Robert T Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3877404/publications.pdf

Version: 2024-02-01

		186265	1	138484
59	4,568	28		58
papers	citations	h-index		g-index
(2)	(2)	(2)		2070
62	62	62		3878
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Use of the Inactivated Intranasal Influenza Vaccine and the Risk of Bell's Palsy in Switzerland. New England Journal of Medicine, 2004, 350, 896-903.	27.0	810
2	The Guillain–Barré Syndrome and the 1992–1993 and 1993–1994 Influenza Vaccines. New England Journal of Medicine, 1998, 339, 1797-1802.	27.0	489
3	The vaccine adverse event reporting system (VAERS). Vaccine, 1994, 12, 542-550.	3.8	342
4	Understanding vaccine safety information from the Vaccine Adverse Event Reporting System. Pediatric Infectious Disease Journal, 2004, 23, 287-294.	2.0	323
5	Vaccinations and Risk of Central Nervous System Demyelinating Diseases in Adults. Archives of Neurology, 2003, 60, 504.	4.5	233
6	Population-based study of rotavirus vaccination and intussusception. Pediatric Infectious Disease Journal, 2001, 20, 410-416.	2.0	210
7	Vaccine adverse events: causal or coincidental?. Lancet, The, 1998, 351, 611-612.	13.7	157
8	Confounding in Studies of Adverse Reactions to Vaccines. American Journal of Epidemiology, 1992, 136, 121-135.	3.4	152
9	Vaccine risks: real, perceived and unknown. Vaccine, 1999, 17, S41-S46.	3.8	139
10	Active Surveillance of Vaccine Safety. Epidemiology, 2005, 16, 336-341.	2.7	137
11	The Brighton Collaboration: addressing the need for standardized case definitions of adverse events following immunization (AEFI). Vaccine, 2002, 21, 298-302.	3.8	134
12	Epidemiology of Autoimmune Reactions Induced by Vaccination. Journal of Autoimmunity, 2001, 16, 309-318.	6.5	129
13	Prevalence of Anti-Gelatin IgE Antibodies in People With Anaphylaxis After Measles-Mumps-Rubella Vaccine in the United States. Pediatrics, 2002, 110, e71-e71.	2.1	108
14	Consensus summary report for CEPI/BC March 12–13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine, 2020, 38, 4783-4791.	3.8	102
15	Vaccine Safety: Current and Future Challenges. Pediatric Annals, 1998, 27, 445-455.	0.8	93
16	Surveillance for safety after immunization: Vaccine Adverse Event Reporting System (VAERS)United States, 1991-2001. MMWR Surveillance Summaries, 2003, 52, 1-24.	34.6	90
17	Comparative Safety of Two Recombinant Hepatitis B Vaccines in Children. Journal of Clinical Epidemiology, 1998, 51, 503-510.	5.0	62
18	Live virus vaccines based on a yellow fever vaccine backbone: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 2015, 33, 62-72.	3.8	56

#	Article	IF	Citations
19	Outbreak of pyogenic abscesses after diphtheria and tetanus toxoids and pertussis vaccination. Pediatric Infectious Disease Journal, 1993, 12, 368-371.	2.0	54
20	Live virus vaccines based on a vesicular stomatitis virus (VSV) backbone: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 2016, 34, 6597-6609.	3.8	53
21	Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 2021, 39, 3081-3101.	3.8	51
22	The Brighton Collaboration: enhancing comparability of vaccine safety data. Pharmacoepidemiology and Drug Safety, 2003, 12, 335-340.	1.9	50
23	Guidelines for collection, analysis and presentation of vaccine safety data in pre- and post-licensure clinical studies. Vaccine, 2009, 27, 2282-2288.	3.8	48
24	Enhancing vaccine safety capacity globally: A lifecycle perspective. Vaccine, 2015, 33, D46-D54.	3.8	41
25	Vaccine safety surveillance using large linked databases: opportunities, hazards and proposed guidelines. Expert Review of Vaccines, 2003, 2, 21-29.	4.4	38
26	Standardized case definitions of adverse events following immunization (AEFI). Vaccine, 2004, 22, 547-550.	3.8	38
27	The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform. Vaccine, 2021, 39, 3067-3080.	3.8	36
28	Myocarditis: the unexpected return of smallpox vaccine adverse events. Lancet, The, 2003, 362, 1345-1346.	13.7	32
29	Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains. Vaccine, 2016, 34, 6610-6616.	3.8	32
30	The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). Vaccine, 2015, 33, 73-75.	3.8	26
31	Roadmap for the international collaborative epidemiologic monitoring of safety and effectiveness of new high priority vaccines. Vaccine, 2013, 31, 3623-3627.	3.8	25
32	Evaluation of vaccine safety after the events of 11 September 2001: role of cohort and case-control studies. Vaccine, 2004, 22, 2047-2053.	3.8	21
33	Adventitious agents and live viral vectored vaccines: Considerations for archiving samples of biological materials for retrospective analysis. Vaccine, 2016, 34, 6617-6625.	3.8	21
34	Effect of point-of-care CD4 cell count results on linkage to care and antiretroviral initiation during a home-based HIV testing campaign: a non-blinded, cluster-randomised trial. Lancet HIV,the, 2017, 4, e393-e401.	4.7	19
35	Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines. Vaccine, 2019, 37, 5796-5802.	3.8	18
36	Template protocol for clinical trials investigating vaccinesâ€"Focus on safety elements. Vaccine, 2013, 31, 5602-5620.	3.8	17

