Bettina Lotsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3877144/publications.pdf

Version: 2024-02-01

232 papers 20,931 citations

73 h-index

9786

139 g-index

249 all docs 249 docs citations

times ranked

249

20408 citing authors

#	Article	IF	CITATIONS
1	A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications, 2015, 6, 8508.	12.8	940
2	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	30.8	894
3	A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chemical Science, 2014, 5, 2789-2793.	7.4	847
4	Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculationsâ€"Structural Characterization of a Carbon Nitride Polymer. Chemistry - A European Journal, 2007, 13, 4969-4980.	3.3	778
5	Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution. Journal of the American Chemical Society, 2014, 136, 1730-1733.	13.7	614
6	Bottom-up assembly of photonic crystals. Chemical Society Reviews, 2013, 42, 2528-2554.	38.1	606
7	Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nature Communications, 2016, 7, 11696.	12.8	591
8	Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nature Communications, 2016, 7, 12165.	12.8	586
9	Triazineâ €b ased Carbon Nitrides for Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2013, 52, 2435-2439.	13.8	401
10	Polymer photocatalysts for solar-to-chemical energy conversion. Nature Reviews Materials, 2021, 6, 168-190.	48.7	361
11	Low-Molecular-Weight Carbon Nitrides for Solar Hydrogen Evolution. Journal of the American Chemical Society, 2015, 137, 1064-1072.	13.7	321
12	H ₂ Evolution with Covalent Organic Framework Photocatalysts. ACS Energy Letters, 2018, 3, 400-409.	17.4	318
13	Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chemical Society Reviews, 2020, 49, 8469-8500.	38.1	315
14	Exploiting Noncovalent Interactions in an Imineâ€Based Covalent Organic Framework for Quercetin Delivery. Advanced Materials, 2016, 28, 8749-8754.	21.0	302
15	Single-Site Photocatalytic H ₂ Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts. Journal of the American Chemical Society, 2017, 139, 16228-16234.	13.7	292
16	Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride–Molecular Ni Catalyst System. Journal of the American Chemical Society, 2016, 138, 9183-9192.	13.7	285
17	Poly(triazine imide) with Intercalation of Lithium and Chloride Ions [(C ₃ N ₃) ₂ (NH _{<i>x</i>} Li _{1â^'<i>x</i>}) ₃ 34 Crystalline 2D Carbon Nitride Network. Chemistry - A European Journal, 2011, 17, 3213-3221.	:ub 3.â kLi0	Cl]283
18	Nanofabrication by self-assembly. Materials Today, 2009, 12, 12-23.	14.2	268

