
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3877765/publications.pdf Version: 2024-02-01

Μοριτοςμι ζλτο

#	Article	IF	CITATIONS
1	History-dependent physiological adaptation to lethal genetic modification under antibiotic exposure. ELife, 2022, 11, .	6.0	4
2	A red light–responsive photoswitch for deep tissue optogenetics. Nature Biotechnology, 2022, 40, 1672-1679.	17.5	22
3	Photoactivatable Cre knock-in mice for spatiotemporal control of genetic engineering in vivo. Laboratory Investigation, 2021, 101, 125-135.	3.7	7
4	Cell-Based Biosensor to Visualize Nitric Oxide Release from Living Cells for Toxicity Assessment. Methods in Molecular Biology, 2021, 2240, 57-64.	0.9	3
5	Optical Control of Genome Editing by Photoactivatable Cas9. Methods in Molecular Biology, 2021, 2312, 225-233.	0.9	0
6	Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119379.	3.9	7
7	An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. International Journal of Molecular Sciences, 2021, 22, 5252.	4.1	9
8	Repetitive shortâ€pulsed illumination efficiently activates photoactivatableâ€Cre as continuous illumination in embryonic stem cells and preâ€implantation embryos of transgenic mouse. Genesis, 2021, 59, e23457.	1.6	1
9	Cover Image, Volume 59, Issue 12. Genesis, 2021, 59, .	1.6	Ο
10	Optogenetic regulation of embryo implantation in mice using photoactivatable CRISPR-Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28579-28581.	7.1	4
11	The Cruciality of Single Amino Acid Replacement for the Spectral Tuning of Biliverdin-Binding Cyanobacteriochromes. International Journal of Molecular Sciences, 2020, 21, 6278.	4.1	4
12	Establishment of a tTA-dependent photoactivatable Cre recombinase knock-in mouse model for optogenetic genome engineering. Biochemical and Biophysical Research Communications, 2020, 526, 213-217.	2.1	12
13	Photoactivatable Cre recombinase 3.0 for in vivo mouse applications. Nature Communications, 2020, 11, 2141.	12.8	36
14	A split CRISPR–Cpf1 platform for inducible genome editing and gene activation. Nature Chemical Biology, 2019, 15, 882-888.	8.0	62
15	Biothiol-Activatable Bioluminescent Coelenterazine Derivative for Molecular Imaging in Vitro and in Vivo. Analytical Chemistry, 2019, 91, 9546-9553.	6.5	19
16	Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. International Journal of Molecular Sciences, 2019, 20, 2935.	4.1	11
17	Fine-Tuning of Hydrophobicity in Amphiphilic Polyaspartamide Derivatives for Rapid and Transient Expression of Messenger RNA Directed Toward Genome Engineering in Brain. ACS Central Science, 2019, 5, 1866-1875.	11.3	48
18	Nearâ€Infrared Optogenetic Genome Engineering Based on Photonâ€Upconversion Hydrogels. Angewandte Chemie, 2019, 131, 17991-17997.	2.0	12

