Huaming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3878595/publications.pdf

Version: 2024-02-01

236 papers 10,653 citations

59 h-index 51608 86 g-index

242 all docs 242 docs citations

times ranked

242

10479 citing authors

#	Article	IF	CITATIONS
1	Electronic Metal–Support Interaction Modulation of Singleâ€Atom Electrocatalysts for Rechargeable Zinc–Air Batteries. Small Methods, 2022, 6, e2100947.	8.6	29
2	Mineral Modulated Single Atom Catalyst for Effective Water Treatment. Advanced Functional Materials, 2022, 32, .	14.9	53
3	Phosphate Removal from Wastewater by Magnetic Amorphous Lanthanum Silicate Alginate Hydrogel Beads. Minerals (Basel, Switzerland), 2022, 12, 171.	2.0	6
4	Evolution of Black Talc upon Thermal Treatment. Minerals (Basel, Switzerland), 2022, 12, 155.	2.0	6
5	Aqueous Znâ€based rechargeable batteries: Recent progress and future perspectives. InformaÄnÃ- Materiály, 2022, 4, .	17.3	77
6	Pd/Fe ₂ O ₃ with Electronic Coupling Single-Site Pdâ€"Fe Pair Sites for Low-Temperature Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2022, 144, 573-581.	13.7	69
7	The unique interconnected structure of hollow carbon skeleton doped by F and N facilitating rapid Li ions diffusion in lithium-sulfur batteries. Carbon, 2022, 195, 207-218.	10.3	21
8	Low wear braking material with high friction coefficient. Tribology International, 2022, 173, 107608.	5.9	11
9	Functionally constructed mineral microspheres for efficient photothermal conversion and thermal energy storage. Carbon, 2022, 196, 365-377.	10.3	12
10	Efficient activation of peroxymonosulfate by iron-containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants. Chemical Engineering Journal, 2022, 446, 137044.	12.7	18
11	A nanoclay-confined single atom catalyst: tuning uncoordinated N species for efficient water treatment. Journal of Materials Chemistry C, 2022, 10, 9980-9988.	5.5	1
12	Surface Design Strategy of Catalysts for Water Electrolysis. Small, 2022, 18, .	10.0	138
13	PANI/BaFe12O19@Halloysite ternary composites as novel microwave absorbent. Journal of Colloid and Interface Science, 2021, 582, 137-148.	9.4	47
14	Porous carbon-based MgAlF5 \hat{A} ·1.5H2O composites derived from carbon-coated clay presenting super high adsorption capacity for Congo Red. Chemical Engineering Journal, 2021, 406, 126784.	12.7	37
15	Nitrogen-doped three-dimensional porous carbon anode derived from hard halloysite template for sodium-ion batteries. Applied Clay Science, 2021, 200, 105916.	5.2	7
16	Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid‧tate Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods, 2021, 5, e2000868.	8.6	42
17	Magnetic Field-Assisted Photoelectrochemical Water Splitting: The Photoelectrodes Have Weaker Nonradiative Recombination of Carrier. ACS Catalysis, 2021, 11, 1242-1247.	11.2	41
18	Surface modified halloysite nanotubes with different lumen diameters as drug carriers for cancer therapy. Chemical Communications, 2021, 57, 9470-9473.	4.1	17