#	Article	IF	CITATIONS
19	A new ultrafast superionic Li-conductor: ion dynamics in Li ₁₁ Si ₂ PS ₁₂ and comparison with other tetragonal LGPS-type electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 14669-14674.	2.8	256
20	Sustained Solar H ₂ Evolution from a Thiazolo[5,4- <i>d</i>]thiazole-Bridged Covalent Organic Framework and Nickel-Thiolate Cluster in Water. Journal of the American Chemical Society, 2019, 141, 11082-11092.	13.7	239
21	Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy and Environmental Science, 2015, 8, 3345-3353.	30.8	238
22	Ureaâ€Modified Carbon Nitrides: Enhancing Photocatalytic Hydrogen Evolution by Rational Defect Engineering. Advanced Energy Materials, 2017, 7, 1602251.	19.5	238
23	Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling realÂstructure analysis. Nature Communications, 2018, 9, 2600.	12.8	232
24	Nitrogen-Rich Covalent Triazine Frameworks as High-Performance Platforms for Selective Carbon Capture and Storage. Chemistry of Materials, 2015, 27, 8001-8010.	6.7	228
25	New Light on an Old Story: Formation of Melam during Thermal Condensation of Melamine. Chemistry - A European Journal, 2007, 13, 4956-4968.	3.3	224
26	Stacking the Nanochemistry Deck: Structural and Compositional Diversity in Oneâ€Dimensional Photonic Crystals. Advanced Materials, 2009, 21, 1641-1646.	21.0	223
27	Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes. Energy and Environmental Science, 2013, 6, 3548.	30.8	223
28	Soft Photocatalysis: Organic Polymers for Solar Fuel Production. Chemistry of Materials, 2016, 28, 5191-5204.	6.7	208
29	Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Timeâ€Delayed Hydrogen Generation. Angewandte Chemie - International Edition, 2017, 56, 510-514.	13.8	204
30	From Triazines to Heptazines:  Novel Nonmetal Tricyanomelaminates as Precursors for Graphitic Carbon Nitride Materials. Chemistry of Materials, 2006, 18, 1891-1900.	6.7	203
31	Tunable Water and CO ₂ Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering. Chemistry of Materials, 2015, 27, 7874-7881.	6.7	192
32	Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS. Science Advances, 2016, 2, e1601742.	10.3	182
33	Synthetic routes toward MOF nanomorphologies. Journal of Materials Chemistry, 2012, 22, 10119.	6.7	176
34	New Light on an Old Story: Perovskites Go Solar. Angewandte Chemie - International Edition, 2014, 53, 635-637.	13.8	175
35	Ultrathin 2D Coordination Polymer Nanosheets by Surfactant-Mediated Synthesis. Journal of the American Chemical Society, 2013, 135, 6157-6164.	13.7	173
36	Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst. Angewandte Chemie - International Edition, 2014, 53, 11538-11542.	13.8	170

#	Article	IF	Citations
37	Chemical Principles of Topological Semimetals. Chemistry of Materials, 2018, 30, 3155-3176.	6.7	166
38	A fluorene based covalent triazine framework with high CO ₂ and H ₂ capture and storage capacities. Journal of Materials Chemistry A, 2014, 2, 5928-5936.	10.3	159
39	lonothermal Synthesis of Imideâ€Linked Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 15750-15758.	13.8	158
40	Vertical 2D Heterostructures. Annual Review of Materials Research, 2015, 45, 85-109.	9.3	153
41	Structural Insights into Poly(Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis. Chemistry of Materials, 2019, 31, 7478-7486.	6.7	151
42	Tailorâ€Made Photoconductive Pyreneâ€Based Covalent Organic Frameworks for Visibleâ€Light Driven Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1703278.	19.5	148
43	Ruthenium Oxide Nanosheets for Enhanced Oxygen Evolution Catalysis in Acidic Medium. Advanced Energy Materials, 2019, 9, 1803795.	19.5	147
44	One-dimensional metal–organic framework photonic crystals used as platforms for vapor sorption. Journal of Materials Chemistry, 2012, 22, 10356.	6.7	144
45	Clay Bragg Stack Optical Sensors. Advanced Materials, 2008, 20, 4079-4084.	21.0	139
46	Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nature Physics, 2018, 14, 178-183.	16.7	129
47	Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nature Catalysis, 2020, 3, 55-63.	34.4	124
48	Rational Design of Covalent Cobaloxime–Covalent Organic Framework Hybrids for Enhanced Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 12146-12156.	13.7	123
49	Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Physical Chemistry Chemical Physics, 2013, 15, 11620.	2.8	121
50	A functional triazine framework based on N-heterocyclic building blocks. Journal of Materials Chemistry, 2012, 22, 13956.	6.7	118
51	Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe. Science Advances, 2018, 4, eaar2317.	10.3	110
52	Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides. Advanced Materials, 2018, 30, 1705477.	21.0	110
53	Photonic Clays: A New Family of Functional 1D Photonic Crystals. ACS Nano, 2008, 2, 2065-2074.	14.6	105
54	Structure elucidation of polyheptazine imide by electron diffractionâ€"a templated 2D carbon nitride network. Chemical Communications, 2009, , 1541.	4.1	104

