione Transferase P1-1 with Dinitrosyl Diglutathionyl Iron Complex inVitro and in Vivo. Journal of Biological Chemistry, 2005, 280, 42172-42180.1.6109
Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of
225 intermedilysin. Proceedings of the National Academy of Sciences of the United States of America, 2005, ..... 3.3 ..... 135 102, 600-605.
226 Cytoplasmic ATP-sensing Domains Regulate Gating of Skeletal Muscle ClC-1 Chloride Channels. Journal of Biological Chemistry, 2005, 280, 32452-32458.28610-28622.
228 Human Factor H-Related Protein 5 Has Cofactor Activity, Inhibits C3 Convertase Activity, Binds Heparin0.4135
and C-Reactive Protein, and Associates with Lipoprotein. Journal of Immunology, 2005, 174, 6250-6256.
229 Homology Model of the GABAA Receptor Examined Using Brownian Dynamics. Biophysical Journal, 0.2 ..... 58
2005, 88, 3286-3299.
1.6 ..... 87The Identification and Structure of the Membrane-spanning Domain of the Clostridium septicum AlphaToxin. Journal of Biological Chemistry, 2004, 279, 14315-14322.
1.6 ..... 16Binding and Kinetic Mechanisms of the Zeta Class Clutathione Transferase. Journal of Biological
231 Chemistry, 2004, 279, 33336-33342.
\begin{tabular}{|c|c|c|c|}
\hline 239 & Naturally occurring Phe151Leu substitution near a conserved folding module lowers stability of glutathione transferase Plâ€"1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1649, 16-23. & 1.1 & 13 \\
\hline 240 & Structure of the Alzheimer's Disease Amyloid Precursor Protein Copper Binding Domain. Journal of Biological Chemistry, 2003, 278, 17401-17407. & 1.6 & 248 \\
\hline 241 & Insights into the Structural Basis for Zinc Inhibition of the Glycine Receptor. Journal of Biological Chemistry, 2003, 278, 28985-28992. & 1.6 & 49 \\
\hline 242 & Engineering a New C-terminal Tail in the H-site of Human Glutathione Transferase P1-1: Structural and Functional Consequences. Journal of Molecular Biology, 2003, 325, 111-122. & 2.0 & 19 \\
\hline 243 & Cryptic clues as to how water-soluble protein toxins form pores in membranes. Toxicon, 2003, 42, 1-6. & 0.8 & 23 \\
\hline 244 & Contribution of Glycine 146 to a Conserved Folding Module Affecting Stability and Refolding of Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 2003, 278, 1291-1302. & 1.6 & 21 \\
\hline 245 & Thermodynamic Description of the Effect of the Mutation Y49F on Human Glutathione Transferase P1-1 in Binding with Clutathione and the Inhibitor S-Hexylglutathione. Journal of Biological Chemistry, 2003, 278, 46938-46948. & 1.6 & 20 \\
\hline 246 & Crystal Structure of a Putative Methyltransferase from Mycobacterium tuberculosis : Misannotation of a Genome Clarified by Protein Structural Analysis. Journal of Bacteriology, 2003, 185, 4057-4065. & 1.0 & 29 \\
\hline 247 & Clarification of the role of key active site residues of glutathione transferase Zeta/maleylacetoacetate isomerase by a new spectrophotometric technique. Biochemical Journal, 2003, 374, 731-737. & 1.7 & 41 \\
\hline 248 & Glutathione transferase P1-1: self-preservation of an anti-cancer enzyme. Biochemical Journal, 2003, 376, 71-76. & 1.7 & 35 \\
\hline 249 & Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [ \(\mathrm{A} 2(\mathrm{R} 43 \mathrm{Q})\) ] found in human epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15170-15175. & 3.3 & 104 \\
\hline
\end{tabular}

254 Biochemistry, 2002, 41, 4686-4693.
1.7

83
255 Contrasting, Species-Dependent Modulation of Copper-Mediated Neurotoxicity by the Alzheimer's Disease Amyloid Precursor Protein. Journal of Neuroscience, 2002, 22, 365-376.
1.7