#	Article	IF	CITATIONS
19	Nearâ€Infrared Optogenetic Genome Engineering Based on Photonâ€Upconversion Hydrogels. Angewandte Chemie - International Edition, 2019, 58, 17827-17833.	13.8	103
20	Photocontrollable mononegaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11587-11589.	7.1	12
21	Highly bright and stable NIR-BRET with blue-shifted coelenterazine derivatives for deep-tissue imaging of molecular events <i>in vivo</i> . Theranostics, 2019, 9, 2646-2661.	10.0	31
22	Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8301-8309.	7.1	46
23	Nearâ€Infrared Bioluminescence Imaging with a throughâ€Bond Energy Transfer Cassette. ChemBioChem, 2019, 20, 1919-1923.	2.6	15
24	Membrane Dynamics Induced by a Phosphatidylinositol 3,4,5-Trisphosphate Optogenetic Tool. Analytical Sciences, 2019, 35, 57-63.	1.6	6
25	Induction of Signal Transduction by Using Nonâ€Channelrhodopsinâ€Type Optogenetic Tools. ChemBioChem, 2018, 19, 1217-1231.	2.6	6
26	Molecular characterization of DXCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor. Journal of Biological Chemistry, 2018, 293, 1713-1727.	3.4	25
27	Highly Sensitive Bioluminescent Probe for Thiol Detection in Living Cells. Chemistry - an Asian Journal, 2018, 13, 648-655.	3.3	22
28	An allylated firefly luciferin analogue with luciferase specific response in living cells. Chemical Communications, 2018, 54, 1774-1777.	4.1	17
29	In vivo imaging of T cell lymphoma infiltration process at the colon. Scientific Reports, 2018, 8, 3978.	3.3	6
30	Cell membrane dynamics induction using optogenetic tools. Biochemical and Biophysical Research Communications, 2018, 506, 387-393.	2.1	9
31	Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9. Analytical Chemistry, 2018, 90, 429-439.	6.5	33
32	Manipulating Living Systems by Light. Seibutsu Butsuri, 2018, 58, 308-312.	0.1	0
33	Azide- and Dye-Conjugated Coelenterazine Analogues for a Multiplex Molecular Imaging Platform. Bioconjugate Chemistry, 2018, 29, 1922-1931.	3.6	23
34	Assembly Domain-Based Optogenetic System for the Efficient Control of Cellular Signaling. ACS Synthetic Biology, 2017, 6, 1086-1095.	3.8	14
35	Control of Adipogenic Differentiation in Mesenchymal Stem Cells via Endogenous Gene Activation Using CRISPR-Cas9. ACS Synthetic Biology, 2017, 6, 2191-2197.	3.8	25
36	CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nature Methods, 2017, 14, 963-966.	19.0	138

#	Article	IF	CITATIONS
37	Photoconversion and Fluorescence Properties of a Red/Green-Type Cyanobacteriochrome AM1_C0023g2 That Binds Not Only Phycocyanobilin But Also Biliverdin. Frontiers in Microbiology, 2016, 7, 588.	3.5	44
38	Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems. Scientific Reports, 2016, 6, 35777.	3.3	24
39	A photoactivatable Cre–loxP recombination system for optogenetic genome engineering. Nature Chemical Biology, 2016, 12, 1059-1064.	8.0	150
40	Genetically Encoded Fluorescent Indicators to Visualize Protein Phosphorylation in Living Cells. Methods in Molecular Biology, 2016, 1360, 149-156.	0.9	2
41	Asymmetrical diacylglycerol dynamics on the cytosolic and lumenal sides of a single endomembrane in living cells. Scientific Reports, 2015, 5, 12960.	3.3	5
42	A biliverdin-binding cyanobacteriochrome from the chlorophyll d–bearing cyanobacterium Acaryochloris marina. Scientific Reports, 2015, 5, 7950.	3.3	91
43	CRISPR-Cas9-based Photoactivatable Transcription System. Chemistry and Biology, 2015, 22, 169-174.	6.0	291
44	Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nature Communications, 2015, 6, 6256.	12.8	318
45	Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology, 2015, 33, 755-760.	17.5	521
46	Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution. Chemical Communications, 2015, 51, 391-394.	4.1	42
47	Genetically Engineered Photoinducible Homodimerization System with Improved Dimer-Forming Efficiency. ACS Chemical Biology, 2014, 9, 617-621.	3.4	48
48	Genetically Encoded Fluorescent Biosensors for Live Cell Imaging of Lipid Dynamics. Methods in Molecular Biology, 2014, 1071, 73-81.	0.9	4
49	Rapidly Reversible Manipulation of Molecular Activity with Dual Chemical Dimerizers. Angewandte Chemie - International Edition, 2013, 52, 6450-6454.	13.8	50
50	Fluorescence Imaging-Based High-Throughput Screening of Fast- and Slow-Cycling LOV Proteins. PLoS ONE, 2013, 8, e82693.	2.5	65
51	Fluorescent Probes to Visualize Lipid Messengers. Membrane, 2012, 37, 164-167.	0.0	0
52	Superluminescent Variants of Marine Luciferases for Bioassays. Analytical Chemistry, 2011, 83, 8732-8740.	6.5	85
53	Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells. Genes To Cells, 2011, 16, 608-616.	1.2	40
54	Hydrogen peroxide depletes phosphatidylinositol-3-phosphate from endosomes in a p38 MAPK-dependent manner and perturbs endocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 784-801.	4.1	21