#	Article	lF	CITATIONS
55	How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study. ACS Energy Letters, 2020, 5, 910-915.	17.4	98
56	Structure–property–activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. Faraday Discussions, 2017, 201, 247-264.	3.2	97
57	Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors. Chemistry of Materials, 2005, 17, 3976-3982.	6.7	96
58	Tuning the stacking behaviour of a 2D covalent organic framework through non-covalent interactions. Materials Chemistry Frontiers, 2017, 1, 1354-1361.	5.9	95
59	Amine-Linked Covalent Organic Frameworks as a Platform for Postsynthetic Structure Interconversion and Pore-Wall Modification. Journal of the American Chemical Society, 2021, 143, 3430-3438.	13.7	95
60	Tandem MOF-Based Photonic Crystals for Enhanced Analyte-Specific Optical Detection. Chemistry of Materials, 2015, 27, 1961-1970.	6.7	94
61	Relevance of solid electrolytes for lithium-based batteries: A realistic view. Journal of Electroceramics, 2017, 38, 128-141.	2.0	94
62	Humidity-Enhanced Thermally Tunable TiO ₂ /SiO ₂ Bragg Stacks. Journal of Physical Chemistry C, 2012, 116, 298-305.	3.1	92
63	Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl ₃ Nanosheets. Nano Letters, 2016, 16, 3578-3584.	9.1	89
64	Non-symmorphic band degeneracy at the Fermi level in ZrSiTe. New Journal of Physics, 2016, 18, 125014.	2.9	88
65	Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF–Guest Polyhedra. Journal of the American Chemical Society, 2018, 140, 6130-6136.	13.7	87
66	Touchless Optical Finger Motion Tracking Based on 2D Nanosheets with Giant Moisture Responsiveness. Advanced Materials, 2015, 27, 6341-6348.	21.0	86
67	Vapor-Sensitive Bragg Mirrors and Optical Isotherms from Mesoporous Nanoparticle Suspensions. ACS Nano, 2009, 3, 1669-1676.	14.6	83
68	Sub-stoichiometric 2D covalent organic frameworks from tri- and tetratopic linkers. Nature Communications, 2019, 10, 2689.	12.8	83
69	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	21.0	82
70	A Tourâ€Guide through Carbon Nitrideâ€Land: Structure―and Dimensionalityâ€Dependent Properties for Photo(Electro)Chemical Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2101078.	19.5	81
71	Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework. Chemical Science, 2020, 11, 12647-12654.	7.4	80
72	Organic polymers form fuel from water. Nature, 2015, 521, 41-42.	27.8	76

