He Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3880220/publications.pdf

Version: 2024-02-01

136950 161849 3,305 93 32 54 citations h-index g-index papers 93 93 93 2411 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A COMPREHENSIVE ANALYSIS OF (i) FERMI (i) GAMMA-RAY BURST DATA. I. SPECTRAL COMPONENTS AND THE POSSIBLE PHYSICAL ORIGINS OF LAT/GBM GRBs. Astrophysical Journal, 2011, 730, 141.	4.5	202
2	BRIGHT "MERGER-NOVA―FROM THE REMNANT OF A NEUTRON STAR BINARY MERGER: A SIGNATURE OF A NEWLY BORN, MASSIVE, MILLISECOND MAGNETAR. Astrophysical Journal Letters, 2013, 776, L40.	8.3	192
3	A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astronomy Reviews, 2013, 57, 141-190.	12.8	175
4	Constraints on binary neutron star merger product from short GRB observations. Physical Review D, 2016, 93, .	4.7	118
5	HOW BAD OR GOOD ARE THE EXTERNAL FORWARD SHOCK AFTERGLOW MODELS OF GAMMA-RAY BURSTS?. Astrophysical Journal, Supplement Series, 2015, 219, 9.	7.7	115
6	Testing Einstein's Equivalence Principle With Fast Radio Bursts. Physical Review Letters, 2015, 115, 261101.	7.8	100
7	BRIGHT BROADBAND AFTERGLOWS OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS. Astrophysical Journal, 2013, 771, 86.	4.5	99
8	FAST RADIO BURST/GAMMA-RAY BURST COSMOGRAPHY. Astrophysical Journal, 2014, 788, 189.	4.5	95
9	A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. II. AFTERGLOW ONSET AND LATE RE-BRIGHTENING COMPONENTS. Astrophysical Journal, 2013, 774, 13.	4.5	90
10	Strongly lensed repeating fast radio bursts as precision probes of the universe. Nature Communications, 2018, 9, 3833.	12.8	86
11	GRB 080503 LATE AFTERGLOW RE-BRIGHTENING: SIGNATURE OF A MAGNETAR-POWERED MERGER-NOVA. Astrophysical Journal, 2015, 807, 163.	4.5	84
12	The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817. Astrophysical Journal, 2018, 860, 57.	4.5	84
13	PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs. Astrophysical Journal, 2015, 801, 103.	4.5	78
14	Internal x-ray plateau in short GRBs: Signature of supramassive fast-rotating quark stars?. Physical Review D, 2016, 94, .	4.7	69
15	CONSTRAINTS ON THE PHOTON MASS WITH FAST RADIO BURSTS. Astrophysical Journal Letters, 2016, 822, L15.	8.3	61
16	COSMIC TRANSIENTS TEST EINSTEIN'S EQUIVALENCE PRINCIPLE OUT TO GeV ENERGIES. Astrophysical Journal, 2015, 810, 121.	4.5	57
17	The Gravitational-wave physics II: Progress. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	54
18	Searching for Magnetar-powered Merger-novae from Short GRBS. Astrophysical Journal, 2017, 837, 50.	4.5	49