#	Article	IF	CITATIONS
55	Genetically encoded fluorescent indicators to visualise protein phosphorylation by c-Jun NH ₂ -terminal kinase in living cells. Supramolecular Chemistry, 2010, 22, 434-439.	1.2	3
56	An efficient surface modification using 2-methacryloyloxyethyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel. Lab on A Chip, 2010, 10, 1937.	6.0	37
57	Genetically Encoded Bioluminescent Indicators for Stress Hormones. Analytical Chemistry, 2009, 81, 3760-3768.	6.5	15
58	Molecular Tension-Indexed Bioluminescent Probe for Determining Proteinâ^'Protein Interactions. Bioconjugate Chemistry, 2009, 20, 2324-2330.	3.6	23
59	Split Gaussia Luciferase-Based Bioluminescence Template for Tracing Protein Dynamics in Living Cells. Analytical Chemistry, 2009, 81, 67-74.	6.5	55
60	Cell-Based Fluorescent Indicator To Visualize Brain-Derived Neurotrophic Factor Secreted from Living Neurons. ACS Chemical Biology, 2008, 3, 352-358.	3.4	23
61	Circularly Permutated Bioluminescent Probes for Illuminating Ligand-Activated Protein Dynamics. Bioconjugate Chemistry, 2008, 19, 2480-2486.	3.6	17
62	Methods to Visualize Molecular Processes in Living Cells Based on Genetically Encoded Fluorescent Indicators. Bunseki Kagaku, 2008, 57, 219-226.	0.2	0
63	Genetically Encoded Fluorescent Indicators to Visualize Molecular Processes in Living Cells. Bulletin of the Chemical Society of Japan, 2008, 81, 183-192.	3.2	1
64	Epidermal Growth Factor Directs Sex-specific Steroid Signaling through Src Activation. Journal of Biological Chemistry, 2007, 282, 10697-10706.	3.4	38
65	Lipid Raft–Specific Knockdown of Src Family Kinase Activity Inhibits Cell Adhesion and Cell Cycle Progression of Breast Cancer Cells. Cancer Research, 2007, 67, 8139-8148.	0.9	47
66	Optical probes to identify the glucocorticoid receptor ligands in living cells. Steroids, 2007, 72, 949-954.	1.8	11
67	Integrated Molecule-Format Bioluminescent Probe for Visualizing Androgenicity of Ligands Based on the Intramolecular Association of Androgen Receptor with Its Recognition Peptide. Analytical Chemistry, 2007, 79, 1874-1880.	6.5	39
68	Genetically Encoded Fluorescent Indicators To Visualize Protein Phosphorylation by Extracellular Signal-Regulated Kinase in Single Living Cells. Analytical Chemistry, 2007, 79, 2570-2575.	6.5	64
69	A fluorescent indicator to visualize ligand-induced receptor/coactivator interactions for screening of peroxisome proliferator-activated receptor γ ligands in living cells. Biosensors and Bioelectronics, 2007, 22, 2564-2569.	10.1	13
70	Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nature Methods, 2007, 4, 413-419.	19.0	271
71	Cell-Based Indicator to Visualize Picomolar Dynamics of Nitric Oxide Release from Living Cells. Analytical Chemistry, 2006, 78, 8175-8182.	6.5	70
72	Measurement of intracellular IP3 during Ca2+ oscillations in mouse eggs with GFP-based FRET probe. Biochemical and Biophysical Research Communications, 2006, 345, 781-788.	2.1	27