#	Article	IF	CITATIONS
73	Cross-Linking Bi2S3 Ultrathin Nanowires: A Platform for Nanostructure Formation and Biomolecule Detection. Nano Letters, 2009, 9, 1482-1486.	9.1	75
74	Toward Fluorinated Spacers for MAPI-Derived Hybrid Perovskites: Synthesis, Characterization, and Phase Transitions of (FC ₂ H ₄ NH ₃) ₂ PbCl ₄ . Chemistry of Materials, 2016, 28, 6560-6566.	6.7	74
75	IrOOH nanosheets as acid stable electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 21558-21566.	10.3	72
76	Molecular Insights into Carbon Dioxide Sorption in Hydrazone-Based Covalent Organic Frameworks with Tertiary Amine Moieties. Chemistry of Materials, 2019, 31, 1946-1955.	6.7	71
77	Analyte Detection with Cu-BTC Metal–Organic Framework Thin Films by Means of Mass-Sensitive and Work-Function-Based Readout, Analytical Chemistry 2014 86, 6948-6958 Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/Mt"><mml:mrow><mml:mi>Cr</mml:mi><mml:msub><mml:mi< td=""><td>6.5</td><td>70</td></mml:mi<></mml:msub></mml:mrow></mml:math>	6.5	70
78	mathvariant="normal">I <mml:mn>3</mml:mn> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/Mt"><mml:mrow><mml:mi>CrB</mml:mi><mml:msub><mml:msub></mml:msub></mml:msub><td>2.4</td><td>70</td></mml:mrow></mml:math>	2.4	70
79	mathvariant="normal">r <mml:mn>3</mml:mn> . Physi Additive-mediated size control of MOF nanoparticles. CrystEngComm, 2013, 15, 9296.	2.6	69
80	Flat Optical Conductivity in ZrSiS due to Two-Dimensional Dirac Bands. Physical Review Letters, 2017, 119, 187401.	7.8	68
81	Facile Fabrication of Ultrathin Metal–Organic Framework-Coated Monolayer Colloidal Crystals for Highly Efficient Vapor Sensing. Chemistry of Materials, 2015, 27, 7601-7609.	6.7	67
82	Interfacial Engineering for Improved Photocatalysis in a Charge Storing 2D Carbon Nitride: Melamine Functionalized Poly(heptazine imide). Advanced Energy Materials, 2021, 11, 2003016.	19.5	64
83	Morphology Control in 2D Carbon Nitrides: Impact of Particle Size on Optoelectronic Properties and Photocatalysis. Advanced Functional Materials, 2021, 31, 2102468.	14.9	63
84	Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chemical Communications, 2012, 48, 6169.	4.1	62
85	Spin-Split Band Hybridization in Graphene Proximitized with α-RuCl ₃ Nanosheets. Nano Letters, 2019, 19, 4659-4665.	9.1	62
86	Tackling the stacking disorder of melonâ€"structure elucidation in a semicrystalline material. Physical Chemistry Chemical Physics, 2010, 12, 2227.	2.8	60
87	Interlayer Interactions as Design Tool for Large-Pore COFs. Journal of the American Chemical Society, 2021, 143, 15711-15722.	13.7	60
88	Thermodynamic Equilibria in Carbon Nitride Photocatalyst Materials and Conditions for the Existence of Graphitic Carbon Nitride g-C ₃ N ₄ . Chemistry of Materials, 2017, 29, 4445-4453.	6.7	58
89	Lesson Learned from NMR: Characterization and lonic Conductivity of LGPS-like Li ₇ SiPS ₈ . Chemistry of Materials, 2019, 31, 1280-1288.	6.7	57
90	Separation of nucleoside monophosphates using preferential anion exchange intercalation in layered double hydroxides. Solid State Sciences, 2001, 3, 883-886.	3.2	54

#	Article	IF	CITATIONS
91	Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Timeâ€Delayed Hydrogen Generation. Angewandte Chemie, 2017, 129, 525-529.	2.0	54
92	Lithium Charge Storage Mechanisms of Cross-Linked Triazine Networks and Their Porous Carbon Derivatives. Chemistry of Materials, 2015, 27, 3821-3829.	6.7	53
93	Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Science Robotics, 2022, 7, eabm1421.	17.6	52
94	Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24748-24756.	7.1	51
95	Conductivity Mechanism in Ionic 2D Carbon Nitrides: From Hydrated Ion Motion to Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2107061.	21.0	49
96	Surface Floating 2D Bands in Layered Nonsymmorphic Semimetals: ZrSiS and Related Compounds. Physical Review X, 2017, 7, .	8.9	48
97	Proximate ferromagnetic state in the Kitaev model material \hat{l}_{\pm} -RuCl3. Nature Communications, 2021, 12, 4512.	12.8	47
98	Li _{0.6} [Li _{0.2} Sn _{0.8} S ₂] – a layered lithium superionic conductor. Energy and Environmental Science, 2016, 9, 2578-2585.	30.8	46
99	Cationically Charged Mn ^{II} Al ^{III} LDH Nanosheets by Chemical Exfoliation and Their Use As Building Blocks in Graphene Oxide-Based Materials. Langmuir, 2013, 29, 9199-9207.	3.5	43
100	Photocatalytic Oxidation of Sulfinates to Vinyl Sulfones with Cyanamideâ€Functionalised Carbon Nitride. European Journal of Organic Chemistry, 2017, 2017, 2179-2185.	2.4	43
101	Scalable production of nitrogen-doped carbons for multilayer lithium-sulfur battery cells. Carbon, 2020, 161, 190-197.	10.3	43
102	Low-Cost Thermo-Optic Imaging Sensors: A Detection Principle Based on Tunable One-Dimensional Photonic Crystals. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1575-1582.	8.0	41
103	Homonuclear Mixedâ€Valent Cobalt Imidazolate Framework for Oxygenâ€Evolution Electrocatalysis. Chemistry - A European Journal, 2016, 22, 3676-3680.	3.3	41
104	Optoelectronics Meets Optoionics: Light Storing Carbon Nitrides and Beyond. Advanced Energy Materials, 2021, 11, 2003049.	19.5	41
105	Understanding disorder and linker deficiency in porphyrinic zirconium-based metal–organic frameworks by resolving the Zr8O6 cluster conundrum in PCN-221. Nature Communications, 2021, 12, 3099.	12.8	41
106	Biogenic metal–organic frameworks: 2,5-Furandicarboxylic acid as versatile building block. Microporous and Mesoporous Materials, 2013, 181, 217-221.	4.4	40
107	Lithium Tin Sulfide—a Highâ€Refractiveâ€Index 2D Material for Humidityâ€Responsive Photonic Crystals. Advanced Functional Materials, 2018, 28, 1705740.	14.9	40
108	Towards novel C–N materials: crystal structures of two polymorphs of guanidinium dicyanamide and their thermal conversion into melamine. New Journal of Chemistry, 2004, 28, 1129-1136.	2.8	39