Anxiety over GABAA receptor structure relieved by AChBP. Trends in Biochemical Sciences, 2002, 27,
280-287.
3.7

169

257 From glutathione transferase to pore in a CLIC. European Biophysics Journal, 2002, 31, 356-364.
1.2

85

258 Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-Î \(\pm\) signaling. Nature Structural
Biology, 2002, 9, 68-75.
9.7

129
259 Conversion of a transmembrane to a water-soluble protein complex by a single point mutation. Nature Structural Biology, 2002, 9, 729-733.
\(9.7 \quad 59\)

\section*{260 Human Clutathione Transferase P1-1 and Nitric Oxide Carriers. Journal of Biological Chemistry, 2001, 276, 42138-42145.}
1.6

90

Arresting Pore Formation of a Cholesterol-dependent Cytolysin by Disulfide Trapping Synchronizes
the Insertion of the Transmembrane \(\hat{}^{2}\)-Sheet from a Prepore Intermediate. Journal of Biological Chemistry, \(2001,276,8261-8268\). \({ }^{2-S h e e t ~ f r o m ~ a ~ P r e p o r e ~ I n t e r m e d i a t e . ~ J o u r n a l ~ o f ~ B i o l o g i c a l ~}\)Chemistry, 2001, 276, 8261-8268.

Crystal Structure of Maleylacetoacetate Isomerase/Glutathione Transferase Zeta Reveals the
Molecular Basis for Its Remarkable Catalytic Promiscuityâ \(€, a \not €_{i}\). Biochemistry, 2001, 40, 1567-1576.
1.2

119
\[
263 \text { GSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase. }
\]

263 Pharmacogenetics and Genomics, 2001, 11, 671-678.
\(5.7 \quad 49\)

264 Dichloromethane mediatedin vivoselection and functional characterization of rat glutathioneS-transferase theta 1-1 variants. FEBS Journal, 2001, 268, 4001-4010.
\(0.2 \quad 4\)

Human Glutathione Transferase T2-2 Discloses Some Evolutionary Strategies for Optimization of
265 Substrate Binding to the Active Site of Clutathione Transferases. Journal of Biological Chemistry, 2001, 276, 5427-5431.

266 Human Clutathione Transferase T2-2 Discloses Some Evolutionary Strategies for Optimization of the Catalytic Activity of Glutathione Transferases. Journal of Biological Chemistry, 2001, 276, 5432-5437.
1.6

11

> Kinetic properties of missense mutations in patients with glutathione synthetase deficiency.
> Biochemical Journal, 2000, 349, 275 .
1.7

Evaluation of the role of two conserved active-site residues in Beta class glutathione S-transferases.
\begin{tabular}{|c|c|c|c|}
\hline 273 & Cleaved antitrypsin polymers at atomic resolution. Protein Science, 2000, 9, 417-420. & 3.1 & 73 \\
\hline 274 & Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nature Structural Biology, 1999, 6, 327-331. & 9.7 & 229 \\
\hline 275 & Functional analysis of the evolutionarily conserved proline 53 residue inProteus mirabilisglutathione transferase B1-1. FEBS Letters, 1999, 445, 347-350. & 1.3 & 39 \\
\hline 276 & Two Structural Transitions in Membrane Pore Formation by Pneumolysin, the Pore-Forming Toxin of Streptococcus pneumoniae. Cell, 1999, 97, 647-655. & 13.5 & 174 \\
\hline 277 & The Mechanism of Membrane Insertion for a Cholesterol-Dependent Cytolysin. Cell, 1999, 99, 293-299. & 13.5 & 347 \\
\hline
\end{tabular}
\begin{tabular}{lll}
278 & \begin{tabular}{l} 
The ligandin (non-substrate) binding site of human pi class glutathione transferase is located in the \\
electrophile binding site (H-site). Journal of Molecular Biology, 1999, 291, 913-926.
\end{tabular} & 2.0 \\
\hline \begin{tabular}{l} 
Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation \\
and small-angle neutron scattering 1 1Edited by M. F. Moody. Journal of Molecular Biology, 1999, 293, \\
\(1145-1160 . ~\)
\end{tabular} & 2.0 & 41
\end{tabular}

280 Proton release on binding of glutathione to Alpha, Mu and Delta class glutathione transferases. Biochemical Journal, 1999, 344, 419-425.
\(1.7 \quad 54\)
Proton release on binding of glutathione to Alpha, Mu and Delta class glutathione transferases.
Biochemical Journal, 1999, 344, 419.