#	Article	IF	CITATIONS
37	INDICATIONS FOR MEASLES-MUMPS-RUBELLA VACCINATION IN A CHILD WITH PRIOR THROMBOCYTOPENIA PURPURA. Pediatric Infectious Disease Journal, 1997, 16, 423-424.	2.0	17
38	Investigation of an outbreak of hypersensitivity-type reactions during the 2004 national measles-mumps-rubella vaccination campaign in Brazil. Vaccine, 2013, 31, 950-954.	3.8	16
39	Special Methodological Issues in Pharmacoepidemiology Studies of Vaccine Safety., 0,, 455-485.		15
40	Vaccination and unexplained sudden death risk in Taiwanese infants. Pharmacoepidemiology and Drug Safety, 2017, 26, 17-25.	1.9	12
41	A Process for Sentinel Case Review to Assess Causal Relationships between Smallpox Vaccination and Adverse Outcomes, 2003–2004. Clinical Infectious Diseases, 2008, 46, S271-S293.	5.8	11
42	Laboratory-based performance evaluation of PIMA CD4 + T-lymphocyte count point-of-care by lay-counselors in Kenya. Journal of Immunological Methods, 2017, 448, 44-50.	1.4	11
43	The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of nucleic acid (RNA and DNA) vaccines. Vaccine, 2020, 38, 5556-5561.	3.8	9
44	Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 2022, 40, 5248-5262.	3.8	9
45	How to ensure we can track and trace global use of COVID-19 vaccines?. Vaccine, 2021, 39, 176-179.	3.8	8
46	Advancing the Science of Vaccine Safety During the Coronavirus Disease 2019 (COVID-19) Pandemic and Beyond: Launching an International Network of Special Immunization Services. Clinical Infectious Diseases, 2022, 75, S11-S17.	5.8	8
47	Preparing for the availability of a partially effective HIV vaccine: Some lessons from other licensed vaccines. Vaccine, 2011, 29, 6072-6078.	3.8	7
48	Enhancing Vaccine Safety Capacity Globally. American Journal of Preventive Medicine, 2015, 49, S364-S376.	3.0	6
49	The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of inactivated viral vaccines. Vaccine, 2020, 38, 6184-6189.	3.8	6
50	The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of protein vaccines. Vaccine, 2020, 38, 5734-5739.	3.8	6
51	Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) standardized template for collection of key information for benefit-risk assessment of live-attenuated viral vaccines. Vaccine, 2020, 38, 7702-7707.	3.8	6
52	Evolving pharmacovigilance requirements with novel vaccines and vaccine components. BMJ Global Health, 2021, 6, e003403.	4.7	6
53	Suitability of databases in the <scp>Asiaâ€Pacific</scp> for collaborative monitoring of vaccine safety. Pharmacoepidemiology and Drug Safety, 2021, 30, 843-857.	1.9	5
54	The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of viral vector vaccines. Vaccine, 2020, 38, 7708-7715.	3.8	4

ROBERT T CHEN

#	Article	IF	CITATIONS
55	The Brighton Collaboration standardized templates for collection of key information for benefit-risk assessment of vaccines by technology (BRAVATO; formerly V3SWG). Vaccine, 2021, 39, 3050-3052.	3.8	3
56	A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for the Moderna COVID-19 Vaccine (mRNA-1273). Vaccine, 2022, 40, 5275-5293.	3.8	3
57	Hospital-based collaboration for epidemiological investigation of vaccine safety: A potential solution for low and middle-income countries?. Vaccine, 2018, 36, 345-346.	3.8	2
58	A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for an inactivated viral vaccine against Chikungunya virus. Vaccine, 2022, 40, 5263-5274.	3.8	2
59	Special Methodological Issues in Pharmacoepidemiology Studies of Vaccine Safety. , 0, , 707-732.		0