#	Article	IF	CITATIONS
109	Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Science Advances, 2020, 6, eabb5976.	10.3	39
110	Characterization of the Thermally Induced Topochemical Solid-State Transformation of NH4[N(CN)2] into NCNC(NH2)2by Means of X-ray and Neutron Diffraction as Well as Raman and Solid-State NMR Spectroscopy. Inorganic Chemistry, 2004, 43, 895-904.	4.0	38
111	Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst. Angewandte Chemie, 2014, 126, 11722-11726.	2.0	38
112	A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li _{$4xSn1a^*xS2solid solutions. Journal of Materials Chemistry A, 2014, 2, 6100-6106.$}	10.3	38
113	Towards the Nanosheetâ€Based Photonic Nose: Vapor Recognition and Trace Water Sensing with Antimony Phosphate Thin Film Devices. Advanced Materials, 2016, 28, 7436-7442.	21.0	38
114	Relaxed Current Matching Requirements in Highly Luminescent Perovskite Tandem Solar Cells and Their Fundamental Efficiency Limits. ACS Energy Letters, 2021, 6, 612-620.	17.4	38
115	Optical gap in herringbone and ï€-stacked crystals of [1]benzothieno[3,2-b]benzothiophene and its brominated derivative. CrystEngComm, 2014, 16, 7389-7392.	2.6	37
116	Band Gap Extraction from Individual Two-Dimensional Perovskite Nanosheets Using Valence Electron Energy Loss Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 11170-11179.	3.1	36
117	In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. CheM, 2021, 7, 1639-1652.	11.7	36
118	Cobalt(I)-catalyzed Neutral Diels-Alder Reactions of Oxygen-functionalized Acyclic 1,3-Dienes with Alkynes. Synlett, 2002, 2002, 1081-1084.	1.8	35
119	Trivalent Iridium Oxides: Layered Triangular Lattice Iridate K _{0.75} Na _{0.25} IrO ₂ and Oxyhydroxide IrOOH. Chemistry of Materials, 2017, 29, 8338-8345.	6.7	35
120	All-Clay Photonic Crystals. Journal of the American Chemical Society, 2008, 130, 15252-15253.	13.7	34
121	Synthesis and Structural Characterization of the Alkali Thiophosphates Na ₂ P _{5₆, Na₄P₂5₆, K₄P₂5₆. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2014. 640. 689-692.}	1.2	34
122	Fast Sodiumâ€lon Conductivity in Supertetrahedral Phosphidosilicates. Angewandte Chemie - International Edition, 2018, 57, 6155-6160.	13.8	34
123	A Step Towards Optically Encoded Silver Release in 1D Photonic Crystals. Small, 2009, 5, 1498-1503.	10.0	33
124	Structural Stability Diagram of ALnP ₂ S ₆ Compounds (A = Na, K, Rb, Cs; Ln =) Tj ETQqC	0.0.rgBT 4.0	Oggrlock 10
125	Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals. Journal of Applied Physics, 2017, 122, .	2.5	33
126	Improving analyte selectivity by post-assembly modification of metal–organic framework based photonic crystal sensors. Nanoscale Horizons, 2018, 3, 383-390.	8.0	33