#	Article	IF	CITATIONS
73	Imaging diacylglycerol dynamics at organelle membranes. Nature Methods, 2006, 3, 797-799.	19.0	68
74	Imaging molecular events in single living cells. Analytical and Bioanalytical Chemistry, 2006, 386, 435-443.	3.7	10
75	A Fluorescent Indicator To Visualize Activities of the Androgen Receptor Ligands in Single Living Cells. Angewandte Chemie - International Edition, 2006, 45, 2707-2712.	13.8	32
76	Ginsenoside Re, a Main Phytosterol of Panax ginseng, Activates Cardiac Potassium Channels via a Nongenomic Pathway of Sex Hormones. Molecular Pharmacology, 2006, 70, 1916-1924.	2.3	91
77	FRET-based reporters for intracellular enzyme activity. , 2005, , .		0
78	Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14515-14520.	7.1	77
79	Locating Inositol 1,4,5-Trisphosphate in the Nucleus and Neuronal Dendrites with Genetically Encoded Fluorescent Indicators. Analytical Chemistry, 2005, 77, 4751-4758.	6.5	52
80	A Genetically Encoded Fluorescent Indicator Capable of Discriminating Estrogen Agonists from Antagonists in Living Cells. Analytical Chemistry, 2004, 76, 2181-2186.	6.5	48
81	Single Color Fluorescent Indicators of Protein Phosphorylation for Multicolor Imaging of Intracellular Signal Flow Dynamics. Analytical Chemistry, 2004, 76, 6144-6149.	6.5	58
82	Imaging protein phosphorylation by fluorescence in single living cells. Methods, 2004, 32, 451-455.	3.8	39
83	A genetic approach to identifying mitochondrial proteins. Nature Biotechnology, 2003, 21, 287-293.	17.5	127
84	Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nature Cell Biology, 2003, 5, 1016-1022.	10.3	169
85	Locating a Proteinâ^'Protein Interaction in Living Cells via SplitRenillaLuciferase Complementation. Analytical Chemistry, 2003, 75, 4176-4181.	6.5	107
86	Fluorescent Indicators for Akt/Protein Kinase B and Dynamics of Akt Activity Visualized in Living Cells. Journal of Biological Chemistry, 2003, 278, 30945-30951.	3.4	130
87	Potentiometric selectivity coefficients of ion-selective electrodes. Part II. Inorganic anions (IUPAC) Tj ETQq1 1 0.	784314 rg 1.9	BT /Overloc
88	Methods of Analysis for Chemicals that Promote/Disrupt Cellular Signaling Analytical Sciences, 2002, 18, 503-516.	1.6	12
89	Probing Chemical Processes in Living Cells: Applications for Assay and Screening of Chemicals that Disrupt Cellular Signaling Pathways. Bulletin of the Chemical Society of Japan, 2002, 75, 1423-1433.	3.2	3
90	Fluorescent indicators for imaging protein phosphorylation in single living cells. Nature Biotechnology, 2002, 20, 287-294.	17.5	268

#	Article	IF	CITATIONS
91	Imaging of Conformational Changes of Proteins with a New Environment-Sensitive Fluorescent Probe Designed for Site-Specific Labeling of Recombinant Proteins in Live Cells. Analytical Chemistry, 2001, 73, 2920-2928.	6.5	82
92	Split Luciferase as an Optical Probe for Detecting Proteinâ^'Protein Interactions in Mammalian Cells Based on Protein Splicing. Analytical Chemistry, 2001, 73, 2516-2521.	6.5	255
93	Protein Splicing-Based Reconstitution of Split Green Fluorescent Protein for Monitoring Proteinâ ^Protein Interactions in Bacteria:Â Improved Sensitivity and Reduced Screening Time. Analytical Chemistry, 2001, 73, 5866-5874.	6.5	83
94	Screening method for substrates of multidrug resistance-associated protein. Analytica Chimica Acta, 2000, 423, 197-203.	5.4	5
95	Fluorescent Indicators for Cyclic GMP Based on Cyclic GMP-Dependent Protein Kinase Iα and Green Fluorescent Proteins. Analytical Chemistry, 2000, 72, 5918-5924.	6.5	124
96	An SPR-Based Screening Method for Agonist Selectivity for Insulin Signaling Pathways Based on the Binding of Phosphotyrosine to Its Specific Binding Protein. Analytical Chemistry, 2000, 72, 6-11.	6.5	51
97	A Fluorescent Indicator for Detecting Proteinâ^'Protein Interactions in Vivo Based on Protein Splicing. Analytical Chemistry, 2000, 72, 5151-5157.	6.5	134
98	A Fluorescent Indicator for Tyrosine Phosphorylation-Based Insulin Signaling Pathways. Analytical Chemistry, 1999, 71, 3948-3954.	6.5	36
99	An Assay Method for Evaluating Chemical Selectivity of Agonists for Insulin Signaling Pathways Based on Agonist-Induced Phosphorylation of a Target Peptide. Analytical Chemistry, 1998, 70, 2345-2352.	6.5	17