#	Article	IF	CITATIONS
19	X-RAY COUNTERPART OF GRAVITATIONAL WAVES DUE TO BINARY NEUTRON STAR MERGERS: LIGHT CURVES, LUMINOSITY FUNCTION, AND EVENT RATE DENSITY. Astrophysical Journal, 2017, 835, 7.	4.5	48
20	Neutron Star Mergers in Active Galactic Nucleus Accretion Disks: Cocoon and Ejecta Shock Breakouts. Astrophysical Journal Letters, 2021, 906, L11.	8.3	44
21	STEPWISE FILTER CORRELATION METHOD AND EVIDENCE OF SUPERPOSED VARIABILITY COMPONENTS IN GAMMA-RAY BURST PROMPT EMISSION LIGHT CURVES. Astrophysical Journal, 2012, 748, 134.	4.5	41
22	Testing Einstein's weak equivalence principle with gravitational waves. Physical Review D, 2016, 94, .	4.7	41
23	The Origin of the Prompt Emission for Short GRB 170817A: Photosphere Emission or Synchrotron Emission?. Astrophysical Journal, 2018, 860, 72.	4.5	41
24	What Constraints on the Neutron Star Maximum Mass Can One Pose from GW170817 Observations?. Astrophysical Journal, 2020, 893, 146.	4.5	41
25	TESTS OF THE EINSTEIN EQUIVALENCE PRINCIPLE USING TeV BLAZARS. Astrophysical Journal Letters, 2016, 818, L2.	8.3	40
26	Cosmology-independent Estimate of the Fraction of Baryon Mass in the IGM from Fast Radio Burst Observations. Astrophysical Journal, 2019, 876, 146.	4.5	40
27	A MORPHOLOGICAL ANALYSIS OF GAMMA-RAY BURST EARLY-OPTICAL AFTERGLOWS. Astrophysical Journal, 2015, 810, 160.	4.5	38
28	GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era. Experimental Astronomy, 2019, 48, 77-95.	3.7	38
29	Kilonova Emission from Black Hole–Neutron Star Mergers. I. Viewing-angle-dependent Lightcurves. Astrophysical Journal, 2020, 897, 20.	4.5	37
30	MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS. Astrophysical Journal Letters, 2014, 792, L21.	8.3	33
31	Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 035-035.	5.4	33
32	Signature of a Newborn Black Hole from the Collapse of a Supra-massive Millisecond Magnetar. Astrophysical Journal, 2017, 849, 119.	4.5	33
33	No Detectable Kilonova Counterpart is Expected for O3 Neutron Star–Black Hole Candidates. Astrophysical Journal, 2021, 921, 156.	4.5	33
34	Cosmology with Gravitational Wave/Fast Radio Burst Associations. Astrophysical Journal Letters, 2018, 860, L7.	8.3	31
35	Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gamma-ray bursts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 031-031.	5.4	30
36	Kilonova Emission from Black Hole–Neutron Star Mergers. II. Luminosity Function and Implications for Target-of-opportunity Observations of Gravitational-wave Triggers and Blind Searches. Astrophysical Journal, 2021, 917, 24.	4.5	30

#	Article	IF	CITATIONS
37	Cosmological Parameter Estimation for Dynamical Dark Energy Models with Future Fast Radio Burst Observations. Astrophysical Journal, 2020, 903, 83.	4.5	30
38	Compton scattering of self-absorbed synchrotron emission. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2520-2531.	4.4	29
39	QUASI-PERIODIC VARIATIONS IN X-RAY EMISSION AND LONG-TERM RADIO OBSERVATIONS: EVIDENCE FOR A TWO-COMPONENT JET IN Sw J1644+57. Astrophysical Journal, 2014, 788, 32.	4.5	28
40	Multimessenger Detection Rates and Distributions of Binary Neutron Star Mergers and Their Cosmological Implications. Astrophysical Journal, 2021, 916, 54.	4.5	28
41	CONSTRAINTS ON THE LORENTZ INVARIANCE VIOLATION WITH GAMMA-RAY BURSTS VIA A MARKOV CHAIN MONTE CARLO APPROACH. Astrophysical Journal, 2015, 808, 78.	4.5	27
42	Constraints on Compact Dark Matter with Fast Radio Burst Observations. Astrophysical Journal Letters, 2020, 896, L11.	8.3	27
43	Lorentz Invariance Violation Limits from the Spectral-lag Transition of GRB 190114C. Astrophysical Journal, 2021, 906, 8.	4.5	27
44	Limits on the Weak Equivalence Principle and Photon Mass with FRB 121102 Subpulses. Astrophysical Journal Letters, 2019, 882, L13.	8.3	26
45	Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole. Astrophysical Journal Letters, 2018, 852, L5.	8.3	25
46	THE BLACK HOLE CENTRAL ENGINE FOR ULTRA-LONG GAMMA-RAY BURST 111209A AND ITS ASSOCIATED SUPERNOVA 2011KL. Astrophysical Journal, 2016, 826, 141.	4.5	23
47	A More Stringent Constraint on the Mass Ratio of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L45.	8.3	23
48	The Shallow Decay Segment of GRB X-Ray Afterglow Revisited. Astrophysical Journal, 2019, 883, 97.	4.5	23
49	Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars. Frontiers of Physics, 2020, 15 , 1 .	5.0	23
50	On the True Fractions of Repeating and Nonrepeating Fast Radio Burst Sources. Astrophysical Journal Letters, 2021, 906, L5.	8.3	23
51	Prospects of strongly lensed repeating fast radio bursts: Complementary constraints on dark energy evolution. Physical Review D, 2019, 99, .	4.7	21
52	Constraining the evolution of the baryon fraction in the IGM with FRB and <i>H</i> (<i>z</i>) data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 039-039.	5.4	21
53	Constraining the Long-lived Magnetar Remnants in Short Gamma-Ray Bursts from Late-time Radio Observations. Astrophysical Journal, 2020, 890, 102.	4.5	21
54	RELATION BETWEEN THE INTRINSIC AND OBSERVED CENTRAL ENGINE ACTIVITY TIME: IMPLICATIONS FOR ULTRA-LONG GRBs. Astrophysical Journal, 2015, 802, 90.	4.5	20