#	Article	IF	CITATIONS
127	Direct and Linker-Exchange Alcohol-Assisted Hydrothermal Synthesis of Imide-Linked Covalent Organic Frameworks. Chemistry of Materials, 2022, 34, 2249-2258.	6.7	33
128	Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 10291-10300.	13.7	33
129	Completing the Picture of 2-(Aminomethylpyridinium) Lead Hybrid Perovskites: Insights into Structure, Conductivity Behavior, and Optical Properties. Chemistry of Materials, 2018, 30, 6289-6297.	6.7	32
130	Artificial Solids by Design: Assembly and Electron Microscopy Study of Nanosheet-Derived Heterostructures. Chemistry of Materials, 2013, 25, 4892-4900.	6.7	29
131	Benzimidazolium Lead Halide Perovskites: Effects of Anion Substitution and Dimensionality on the Bandgap. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1369-1376.	1.2	29
132	Fast Sodiumâ€lon Conductivity in Supertetrahedral Phosphidosilicates. Angewandte Chemie, 2018, 130, 6263-6268.	2.0	29
133	On-Surface Polymerization of 1,6-Dibromo-3,8-diiodpyreneâ€"A Comparative Study on Au(111) Versus Ag(111) by STM, XPS, and NEXAFS. Journal of Physical Chemistry C, 2018, 122, 5967-5977.	3.1	29
134	Investigation of structural and dynamic properties of NH4[N(CN)2] by means of X-ray and neutron powder diffraction as well as vibrational and solid-state NMR spectroscopy. Journal of Solid State Chemistry, 2003, 176, 180-191.	2.9	28
135	A step towards the electrophotonic nose: integrating 1D photonic crystals with organic light-emitting diodes and photodetectors. Laser and Photonics Reviews, 2014, 8, 726-733.	8.7	28
136	Fluorescent Humidity Sensors Based on Photonic Resonators. Advanced Optical Materials, 2017, 5, 1700663.	7.3	28
137	Electrical Transport Signature of the Magnetic Fluctuation-Structure Relation in α-RuCl ₃ Nanoflakes. Nano Letters, 2018, 18, 3203-3208.	9.1	28
138	The wetter the better. Nature Chemistry, 2018, 10, 1175-1177.	13.6	28
139	Towards Mesostructured Zinc Imidazolate Frameworks. Chemistry - A European Journal, 2012, 18, 2143-2152.	3.3	27
140	Structure-Directing Lone Pairs: Synthesis and Structural Characterization of SnTiO ₃ . Chemistry of Materials, 2018, 30, 8932-8938.	6.7	27
141	Charge Density Waves and Magnetism in Topological Semimetal Candidates GdSb <i></i> Te _{2â^'} <i>_x</i> _{\$a^'} <i>_{{i}</i> <advanced 1900045.<="" 2,="" 2019,="" quantum="" td="" technologies,=""><td>3.9</td><td>27</td></advanced>	3.9	27
142	Polymorphism and Fast Potassiumâ€lon Conduction in the T5 Supertetrahedral Phosphidosilicate KSi ₂ P ₃ . Angewandte Chemie - International Edition, 2021, 60, 13641-13646.	13.8	27
143	Chemical Stability and Ionic Conductivity of LGPS-Type Solid Electrolyte Tetra-Li ₇ SiPS ₈ after Solvent Treatment. ACS Applied Energy Materials, 2021, 4, 9932-9943.	5.1	26
144	Rare-Earth Tricyanomelaminates [NH4]Ln[HC6N9]2[H2O]7â‹H2O (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy): Structural Investigation, Solid-State NMR Spectroscopy, and Photoluminescence. Chemistry - A European Journal, 2007, 13, 3512-3524.	3.3	25

#	Article	IF	Citations
145	Selective host–guest interactions in metal–organic frameworks <i>via</i> multiple hydrogen bond donor–acceptor recognition sites. Journal of Materials Chemistry A, 2019, 7, 10379-10388.	10.3	25
146	Change in Magnetic Properties upon Chemical Exfoliation of FeOCl. Inorganic Chemistry, 2020, 59, 1176-1182.	4.0	25
147	Tuning the magnetoresistance of ultrathin WTe ₂ sheets by electrostatic gating. Nanoscale, 2016, 8, 18703-18709.	5.6	24
148	Bringing one-dimensional photonic crystals to a new light: an electrophotonic platform for chemical mass transport visualisation and cell monitoring. Materials Horizons, 2015, 2, 299-308.	12.2	23
149	ZIF-8 Films Prepared by Femtosecond Pulsed-Laser Deposition. Chemistry of Materials, 2017, 29, 5148-5155.	6.7	22
150	Photonic nanoarchitectonics with stimuli-responsive 2D materials. Molecular Systems Design and Engineering, 2019, 4, 566-579.	3.4	21
151	Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO2@TiO2 as a Benchmark. Matter, 2020, 3, 464-486.	10.0	21
152	Ionothermal Synthesis of Imideâ€Linked Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 15880-15888.	2.0	20
153	Finding the Right Blend: Interplay Between Structure and Sodium Ion Conductivity in the System Na5AlS4–Na4SiS4. Frontiers in Chemistry, 2020, 8, 90.	3.6	19
154	Enhancement of Superionic Conductivity by Halide Substitution in Strongly Stacking Faulted Li ₃ HoBr _{6â€"<i>x</i>} I _{<i>x</i>} Phases. Chemistry of Materials, 2022, 34, 3227-3235.	6.7	19
155	Light-driven molecular motors embedded in covalent organic frameworks. Chemical Science, 2022, 13, 8253-8264 Electronic structure of KCa <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>7.4</td><td>19</td></mml:math>	7.4	19
156	display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub> Nb <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> O <mml:math< td=""><td>3.2</td><td>18</td></mml:math<>	3.2	18
157	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow alkali="" aluminium="" and="" crystal="" m<sup="" of="" structures="" synthesis="" the="" thiohypodiphosphates="">IAlP₂S₆ (M = Li, Na). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1087-1089.</mml:mrow></mml:msub>	1.2	18
158	In Search of Aluminum Hexathiohypodiphosphate: Synthesis and Structures of htâ€AlPS ₄ , ltâ€AlPS ₄ , and Al ₄ (P ₂ S ₆) ₃ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2663-2668.	1.2	18
159	How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale, 2020, 12, 7766-7775.	5.6	18
160	A flavin-inspired covalent organic framework for photocatalytic alcohol oxidation. Chemical Science, 2021, 12, 15143-15150.	7.4	18
161	Self-assembly of melem on Ag(111)â€"emergence of porous structures based on amino-heptazine hydrogen bonds. CrystEngComm, 2011, 13, 5559.	2.6	17
162	Toward Tunable Photonic Nanosheet Sensors: Strong Influence of the Interlayer Cation on the Sensing Characteristics. Advanced Materials, 2017, 29, 1604884.	21.0	16

#	Article	IF	Citations
163	Photocatalytic Nanosheet Lithography: Photolithography based on Organically Modified Photoactive 2D Nanosheets. