Ju-young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3878030/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced biaxial stretchability of wrinkled SiO2 thin films for stretchable encapsulation. Scripta Materialia, 2022, 207, 114280.	5.2	2
2	Colorful Transparent Silicon Photovoltaics with Unprecedented Flexibility. Advanced Functional Materials, 2022, 32, 2110435.	14.9	6
3	Ligament size effect in creep of nanoporous gold. International Journal of Plasticity, 2022, 150, 103192.	8.8	8
4	Highly Elastic and Corrosion-Resistive Metallic Glass Thin Films for Flexible Encapsulation. ACS Applied Materials & Interfaces, 2022, 14, 5578-5585.	8.0	9
5	Grain boundary-assisted resistance to crack propagation in nanoporous gold with fine grains. Scripta Materialia, 2022, 215, 114708.	5.2	7
6	Highly impermeable and flexible silica encapsulation films synthesized by sol—gel process. Nano Research, 2022, 15, 7476-7483.	10.4	3
7	Highly Efficient Self-Encapsulated Flexible Semitransparent Perovskite Solar Cells via Bifacial Cation Exchange. ACS Applied Materials & Interfaces, 2022, 14, 33297-33305.	8.0	11
8	Compressive Properties of Nanoporous Gold Through Nanoindentation: An Analytical Approach Based on the Expanding Cavity Model. Metals and Materials International, 2021, 27, 3787-3795.	3.4	2
9	Biodegradable Metallic Glass for Stretchable Transient Electronics. Advanced Science, 2021, 8, 2004029.	11.2	21
10	Direct 2D-to-3D transformation of pen drawings. Science Advances, 2021, 7, .	10.3	25
11	Solutionâ€Processed Stretchable Ag ₂ S Semiconductor Thin Films for Wearable Selfâ€Powered Nonvolatile Memory. Advanced Materials, 2021, 33, e2100066.	21.0	30
12	Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nature Communications, 2021, 12, 3550.	12.8	41
13	Memory Devices: Solutionâ€Processed Stretchable Ag ₂ S Semiconductor Thin Films for Wearable Selfâ€Powered Nonvolatile Memory (Adv. Mater. 23/2021). Advanced Materials, 2021, 33, 2170181.	21.0	0
14	Amorphous Alumina Film Robust under Cyclic Deformation: a Highly Impermeable and a Highly Flexible Encapsulation Material. ACS Applied Materials & Interfaces, 2021, 13, 46894-46901.	8.0	11
15	Surface residual stress in amorphous SiO2 insulating layer on Si substrate near a Cu through-silicon via (TSV) investigated by nanoindentation. Materials Science in Semiconductor Processing, 2021, 135, 106153.	4.0	9
16	Self-Healing of Nanoporous Gold Under Ambient Conditions. Nano Letters, 2020, 20, 6706-6711.	9.1	5
17	Tension-compression asymmetry in plasticity of nanoporous gold. Acta Materialia, 2020, 199, 340-351.	7.9	13
18	Ultralow-dielectric-constant amorphous boron nitride. Nature, 2020, 582, 511-514.	27.8	173

#	Article	IF	CITATIONS
19	3D Multiscale Gradient Pores Impregnated with Ag Nanowires for Simultaneous Pressure and Bending Detection with Enhanced Linear Sensitivity. Advanced Materials Technologies, 2020, 5, 1901041.	5.8	5
20	Instantaneous and Repeatable Self-Healing of Fully Metallic Electrodes at Ambient Conditions. ACS Applied Materials & Interfaces, 2019, 11, 41497-41505.	8.0	31
21	Highly Efficient Flexible Perovskite Light-Emitting Diodes Using the Modified PEDOT:PSS Hole Transport Layer and Polymer–Silver Nanowire Composite Electrode. ACS Applied Materials & Interfaces, 2019, 11, 39274-39282.	8.0	24
22	High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Science Advances, 2019, 5, eaaw2844.	10.3	215
23	Nanomechanical Approach for Flexibility of Organic–Inorganic Hybrid Perovskite Solar Cells. Nano Letters, 2019, 19, 3707-3715.	9.1	42
24	Incipient plasticity and fully plastic contact behavior of copper coated with a graphene layer. APL Materials, 2019, 7, .	5.1	11
25	Flexibility of Semitransparent Perovskite Light-Emitting Diodes Investigated by Tensile Properties of the Perovskite Layer. Nano Letters, 2019, 19, 971-976.	9.1	37
26	Flaw-Containing Alumina Hollow Nanostructures Have Ultrahigh Fracture Strength To Be Incorporated into High-Efficiency GaN Light-Emitting Diodes. Nano Letters, 2018, 18, 1323-1330.	9.1	9
27	Co-diffusion of boron and phosphorus for ultra-thin crystalline silicon solar cells. Journal Physics D: Applied Physics, 2018, 51, 275101.	2.8	3
28	Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 3417-3423.	14.6	109
29	Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure. Metals and Materials International, 2018, 24, 845-859.	3.4	5
30	Indentation size effect for spherical nanoindentation on nanoporous gold. Scripta Materialia, 2018, 143, 10-14.	5.2	24
31	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie, 2018, 130, 13461-13466.	2.0	108
32	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie - International Edition, 2018, 57, 13277-13282.	13.8	166
33	Microstructural effect on time-dependent plasticity of nanoporous gold. International Journal of Plasticity, 2018, 109, 108-120.	8.8	13
34	Twinned nanoporous gold with enhanced tensile strength. Acta Materialia, 2018, 155, 253-261.	7.9	30
35	Evaluation of tensile stress-strain curve of electroplated copper film by characterizing indentation size effect with a single nanoindentation. Metals and Materials International, 2017, 23, 76-81.	3.4	15
36	Directionality of residual stress evaluated by instrumented indentation testing using wedge indenter. Metals and Materials International, 2017, 23, 465-472.	3.4	16