#	Article	IF	Citations
55	Thermonuclear Explosions and Accretion-induced Collapses of White Dwarfs in Active Galactic Nucleus Accretion Disks. Astrophysical Journal Letters, 2021, 914, L19.	8.3	20
56	Possible high-energy neutrino and photon signals from gravitational wave bursts due to double neutron star mergers. Physical Review D, 2013, 88, .	4.7	19
57	Magnetic-distortion-induced Ellipticity and Gravitational Wave Radiation of Neutron Stars: Millisecond Magnetars in Short GRBs, Galactic Pulsars, and Magnetars. Astrophysical Journal, 2017, 844, 112.	4.5	19
58	Search for Lensing Signatures from the Latest Fast Radio Burst Observations and Constraints on the Abundance of Primordial Black Holes. Astrophysical Journal, 2022, 928, 124.	4.5	19
59	A DOUBLE NEUTRON STAR MERGER ORIGIN FOR THE COSMOLOGICAL RELATIVISTIC FADING SOURCE PTF11agg?. Astrophysical Journal Letters, 2014, 781, L10.	8.3	18
60	Catching jetted tidal disruption events early in millimetre. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3375-3384.	4.4	18
61	Multimessenger tests of Einstein's weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar. Journal of High Energy Astrophysics, 2019, 22, 1-4.	6.7	18
62	High-energy Neutrinos from Choked Gamma-Ray Bursts in Active Galactic Nucleus Accretion Disks. Astrophysical Journal Letters, 2021, 911, L19.	8.3	18
63	What binary systems are the most likely sources for periodically repeating FRBs?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L1-L5.	3.3	17
64	New test of weak equivalence principle using polarized light from astrophysical events. Physical Review D, 2017, 95, .	4.7	16
65	Viewing Angle Constraints on S190425z and S190426c and the Joint Gravitational-wave/Gamma-Ray Detection Fractions for Binary Neutron Star Mergers. Astrophysical Journal Letters, 2019, 881, L40.	8.3	15
66	Population Properties of Gravitational-wave Neutron Star–Black Hole Mergers. Astrophysical Journal, 2022, 928, 167.	4.5	15
67	A Search for Millilensing Gamma-Ray Bursts in the Observations of Fermi GBM. Astrophysical Journal, 2022, 931, 4.	4.5	15
68	A Robust Estimation of Lorentz Invariance Violation and Intrinsic Spectral Lag of Short Gamma-Ray Bursts. Astrophysical Journal Letters, 2022, 924, L29.	8.3	13
69	On neutralization of charged black holes. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2722-2731.	4.4	11
70	Physical Implications of the Subthreshold GRB GBM-190816 and Its Associated Subthreshold Gravitational-wave Event. Astrophysical Journal, 2020, 899, 60.	4.5	11
71	Implications from the Upper Limit of Radio Afterglow Emission of FRB 131104/Swift J0644.5-5111. Astrophysical Journal Letters, 2017, 835, L21.	8.3	10
72	The Evolution of a Newborn Millisecond Magnetar with a Propeller-recycling Disk. Astrophysical Journal, 2021, 907, 87.	4.5	10