282 Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure, 1998, 6, 309-322.
1.6

147
A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications.
Structure, 1998, 6, 721-734.
\(1.6 \quad 163\)

284 Crystal structure of a colicin N fragment suggests a model for toxicity. Structure, 1998, 6, 863-874.
1.6

134

285 Preliminary X-ray crystallographic studies of a newly defined human theta-class glutathione

Site-directed mutagenesis of theProteus mirabilisglutathione transferase B1-1 G-site. FEBS Letters, 1998,
423, 122-124.
1.3

37
287 Evidence for an Induced-Fit Mechanism Operating in Pi Class Glutathione Transferases,. Biochemistry, 1998, 37, 9912-9917.
1.2 56
\begin{tabular}{|c|c|c|c|}
\hline 289 & Movement of a Loop in Domain 3 of Aerolysin Is Required for Channel Formationâ€. Biochemistry, 1998, 37, 741-746. & 1.2 & 37 \\
\hline 290 & Shifting Substrate Specificity of Human Clutathione Transferase (from Class Pi to Class Alpha) by a Single Point Mutation. Biochemical and Biophysical Research Communications, 1998, 252, 184-189. & 1.0 & 22 \\
\hline 291 & The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae 1 1Edited by J. Thornton. Journal of Molecular Biology, 1998, 284, 449-461. & 2.0 & 100 \\
\hline 292 & Self-interaction of pneumolysin, the pore-forming protein toxin of Streptococcus pneumoniae. Journal of Molecular Biology, 1998, 284, 1223-1237. & 2.0 & 68 \\
\hline 293 & Mutations of gly to ala in human glutathione transferase P1-1 affect helix 2 ( C -site) and induce positive cooperativity in the binding of glutathione 1 1Edited by R. Huber. Journal of Molecular Biology, 1998, 284, 1717-1725. & 2.0 & 29 \\
\hline 294 & Aerolysinâ€"A Paradigm for Membrane Insertion of Beta-Sheet Protein Toxins?. Journal of Structural Biology, 1998, 121, 92-100. & 1.3 & 57 \\
\hline 295 & Identification of a Membrane-Spanning Domain of the Thiol-Activated Pore-Forming ToxinClostridium perfringensPerfringolysin O:ÂAn \(\hat{ \pm}\)-Helical to \(\hat{I}^{2}\)-Sheet Transition Identified by Fluorescence Spectroscopyâ€. Biochemistry, 1998, 37, 14563-14574. & 1.2 & 309 \\
\hline 296 & Catalytic Mechanism and Role of Hydroxyl Residues in the Active Site of Theta Class Clutathione S-Transferases. Journal of Biological Chemistry, 1997, 272, 29681-29686. & 1.6 & 68 \\
\hline 297 & The Three-Dimensional Structure of the Human Pi Class Clutathione Transferase P1-1 in Complex with the Inhibitor Ethacrynic Acid and Its Clutathione Conjugate,. Biochemistry, 1997, 36, 576-585. & 1.2 & 125 \\
\hline
\end{tabular}
298 Multifunctional Role of Tyr 108 in the Catalytic Mechanism of Human Glutathione Transferase P1-1. Crystallographic and Kinetic Studies on the Y108F Mutant Enzymeâ€, \(\hat{a} €_{\mathfrak{j}}\). Biochemistry, 1997, 36, 6207-6217.299 Conformational Changes in Aerolysin during the Transition from the Water-Soluble Protoxin to the
299 Membrane Channelâ€. Biochemistry, 1997, 36, 15224-15232.
\(1.2 \quad 43\)Crystallization, structural determination and analysis of a novel parasite vaccine candidate: Fasciola300 hepatica glutathione S-transferase 1 1Edited by R. Huber. Journal of Molecular Biology, 1997, 273,2.049
857-872.
301 The structures of human glutathione transferase P1-1 in complex with glutathione and various 2.0 ..... 172
inhibitors at high resolution. Journal of Molecular Biology, 1997, 274, 84-100. 172
302 Structure of a Chole13.54571.349
303 The glutathione conjugate of ethacrynic acid can bind to
in two different modes. FEBS Letters, 1997, 419, 32-36.9.75
\(309 \mathrm{Ca} 2+\mid\) S100 regulation of giant protein kinases. Nature, 1996, 380, 636-639. \(\quad 13.7-138\)
\(310 \quad\) A structurally derived consensus pattern for theta clas
\(313 \begin{aligned} & \text { Insights into } \\ & 1996, \text {, 5-23. }\end{aligned}\)\(0.2 \quad 5\)
314 Structure and Assembly of the Channel-Forming Aeromonas Toxin Aerolysin. Molecular BiologyIntelligence Unit, 1996, , 79-95.
Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation. ..... 1.2 ..... 78
\(315 \quad \begin{aligned} & \text { Vibrio spp. secrete proaerolysin as a folded dim } \\ & \text { Molecular Microbiology, 1995, 17, 1035-1044. }\end{aligned}\)1.687
Site-directed Mutagenesis of Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 1995, 270, 1243-1248.
Protonation of Histidine-132 Promotes Oligomerization of the Channel-Forming Toxin Aerolysin.
317 Biochemistry, 1995, 34, 16450-16455. ..... 1.2 ..... 50
0.5 ..... 1
Protein crystallography in Australia. Australian and New Zealand Journal of Medicine, 1995, 25, 876-882.
1.0 ..... 21A single amino acid substitution can restore the solubility of aggregated colicin A mutants in
319 Escherichia coli. Protein Engineering, Design and Selection, 1994, 7, 1495-1500.320 Structure and function of glutathione S-transferases. BBA - Proteins and Proteomics, 1994, 1205, 1-18.2.1524Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends3.7146in Biochemical Sciences, 1994, 19, 440-444.Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states.Nature, 1994, 367, 292-295.
323 Insights into autoregulation from the crystal structure of twitchin kinase. Nature, 1994, 369, 581-584.
\begin{tabular}{|c|c|c|c|}
\hline 327 & Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins. Trends in Biochemical Sciences, 1993, 18, 391-395. & 3.7 & 126 \\
\hline 328 & Refined structure of the pore-forming domain of colicin A at 2.4 Ã... resolution. Journal of Molecular Biology, 1992, 224, 639-657. & 2.0 & 227 \\
\hline 329 & Three-dimensional structure of class Ï€ glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A... resolution. Journal of Molecular Biology, 1992, 227, 214-226. & 2.0 & 273 \\
\hline 330 & Crystallization and preliminary X-ray analysis of phosphoporin from the outer membrane of Escherichia coli. Journal of Molecular Biology, 1991, 222, 881-884. & 2.0 & 7 \\
\hline 331 & A common channel-forming motif in evolutionarily distant porins. Journal of Structural Biology, 1991, 107, 136-145. & 1.3 & 55 \\
\hline 332 & Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. FEBS Journal, 1991, 196, 599-607. & 0.2 & 84 \\
\hline 333 & Crystallization of glutathione S-transferase from human placenta. Journal of Molecular Biology, 1990, 213, 221-222. & 2.0 & 78 \\
\hline
\end{tabular}

334 Crystallization of a proform of aerolysin, a hole-forming toxin from Aeromonas hydrophila. Journal of Molecular Biology, 1990, 212, 561-562.
```

335 Insights into membrane insertion based on studies of colicins. Trends in Biochemical Sciences, 1990, 15,
335 126-129.

```
\begin{tabular}{ll}
3.7 & 125
\end{tabular}

336 Crystallographic phases through genetic engineering: experiences with colicin A. Protein Engineering,

Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Letters, 1988, 229, 377-382.

Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 Ã...```