#	Article	IF	CITATIONS
37	High Dielectric Performances of Flexible and Transparent Cellulose Hybrid Films Controlled by Multidimensional Metal Nanostructures. Advanced Materials, 2017, 29, 1700538.	21.0	106
38	Self-similarity in the structure of coarsened nanoporous gold. Scripta Materialia, 2017, 137, 46-49.	5.2	34
39	Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Science Advances, 2017, 3, e1602902.	10.3	204
40	Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nature Communications, 2017, 8, 14950.	12.8	167
41	Indentation size effect in nanoporous gold. Acta Materialia, 2017, 138, 52-60.	7.9	36
42	Research on flexible display at Ulsan National Institute of Science and Technology. Npj Flexible Electronics, 2017, 1, .	10.7	59
43	Nanolaminate of metallic glass and graphene with enhanced elastic modulus, strength, and ductility in tension. Scripta Materialia, 2017, 139, 63-66.	5.2	21
44	Critical bending radius of thin single-crystalline silicon with dome and pyramid surface texturing. Scripta Materialia, 2017, 140, 1-4.	5.2	17
45	Wall-thickness-dependent strength of nanotubular ZnO. Scientific Reports, 2017, 7, 4327.	3.3	6
46	Study on ductile mode machining of single-crystal silicon by mechanical machining. International Journal of Machine Tools and Manufacture, 2017, 113, 1-9.	13.4	41
47	A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries. Nanoscale, 2016, 8, 9245-9253.	5.6	47
48	Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates. Nanoscale, 2016, 8, 9504-9510.	5.6	65
49	Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Materials, 2016, 8, e299-e299.	7.9	83
50	Graphene Coatings as Barrier Layers to Prevent the Water-Induced Corrosion of Silicate Glass. ACS Nano, 2016, 10, 9794-9800.	14.6	58
51	Enhancement of Mechanical Hardness in SnO _{<i>x</i>} N _{<i>y</i>} with a Dense High-Pressure Cubic Phase of SnO ₂ . Chemistry of Materials, 2016, 28, 7051-7057.	6.7	23
52	Solutionâ€Processable Glass Lilâ€Li ₄ SnS ₄ Superionic Conductors for Allâ€Solidâ€State Liâ€Ion Batteries. Advanced Materials, 2016, 28, 1874-1883.	21.0	265
53	Amphiphilic Graft Copolymers as a Versatile Binder for Various Electrodes of Highâ€Performance Lithiumâ€ion Batteries. Small, 2016, 12, 3119-3127.	10.0	48
54	Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement. Nano Letters, 2016, 16, 2497-2502.	9.1	44

#	Article	IF	CITATIONS
55	Modeling and experimental verification for non-equibiaxial residual stress evaluated by Knoop indentations. Metals and Materials International, 2016, 22, 12-19.	3.4	17
56	Dependency of Electrochemical Performances of Silicon Lithium-Ion Batteries on Glycosidic Linkages of Polysaccharide Binders. ACS Applied Materials & amp; Interfaces, 2016, 8, 4042-4047.	8.0	56
57	Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability. Nano Letters, 2016, 16, 471-478.	9.1	265
58	Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing. Journal of Materials Science, 2015, 50, 7752-7759.	3.7	9
59	Estimation of principal directions of Bi-axial residual stress using instrumented Knoop indentation testing. Metals and Materials International, 2015, 21, 850-856.	3.4	17
60	Breathing silicon anodes for durable high-power operations. Scientific Reports, 2015, 5, 14433.	3.3	51
61	Amineâ€Based Interfacial Molecules for Inverted Polymerâ€Based Optoelectronic Devices. Advanced Materials, 2015, 27, 3553-3559.	21.0	77
62	Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode. Electronic Materials Letters, 2015, 11, 906-914.	2.2	38
63	Calibration of Nanoindentation Systems Based on the Reference Hardness of a Fused Silica. Journal of Korean Institute of Metals and Materials, 2015, 53, 162-168.	1.0	3
64	Assessment of surface-local strains from remnant microindents on a Zr-based metallic glass. Metals and Materials International, 2014, 20, 439-443.	3.4	9
65	Constitutive equations optimized for determining strengths of metallic alloys. Mechanics of Materials, 2014, 73, 51-57.	3.2	16
66	Contact morphology and constitutive equation in evaluating tensile properties of austenitic stainless steels through instrumented spherical indentation. Journal of Materials Science, 2013, 48, 232-239.	3.7	15
67	Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors. Scripta Materialia, 2013, 69, 720-723.	5.2	26
68	A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries. RSC Advances, 2013, 3, 12625.	3.6	53
69	Suppression of Catastrophic Failure in Metallic Glass–Polyisoprene Nanolaminate Containing Nanopillars. Advanced Functional Materials, 2012, 22, 1972-1980.	14.9	46
70	Determining effective radius and frame compliance in spherical nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 58-62.	5.6	10
71	Nanolaminates Utilizing Sizeâ€Dependent Homogeneous Plasticity of Metallic Glasses. Advanced Functional Materials, 2011, 21, 4550-4554.	14.9	143
72	Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Materialia, 2010, 58, 2355-2363.	7.9	299