#	Article	IF	CITATIONS
19	Interfacial multi-reflection in barium ferrite nanosheets/ amorphous carbon nanotube composites for effective electromagnetic shielding applications. Materials Chemistry and Physics, 2021, 267, 124606.	4.0	8
20	Application of layered nanoclay in electrochemical energy: Current status and future. EnergyChem, 2021, 3, 100062.	19.1	29
21	Robust hemostatic bandages based on nanoclay electrospun membranes. Nature Communications, 2021, 12, 5922.	12.8	75
22	Energetics, Interlayer Molecular Structures, and Hydration Mechanisms of Dimethyl Sulfoxide (DMSO)–Kaolinite Nanoclay Guest–Host Interactions. Journal of Physical Chemistry Letters, 2021, 12, 9973-9981.	4.6	9
23	The relation between nanotube diameter, length and surface area and pore volume of multi-walled spiral halloysite nanotubes: A theoretical study. Applied Clay Science, 2021, 215, 106303.	5.2	9
24	Electrospinning with a spindle-knot structure for effective PM2.5 capture. Science China Materials, 2021, 64, 1278-1290.	6.3	11
25	A new nanoclay-based bifunctional hybrid fiber membrane with hemorrhage control and wound healing for emergency self-rescue. Materials Today Advances, 2021, 12, 100190.	5.2	17
26	Contrasting Photochemical Activity of Two Sub-layers for Natural 2D Nanoclay with an Asymmetric Layer Structure. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59431-59439.	8.0	6
27	Manipulating the Conversion Kinetics of Polysulfides by Engineering Oxygen pâ€Band of Halloysite for Improved Liâ€6 Batteries. Small, 2021, , 2105661.	10.0	11
28	A heterogeneous Fenton reaction system of N-doped TiO2 anchored on sepiolite activates peroxymonosulfate under visible light irradiation. Chemical Engineering Journal, 2020, 383, 123142.	12.7	53
29	Evolution of the crystallographic structure and physicochemical aspects of rectorite upon calcination. Applied Clay Science, 2020, 185, 105374.	5.2	18
30	Nano-Bio interactions of clay nanotubes with colon cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124242.	4.7	10
31	Precursorâ€Engineering Coupled Microwave Moltenâ€Salt Strategy Enhances Photocatalytic Hydrogen Evolution Performance of g ₃ N ₄ Nanostructures. ChemSusChem, 2020, 13, 827-837.	6.8	54
32	Lanthanum compounds-modified rectorite composites for highly efficient phosphate removal from wastewater. Applied Clay Science, 2020, 199, 105875.	5.2	24
33	Interfacial Chemical-Bond-Modulated Charge Transfer of Heterostructures for Improving Photocatalytic Performance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9872-9880.	8.0	38
34	Enhanced thermal conductivity of form-stable composite phase-change materials with graphite hybridizing expanded perlite/paraffin. Solar Energy, 2020, 209, 85-95.	6.1	64
35	Hybrid membrane with controllable surface microroughness by micro-nano structure processing for diluted PM2.5 capture. Environmental Pollution, 2020, 266, 115249.	7.5	6
36	Magnetic carbon-coated palygorskite loaded with cobalt nanoparticles for Congo Red removal from waters. Applied Clay Science, 2020, 198, 105856.	5.2	22

#	Article	IF	CITATIONS
37	Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites. Minerals (Basel, Switzerland), 2020, 10, 490.	2.0	26
38	A novel and improved hydrophilic vanadium oxide-based cathode for aqueous Zn-ion batteries. Electrochimica Acta, 2020, 354, 136721.	5.2	22
39	Investigation of natural minerals for ulcerative colitis therapy. Applied Clay Science, 2020, 186, 105436.	5.2	7
40	Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage. Renewable Energy, 2020, 152, 579-589.	8.9	36
41	Interfacial characteristics between mineral fillers and phenolic resin in friction materials. Materials Express, 2020, 10, 70-80.	0.5	11
42	Utilization of iron tailings to prepare high-surface area mesoporous silica materials. Science of the Total Environment, 2020, 736, 139483.	8.0	54
43	Sepiolite/Fe3O4 composite for effective degradation of diuron. Applied Clay Science, 2019, 181, 105243.	5.2	24
44	Multiple polarization loss and permittivity adjusting of halloysite/BN Co-doped carbon/cobalt composites. Journal of Colloid and Interface Science, 2019, 555, 509-518.	9.4	19
45	Highly stable hierarchical porous nanosheet composite phase change materials for thermal energy storage. Applied Thermal Engineering, 2019, 163, 114417.	6.0	29
46	Trimetallic FeCoNi@C Nanocomposite Hollow Spheres Derived from Metal–Organic Frameworks with Superior Electromagnetic Wave Absorption Ability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39304-39314.	8.0	238
47	Interactions between two-dimensional nanoclay and blood cells in hemostasis. Materials Science and Engineering C, 2019, 105, 110081.	7. 3	25
48	Single-source precursor synthesis of nitrogen-doped porous carbon for high-performance electrocatalytic ORR application. Ceramics International, 2019, 45, 8354-8361.	4.8	10
49	Nanoclay-modulated oxygen vacancies of metal oxide. Communications Chemistry, 2019, 2, .	4.5	84
50	Simple Synthesis and Characterization of Hexagonal and Ordered Al–MCM–41 from Natural Perlite. Minerals (Basel, Switzerland), 2019, 9, 264.	2.0	27
51	Charge-Dependent Regulation in DNA Adsorption on 2D Clay Minerals. Scientific Reports, 2019, 9, 6808.	3.3	7
52	Insight into the effect of crystallographic structure on thermal conductivity of kaolinite nanoclay. Applied Clay Science, 2019, 173, 12-18.	5.2	29
53	An emerging mineral-based composite flame retardant coating: Preparation and enhanced fireproof performance. Surface and Coatings Technology, 2019, 367, 118-126.	4.8	39
54	Composite K ₂ Mo ₄ O ₁₃ $\hat{l}\pm$ -MoO ₃ nanorods: sonochemical preparation and applications for advanced Li ⁺ /Na ⁺ pseudocapacitance. Journal of Materials Chemistry A, 2019, 7, 10954-10961.	10.3	6

#	Article	IF	CITATIONS
55	Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage. Applied Clay Science, 2019, 183, 105358.	5.2	21
56	Thermal Performance and Interfacial Aspects of Kaoliniteâ€Based Stearic Acid Composite in the Presence of Nitric Acid. ChemistrySelect, 2019, 4, 13109-13114.	1.5	0
57	Highly ordered and hexagonal mesoporous silica materials with large specific surface from natural rectorite mineral. Microporous and Mesoporous Materials, 2019, 279, 53-60.	4.4	39
58	Degradation of Congo Red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst: Synergetic effects of Fe2O3. Journal of Colloid and Interface Science, 2019, 539, 135-145.	9.4	106
59	Surface redox characters and synergetic catalytic properties of macroporous ceria-zirconia solid solutions. Journal of Hazardous Materials, 2019, 366, 54-64.	12.4	23
60	Intercalated kaolinite as an emerging platform for cancer therapy. Science China Chemistry, 2019, 62, 58-61.	8.2	14
61	Functionalized 2D Clay Derivative: Hybrid Nanosheets with Unique Lead Sorption Behaviors and Interface Structure. Advanced Materials Interfaces, 2018, 5, 1700934.	3.7	27
62	Highly dispersed sepiolite-based organic modified nanofibers for enhanced adsorption of Congo red. Applied Clay Science, 2018, 157, 76-85.	5.2	60
63	CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization. Chemical Engineering Journal, 2018, 341, 432-440.	12.7	35
64	Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from α-sepiolite. Chemical Engineering Journal, 2018, 337, 342-350.	12.7	50
65	Emerging Nanoclay Composite for Effective Hemostasis. Advanced Functional Materials, 2018, 28, 1704452.	14.9	106
66	Chemically modified kaolinite nanolayers for the removal of organic pollutants. Applied Clay Science, 2018, 157, 283-290.	5.2	64
67	Large-scale synthesis of sub-micro sized halloysite-composed CZA with enhanced catalysis performances. Applied Clay Science, 2018, 152, 221-229.	5.2	35
68	Polyethyleneimine (PEI) loaded MgO-SiO 2 nanofibers from sepiolite minerals for reusable CO 2 capture/release applications. Applied Clay Science, 2018, 152, 267-275.	5.2	40
69	Self-assembly of silica nanowires in a microemulsion system and their adsorption capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 526-533.	4.7	13
70	Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol. Applied Catalysis B: Environmental, 2018, 226, 23-30.	20.2	242
71	Amino-functionalized hierarchical porous SiO2-AlOOH composite nanosheets with enhanced adsorption performance. Journal of Hazardous Materials, 2018, 344, 1090-1100.	12.4	58
72	Novel 2D Nanosheets with Potential Applications in Heavy Metal Purification: A Review. Advanced Materials Interfaces, 2018, 5, 1801094.	3.7	67

#	Article	IF	CITATIONS
73	Silver nanoparticles assembled on modified sepiolite nanofibers for enhanced catalytic reduction of 4-nitrophenol. Applied Clay Science, 2018, 166, 166-173.	5.2	42
74	Efficient Nanoclay-Based Composite Photocatalyst: The Role of Nanoclay in Photogenerated Charge Separation. Journal of Physical Chemistry C, 2018, 122, 25900-25908.	3.1	24
75	A nanoclay-induced defective g-C ₃ N ₄ photocatalyst for highly efficient catalytic reactions. Chemical Communications, 2018, 54, 8249-8252.	4.1	33
76	Selective Fabrication of Barium Carbonate Nanoparticles in the Lumen of Halloysite Nanotubes. Minerals (Basel, Switzerland), 2018, 8, 296.	2.0	11
77	Mineralogy and Physico-Chemical Data of Two Newly Discovered Halloysite in China and Their Contrasts with Some Typical Minerals. Minerals (Basel, Switzerland), 2018, 8, 108.	2.0	39
78	Fabrication of Si Nanoparticles@Carbon Fibers Composites from Natural Nanoclay as an Advanced Lithium-Ion Battery Flexible Anode. Minerals (Basel, Switzerland), 2018, 8, 180.	2.0	11
79	Intercalation and Exfoliation of Kaolinite with Sodium Dodecyl Sulfate. Minerals (Basel,) Tj ETQq1 1 0.784314 rgB	BT /Overlog 2.0	ck 10 Tf 50 5
80	Lauric Acid Hybridizing Fly Ash Composite for Thermal Energy Storage. Minerals (Basel, Switzerland), 2018, 8, 161.	2.0	13
81	Tailoring Mesoporous Î ³ -Al ₂ O ₃ Properties by Transition Metal Doping: A Combined Experimental and Computational Study. Chemistry of Materials, 2017, 29, 1338-1349.	6.7	52
82	Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Applied Clay Science, 2017, 138, 100-106.	5.2	96
83	Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity. Nanoscale Research Letters, 2017, 12, 135.	5.7	128
84	In situ loading of highly-dispersed CuO nanoparticles on hydroxyl-group-rich SiO2-AlOOH composite nanosheets for CO catalytic oxidation. Chemical Engineering Journal, 2017, 316, 1035-1046.	12.7	104
85	Hierarchical nano-activated silica nanosheets for thermal energy storage. Solar Energy Materials and Solar Cells, 2017, 167, 140-149.	6.2	50
86	Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Research, 2017, 10, 2633-2643.	10.4	66
87	Carbon hybridized montmorillonite nanosheets: preparation, structural evolution and enhanced adsorption performance. Chemical Communications, 2017, 53, 6085-6088.	4.1	58
88	Engineering a tubular mesoporous silica nanocontainer with well-preserved clay shell from natural halloysite. Nano Research, 2017, 10, 2782-2799.	10.4	71
89	Fe ₂ O ₃ nanoparticles anchored on 2D kaolinite with enhanced antibacterial activity. Chemical Communications, 2017, 53, 6255-6258.	4.1	48
90	Surface-modified sepiolite fibers for reinforcing resin brake composites. Materials Express, 2017, 7, 104-112.	0.5	12

#	Article	IF	Citations
91	Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite. Applied Surface Science, 2017, 420, 833-838.	6.1	58
92	Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage. Applied Clay Science, 2017, 146, 14-22.	5.2	94
93	Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage. Nanoscale Research Letters, 2017, 12, 240.	5.7	47
94	Tin Oxide-Carbon-Coated Sepiolite Nanofibers with Enhanced Lithium-Ion Storage Property. Nanoscale Research Letters, 2017, 12, 215.	5.7	19
95	Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity. Nano Research, 2017, 10, 570-583.	10.4	100
96	Morphological evolution of hierarchical Bi ₂ Se ₃ /BiOBr nanostructures and enhanced activity for p-nitrophenol reduction by NaBH ₄ . CrystEngComm, 2017, 19, 4824-4831.	2.6	8
97	Textual properties and catalytic performances of halloysite hybrid CeO2-ZrO2 nanoparticles. Journal of Colloid and Interface Science, 2017, 505, 430-436.	9.4	24
98	Structure and Electronic Properties of Transition Metal Doped Kaolinite Nanoclay. Nanoscale Research Letters, 2017, 12, 411.	5.7	18
99	Effect of Intercalation Agents on Morphology of Exfoliated Kaolinite. Minerals (Basel, Switzerland), 2017, 7, 249.	2.0	15
100	Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance. Nanoscale Research Letters, 2017, 12, 456.	5.7	31
101	Sepiolite supported stearic acid composites for thermal energy storage. RSC Advances, 2016, 6, 112493-112501.	3.6	27
102	Phase and optical properties of solvothermal prepared Sm2O3 doped ZrO2 nanoparticles: The effect of oxygen vacancy. Journal of Alloys and Compounds, 2016, 682, 654-662.	5.5	12
103	Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Applied Clay Science, 2016, 126, 306-312.	5.2	134
104	Y ₂ O ₃ functionalized natural palygorskite as an adsorbent for methyl blue removal. RSC Advances, 2016, 6, 41765-41771.	3.6	29
105	Porous ceramic stabilized phase change materials for thermal energy storage. RSC Advances, 2016, 6, 48033-48042.	3.6	54
106	Radical guided selective loading of silver nanoparticles at interior lumen and out surface of halloysite nanotubes. Materials and Design, 2016, 110, 169-178.	7.0	56
107	Modified wollastonite sequestrating CO ₂ and exploratory application of the carbonation products. RSC Advances, 2016, 6, 78090-78099.	3.6	26
108	Lithium orthosilicate with halloysite as silicon source for high temperature CO ₂ capture. RSC Advances, 2016, 6, 44106-44112.	3.6	44

#	Article	IF	Citations
109	Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Scientific Reports, 2016, 6, 19723.	3.3	157
110	Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy. Scientific Reports, 2016, 6, 33335.	3.3	52
111	An emerging dual collaborative strategy for high-performance tumor therapy with mesoporous silica nanotubes loaded with Mn ₃ O ₄ . Journal of Materials Chemistry B, 2016, 4, 7406-7414.	5.8	18
112	Amine-Impregnated Mesoporous Silica Nanotube as an Emerging Nanocomposite for CO ₂ Capture. ACS Applied Materials & Interfaces, 2016, 8, 17312-17320.	8.0	201
113	Emerging Parallel Dual 2D Composites: Natural Clay Mineral Hybridizing MoS ₂ and Interfacial Structure. Advanced Functional Materials, 2016, 26, 2666-2675.	14.9	157
114	Shape controlled synthesis and optical properties of Cu2O micro-spheres and octahedrons. Materials and Design, 2016, 92, 261-267.	7.0	24
115	Synthesis and characterization of nesquehonite (MgCO3·3H2O) powders from natural talc. Powder Technology, 2016, 292, 169-175.	4.2	39
116	Three-way catalytic performances of Pd loaded halloysite-Ce0.5Zr0.5O2 hybrid materials. Applied Clay Science, 2016, 121-122, 63-70.	5.2	35
117	Applications and interfaces of halloysite nanocomposites. Applied Clay Science, 2016, 119, 8-17.	5.2	235
118	Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies. Scientific Reports, 2015, 5, 13763.	3.3	50
119	Tungsten tailing powders activated for use as cementitious material. Powder Technology, 2015, 286, 678-683.	4.2	35
120	Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities. Scientific Reports, 2015, 5, 12429.	3.3	73
121	Au encapsulated into Al-MCM-41 mesoporous material: in situ synthesis and electronic structure. RSC Advances, 2015, 5, 20414-20423.	3.6	25
122	Synthesis of Nanoporous Materials Al -MCM-41 from Natural Halloysite. Nano, 2015, 10, 1550005.	1.0	11
123	Fluorescence and room temperature activity of Y ₂ O ₃ :(Eu ³⁺ ,Au ³⁺)/palygorskite nanocomposite. Dalton Transactions, 2015, 44, 1673-1679.	3.3	23
124	Synthesis and magnetic property of SiO ₂ coated Fe ₃ O ₄ /palygorskite. Functional Materials Letters, 2015, 08, 1550056.	1.2	8
125	Fabrication and Conductive Performance of Antimony-Doped Tin Oxide-Coated Halloysite Nanotubes. Nano, 2015, 10, 1550078.	1.0	8
126	Acid-hybridized expanded perlite as a composite phase-change material in wallboards. RSC Advances, 2015, 5, 66134-66140.	3.6	40

#	Article	IF	CITATIONS
127	Mineral carbonation of a desulfurization residue for CO2 sequestration. RSC Advances, 2015, 5, 67184-67194.	3.6	25
128	Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Applied Clay Science, 2015, 115, 212-220.	5.2	94
129	Composite of Coalâ€Series Kaolinite and Capric–Lauric Acid as Formâ€Stable Phaseâ€Change Material. Energy Technology, 2015, 3, 77-83.	3.8	55
130	Construction of Mesoporous Ce _{0.5} O ₂ from Different < >Gemini< l> and Cetyltrimethylammonium Bromide Surfactants. Science of Advanced Materials, 2015, 7, 199-210.	0.7	2
131	MECHANOCHEMICAL SYNTHESIS OF NiO NANOPARTICLES: INSIGHT INTO THE NATURE OF PREFERRED GROWTH ORIENTATION. Nano, 2014, 09, 1450046.	1.0	1
132	Wollastonite hybridizing stearic acid as thermal energy storage material. Functional Materials Letters, 2014, 07, 1440011.	1.2	5
133	Natural diatomite modified as novel hydrogen storage material. Functional Materials Letters, 2014, 07, 1450027.	1.2	13
134	Membrane Engineering of Colloidosome Microcompartments Using Partially Hydrophobic Mesoporous Silica Nanoparticles. Langmuir, 2014, 30, 15047-15052.	3.5	41
135	Insight into the nature of Au-Au2O3 functionalized palygorskite. Applied Clay Science, 2014, 100, 118-122.	5.2	17
136	Evaluation of aluminum dross as raw material for high-alumina refractory. Ceramics International, 2014, 40, 12585-12590.	4.8	47
137	Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue. Materials Research Bulletin, 2014, 52, 108-111.	5.2	5
138	Surface status and reduction behavior of porous ceria (CeO2) via amended EISA method. Journal of Alloys and Compounds, 2014, 606, 236-241.	5.5	12
139	Halloysite nanotubes as hydrogen storage materials. Physics and Chemistry of Minerals, 2014, 41, 323-331.	0.8	41
140	Enhancing dispersion of halloysite nanotubes via chemical modification. Physics and Chemistry of Minerals, 2014, 41, 281-288.	0.8	58
141	CO2 mineral sequestration by wollastonite carbonation. Physics and Chemistry of Minerals, 2014, 41, 489-496.	0.8	29
142	Mechanochemical synthesis of Ni(OH)2 and the decomposition to NiO nanoparticles: Thermodynamic and optical spectra. Journal of Alloys and Compounds, 2014, 600, 204-209.	5.5	15
143	Microwave-assisted synthesis and interfacial features of CdS/kaolinite nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 72-79.	4.7	21
144	One-step synthesis of highly ordered Pt/MCM-41 from natural diatomite and the superior capacity in hydrogen storage. Applied Clay Science, 2014, 99, 246-253.	5.2	27

#	Article	IF	Citations
145	Morphology-controllable Li2SiO3 nanostructures. CrystEngComm, 2014, 16, 4501-4507.	2.6	24
146	A complex and de-complex strategy to ordered mesoporous Ce0.5Zr0.5O2 with comprehensive pilot scale performances. Materials Chemistry and Physics, 2014, 147, 1009-1015.	4.0	10
147	Natural halloysite nanotubes modified as an aspirin carrier. RSC Advances, 2014, 4, 44197-44202.	3.6	96
148	High morphological stability and structural transition of halloysite (Hunan, China) in heat treatment. Applied Clay Science, 2014, 101, 16-22.	5.2	63
149	Stearic acid hybridizing coal–series kaolin composite phase change material for thermal energy storage. Applied Clay Science, 2014, 101, 277-281.	5.2	71
150	A novel strategy to the synthesis of Na3YSi2O7 from natural palygorskite. Applied Clay Science, 2014, 101, 339-344.	5.2	17
151	Mesoporous material Al-MCM-41 from natural halloysite. Physics and Chemistry of Minerals, 2014, 41, 497-503.	0.8	33
152	Tailoring the Electronic Structure of Mesoporous Spinel \hat{I}^3 -Al ₂ O ₃ at Atomic Level: Cu-Doped Case. Journal of Physical Chemistry C, 2014, 118, 14299-14315.	3.1	24
153	Novel preparation of glass ceramics from amorphized tungsten tailings. Ceramics International, 2014, 40, 10291-10296.	4.8	27
154	Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Applied Clay Science, 2014, 95, 252-259.	5.2	81
155	Pd hybridizing ZnO/kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property. Applied Clay Science, 2014, 100, 43-49.	5.2	29
156	Precious-Metal Nanoparticles Anchored onto Functionalized Halloysite Nanotubes. Industrial & Engineering Chemistry Research, 2014, 53, 5507-5514.	3.7	67
157	CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route. Scientific Reports, 2014, 4, 3682.	3.3	165
158	Novel sensible thermal storage material from natural minerals. Physics and Chemistry of Minerals, 2013, 40, 681-689.	0.8	20
159	Preparation and enhanced photocatalytic activity of Pd–CuO/palygorskite nanocomposites. Applied Clay Science, 2013, 74, 87-94.	5.2	53
160	Eu2O3-functionalized ZnO/palygorskite. RSC Advances, 2013, 3, 20385.	3.6	7
161	Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property. Scientific Reports, 2013, 3, 2948.	3.3	149
162	Insights into the nature of Cu doping in amorphous mesoporous alumina. Journal of Materials Chemistry A, 2013, $1,14592$.	10.3	49

#	Article	IF	CITATIONS
163	Insight into the physicochemical aspects of kaolins with different morphologies. Applied Clay Science, 2013, 74, 58-65.	5.2	99
164	Au nanoparticles assembled on palygorskite: Enhanced catalytic property and Au–Au2O3 coexistence. Journal of Molecular Catalysis A, 2013, 379, 219-224.	4.8	27
165	Enhanced reduction properties of mesostructured Ce0.5Zr0.5O2 solid solutions. Materials Chemistry and Physics, 2013, 140, 294-299.	4.0	8
166	Polypropylene filled with kaolinite-based conductive powders. Applied Clay Science, 2013, 83-84, 122-128.	5.2	13
167	3D ordered macro–mesoporous indium doped Al2O3. CrystEngComm, 2013, 15, 6046.	2.6	21
168	Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Scientific Reports, 2013, 3, 1908.	3.3	64
169	Controlled Assembly of Sb2S3 Nanoparticles on Silica/Polymer Nanotubes: Insights into the Nature of Hybrid Interfaces. Scientific Reports, 2013, 3, 1336.	3.3	30
170	Dual active luminescence centers from a single-solid composite SnO2:Eu3+/Al-MCM-41: defect chemistry mediated color tuning for white light emission. RSC Advances, 2013, 3, 13990.	3.6	13
171	Expanded Vermiculite/Paraffin Composite as a Solar Thermal Energy Storage Material. Journal of the American Ceramic Society, 2013, 96, 2793-2798.	3.8	47
172	ZnS /HALLOYSITE NANOCOMPOSITES: SYNTHESIS, CHARACTERIZATION AND ENHANCED PHOTOCATALYTIC ACTIVITY. Functional Materials Letters, 2013, 06, 1350013.	1.2	21
173	Co3O4 nanoparticles on the surface of halloysite nanotubes. Physics and Chemistry of Minerals, 2012, 39, 789-795.	0.8	59
174	Attachment of nickel oxide nanoparticles on the surface of palygorskite nanofibers. Journal of Colloid and Interface Science, 2012, 384, 55-60.	9.4	36
175	Synthesis and characterization of Sb–SnO2/kaolinites nanoparticles. Applied Clay Science, 2012, 55, 151-157.	5.2	26
176	Halloysite nanotubes coated with magnetic nanoparticles. Applied Clay Science, 2012, 56, 97-102.	5.2	52
177	Insights into the physicochemical aspects from natural halloysite to silica nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 115-119.	4.7	67
178	Structural characterization and gas sensing property of Cd-doped SnO2 nanocrystallites synthesized by mechanochemical reaction. Sensors and Actuators B: Chemical, 2012, 173, 127-132.	7.8	29
179	ZnFe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>î¼ xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mtext></mml:mrow></mml:mtext></mml:mrow></mml:mtext></mml:mrow></mml:mtext></mml:mrow></mml:mtext></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>	¢ <b 2n ı ml:mt	tex t >
180	Scientific World Journal, The, 2012, 2012, 1.8. Sbâ€"SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation. Physics and Chemistry of Minerals, 2012, 39, 339-349.	0.8	13

#	Article	IF	CITATIONS
181	Surface nanocrystallization modification of anhydrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 393, 128-132.	4.7	10
182	Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. Journal of Colloid and Interface Science, 2012, 369, 216-222.	9.4	68
183	Synthesis and catalytic activity of doped TiO2-palygorskite composites. Applied Clay Science, 2011, 53, 80-84.	5.2	46
184	Parallel Efficiency and Parametric Optimization in CASTEP., 2011,,.		1
185	Polypropylene/combinational inorganic filler microâ€∤nanocomposites: Synergistic effects of microâ€∤nanoscale combinational inorganic fillers on their mechanical properties. Journal of Applied Polymer Science, 2010, 115, 624-634.	2.6	19
186	Facile synthesis and characterization of macro–mesoporous γ-Al2O3. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 126-130.	4.7	18
187	Sol–Gel Synthesis and Characterization of CeO <i>_x2 Thin Films. Journal of the American Ceramic Society, 2010, 93, 1056-1061.</i>	3.8	7
188	Novel Preparation and Characterization of Barium Strontium Titanate Microcubes. Journal of the American Ceramic Society, 2010, 93, 3342-3348.	3.8	2
189	From Natural Attapulgite to Mesoporous Materials: Methodology, Characterization and Structural Evolution. Journal of Physical Chemistry B, 2010, 114, 2390-2398.	2.6	132
190	Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite. Applied Clay Science, 2010, 47, 351-355.	5.2	65
191	Novel synthesis and characterization of nanosized \hat{I}^3 -Al2O3 from kaolin. Applied Clay Science, 2010, 47, 438-443.	5.2	70
192	Synthesis and characterization of ZnO/palygorskite. Applied Clay Science, 2010, 50, 362-366.	5.2	81
193	Large surface area mesoporous Al2O3 from kaolin: Methodology and characterization. Applied Clay Science, 2010, 50, 554-559.	5.2	31
194	Synthesis and characterization of zeolite 4A-type desiccant from kaolin. American Mineralogist, 2010, 95, 741-746.	1.9	13
195	Preparation and characterization of Co-doped ZnO nanomaterials. Materials Chemistry and Physics, 2009, 114, 279-282.	4.0	78
196	Synthesis and optical properties of mesoporous MCM-41 containing doped TiO2 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 111-117.	4.7	49
197	Investigation of the Oxygen Exchange Property and Oxygen Storage Capacity of $Ce < sub > ci>x < i>x sub>Zr < sub>1a^2 < sub> < sub>ci>x < i>x sub>O < sub>2 < sub>Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 6921-6928.$	3.1	45
198	Thermodynamic modeling of the Mg–Si system with the Kaptay equation for the excess Gibbs energy of the liquid phase. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 673-678.	1.6	42

#	Article	IF	Citations
199	Solvothermal synthesis and optical properties of Mn2+-doped SrTiO3 powders. Journal of Alloys and Compounds, 2009, 485, 351-355.	5.5	17
200	Simple Synthesis and Characterization of Nanoporous Materials from Talc. Clays and Clay Minerals, 2009, 57, 290-301.	1.3	11
201	Synthesis, characterization and computational simulation of visible-light irradiated fluorine-doped titanium oxide thin films. Journal of Materials Chemistry, 2009, 19, 6907.	6.7	38
202	Highly conductive Al-doped tetra-needle-like ZnO whiskers prepared by a solid state method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 203-207.	3.5	15
203	Chemical Precipitation Synthesis and Optical Properties of ZnO/SiO ₂ Nanocomposites. Journal of the American Ceramic Society, 2008, 91, 1591-1596.	3.8	42
204	Optical, Electrochemical and Hydrophilic Properties of Y ₂ O ₃ Doped TiO ₂ Nanocomposite Films. Journal of Physical Chemistry B, 2008, 112, 16271-16279.	2.6	33
205	Synthesis and electrical property of antimony-doped tin oxide powders with barite matrix. Journal of Alloys and Compounds, 2008, 453, 292-297.	5.5	35
206	Synthesis and optical properties of yttria-doped ZrO2 nanopowders. Journal of Alloys and Compounds, 2008, 458, 474-478.	5. 5	26
207	Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. Journal of Alloys and Compounds, 2008, 459, 98-102.	5.5	104
208	Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. Journal of Alloys and Compounds, 2007, 428, 327-331.	5.5	39
209	Single Step Synthesis of High-Purity CoO Nanocrystals. Journal of Physical Chemistry B, 2007, 111, 8006-8013.	2.6	88
210	Physicochemical dispersion of chrysotile. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 341-345.	4.7	13
211	Enhanced photoluminescence property of SnO2 nanoparticles contained in mesoporous silica synthesized with leached talc as Si source. Microporous and Mesoporous Materials, 2007, 102, 204-211.	4.4	16
212	Sol?Gel Synthesis and Photocatalytic Activity of CeO2/TiO2Nanocomposites. Journal of the American Ceramic Society, 2007, 90, 1370-1374.	3.8	81
213	Microwave synthesis of nanocrystalline Sb2S3 and its electrochemical properties. Materials Research Bulletin, 2007, 42, 1357-1363.	5.2	63
214	Preparation and characterization of SnO2 nanoparticles incorporated into talc porous materials (TPM). Materials Letters, 2007, 61, 3736-3739.	2.6	9
215	Mechanosynthesis and gas-sensing properties of In2O3/SnO2 nanocomposites. Nanotechnology, 2006, 17, 2860-2864.	2.6	25
216	Preparation of porous material from talc by mechanochemical treatment and subsequent leaching. Applied Clay Science, 2006, 31, 290-297.	5.2	69

#	Article	IF	CITATIONS
217	Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. Journal of Alloys and Compounds, 2006, 413, 302-306.	5 . 5	147
218	Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technology, 2006, 168, 148-151.	4.2	126
219	Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Materials Research Bulletin, 2006, 41, 1310-1318.	5 . 2	158
220	Synthesis of homogeneous PVP-capped SnS2 submicron particles via microwave irradiation. Materials Letters, 2006, 60, 3714-3717.	2.6	8
221	MECHANOCHEMICAL SYNTHESIS OF CADMIUM-DOPED TIN OXIDE NANOPARTICLES. International Journal of Nanoscience, 2006, 05, 91-98.	0.7	1
222	SYNTHESIS OF NANOCRYSTALLINE ANATASE TiO2 BY SOL–GEL METHOD. International Journal of Nanoscience, 2006, 05, 239-243.	0.7	1
223	Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation. Materials Chemistry and Physics, 2005, 90, 155-158.	4.0	101
224	Microwave-assisted synthesis of ceria nanoparticles. Materials Research Bulletin, 2005, 40, 1690-1695.	5.2	87
225	Effect of Mechanochemical Processing on Illite Particles. Particle and Particle Systems Characterization, 2005, 22, 207-211.	2.3	19
226	Synthesis of WO3/TiO2 nanocomposites via sol–gel method. Journal of Alloys and Compounds, 2005, 398, 200-202.	5 . 5	110
227	Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles. Journal of Alloys and Compounds, 2005, 402, 274-277.	5 . 5	80
228	In2O3 nanoparticles synthesized by mechanochemical processing. Scripta Materialia, 2004, 50, 413-415.	5.2	29
229	Mechanochemical synthesis of In2O3/CuO nanocomposites. Materials Chemistry and Physics, 2004, 86, 330-332.	4.0	7
230	Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Materials Research Bulletin, 2004, 39, 833-837.	5. 2	133
231	Synthesis of ZnFe2O4 nanocrystallites by mechanochemical reaction. Journal of Physics and Chemistry of Solids, 2004, 65, 1329-1332.	4.0	54
232	Preparation of CdO nanoparticles by mechanochemical reaction. Journal of Nanoparticle Research, 2004, 6, 539-542.	1.9	30
233	Synthesis of tin oxide nanoparticles by mechanochemical reaction. Journal of Alloys and Compounds, 2004, 363, 276-279.	5.5	94
234	Mechanochemical synthesis of cobalt oxide nanoparticles. Materials Letters, 2004, 58, 387-389.	2.6	128

#	Article	IF	CITATIONS
235	Cobalt Ferrite Nanoparticles Prepared by Coprecipitation/Mechanochemical Treatment. Chemistry Letters, 2004, 33, 826-827.	1.3	38
236	Preparation of antimony-doped SnO2 nanocrystallites. Materials Research Bulletin, 2002, 37, 2453-2458.	5.2	12