#	Article	lF	CITATIONS
73	The Second Plateau in X-Ray Afterglow Providing Additional Evidence for Rapidly Spinning Magnetars as the GRB Central Engine. Astrophysical Journal, 2020, 896, 42.	4.5	10
74	A Peculiar GRB 110731A: Lorentz Factor, Jet Composition, Central Engine, and Progenitor. Astrophysical Journal, 2017, 843, 114.	4.5	9
75	Model-independent Estimation of H ₀ and Ω _K from Strongly Lensed Fast Radio Bursts. Astrophysical Journal, 2021, 916, 70.	4.5	9
76	Giant X-Ray and Optical Bump in GRBs: Evidence for Fallback Accretion Model. Astrophysical Journal, 2021, 906, 60.	4.5	9
77	GW170817: The key to the door of multi-messenger astronomy including gravitational waves. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	8
78	Constraints on the abundance of primordial black holes with different mass distributions from lensing of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1141-1152.	4.4	8
79	A Further Study of the of GRBs: Rest-frame Properties, External Plateau Contributions, and Multiple Parameter Analysis. Astrophysical Journal, 2017, 845, 51.	4.5	7
80	Testing the Hypothesis of a Compact-binary-coalescence Origin of Fast Radio Bursts Using a Multimessenger Approach. Astrophysical Journal Letters, 2020, 891, L39.	8.3	7
81	Magnetar-driven Shock Breakout Revisited and Implications for Double-peaked Type I Superluminous Supernovae. Astrophysical Journal, 2021, 911, 142.	4.5	7
82	Searching for Gravitationally Lensed Gamma-Ray Bursts with Their Afterglows. Astrophysical Journal, 2022, 924, 49.	4.5	6
83	Gamma-Ray Burst Prompt Emission Spectrum and E _p Evolution Patterns in the ICMART Model. Astrophysical Journal, 2022, 927, 173.	4.5	5
84	G4.8+6.2, a possible kilonova remnant?. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 490, L21-L25.	3.3	3
85	Long-term postmerger simulations of relativistic star coalescence: Formation of toroidal remnants and gravitational wave afterglow. International Journal of Modern Physics D, 2019, 28, 1950026.	2.1	3
86	The Number of Possible CETIs within Our Galaxy and the Communication Probability among These CETIs. Astrophysical Journal, 2022, 928, 142.	4.5	3
87	Special Supernova Signature from BH–NS/BH Progenitor Systems. Astrophysical Journal Letters, 2020, 902, L37.	8.3	2
88	A Reader Friendly Formalism for the Circumstellar Material-supernova Ejecta Interaction Model. Research Notes of the AAS, 2020, 4, 162.	0.7	1
89	A Powerful e $\langle \sup \hat{A} \pm \langle \sup \rangle$ Outflow Driven by a Proto-strange Quark Star. Astrophysical Journal, 2021, 922, 214.	4.5	1
90	Optical Afterglows as Probes for the Central Engine and Fireball of Gamma-Ray Bursts. Proceedings of the International Astronomical Union, 2012, 8, 263-264.	0.0	0

#	Article	IF	CITATIONS
91	Inverse Compton Scattered Merger-nova: Late X-Ray Counterpart of Gravitational-wave Signals from NS–NS/BH Mergers. Astrophysical Journal Letters, 2018, 853, L6.	8.3	O
92	The Evolutionary Effects of the Radius and Moment of Inertia of Rapidly Rotating Neutron Stars. Astrophysical Journal, 2021, 919, 14.	4.5	0
93	GRB 160821Bçš"æ™šæœŸä½™è¾‰å¢žäº®ï¼šæ–°ä¸€ä¾‹ç£æ~Ÿé©±åЍ并å•̂æ–°æ~Ÿå€™é€‰ä½". Scient	ia Si mi€ a: F	Phystica, Mecha