#	Article	IF	CITATIONS
73	Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests. Journal of Materials Research, 2010, 25, 337-343.	2.6	49
74	Effective indenter radius and frame compliance in instrumented indentation testing using a spherical indenter. Journal of Materials Research, 2009, 24, 2965-2973.	2.6	20
75	Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Materialia, 2009, 57, 5245-5253. Effects of two gaps and paramagnetic pair breaking on the upper critical field of (mml:math	7.9	217
76	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mtext>SmFeAsO</mml:mtext></mml:mrow><m xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mtext>SmFeAsO</mml:mtext></mml:mrow><m< td=""><td>ıml:mrow> 3.2 ıml:mrow></td><td><mml:mn>0.8 <mml:mn>0.8</mml:mn></mml:mn></td></m<></mml:mrow></m </mml:mrow>	ıml:mrow> 3.2 ıml:mrow>	<mml:mn>0.8 <mml:mn>0.8</mml:mn></mml:mn>
77	Physical Review B, 2009, 80, . Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter. Acta Materialia, 2008, 56, 3338-3343.	7.9	46
78	Fundamental Differences in Mechanical Behavior between Two Types of Crystals at the Nanoscale. Physical Review Letters, 2008, 100, 155502.	7.8	283
79	Multiaxial deformation characteristic of a Zr-based bulk metallic glass: Variations of the plastic constraint factor underneath a spherical indenter. Journal of Materials Research, 2007, 22, 2895-2901.	2.6	1
80	Rate-dependent inhomogeneous-to-homogeneous transition of plastic flows during nanoindentation of bulk metallic glasses: Fact or artifact?. Applied Physics Letters, 2007, 90, 211906.	3.3	35
81	Influence of Indenter Geometry on the Deformation Behavior of Zr ₆₀ Cu ₃₀ Al ₁₀ Bulk Metallic Glass during Nanoindentation. Materials Transactions, 2007, 48, 1765-1769.	1.2	17
82	Influence of surface-roughness on indentation size effect. Acta Materialia, 2007, 55, 3555-3562.	7.9	134
83	Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 419, 196-201.	5.6	38
84	Determination of tensile properties by instrumented indentation technique: Representative stress and strain approach. Surface and Coatings Technology, 2006, 201, 4278-4283.	4.8	87
85	Mechanical characterization of nano-structured materials using nanoindentation. Metals and Materials International, 2006, 12, 219-223.	3.4	7
86	Surface roughness effect in instrumented indentation: A simple contact depth model and its verification. Journal of Materials Research, 2006, 21, 2975-2978.	2.6	65
87	On the Characterization of Thin Film-only Mechanical Property Based on the Indentation Image Analysis. Materials Research Society Symposia Proceedings, 2006, 976, 1.	0.1	0
88	"Graftingâ€From―Polymerization inside a Polyelectrolyte Hollow apsule Microreactor. Angewandte Chemie - International Edition, 2005, 44, 1096-1101.	13.8	52
89	"Graftingâ€From―Polymerization inside a Polyelectrolyte Hollowâ€Capsule Microreactor. Angewandte Chemie, 2005, 117, 1120-1125.	2.0	4
90	Depth-Dependent Hardness Characterization by Nanoindentation using a Berkovich Indenter with a Rounded Tip. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	1

#	Article	IF	CITATIONS
91	Stress-strain curves of flip-chip solder balls based on finite-element modeling of thermal displacements measured by electronic speckle pattern interferometry. Journal of Electronic Materials, 2003, 32, 1322-1329.	2.2	5
92	Determining Stress-strain Curves for Thin Films by Experimental/Computational Nanoindentation. Materials Research Society Symposia Proceedings, 2003, 795, 106.	0.1	5
93	Preparation of Gold-Polypyrrole Core-shell Nanoparticles. Molecular Crystals and Liquid Crystals, 2001, 371, 127-130.	0.3	3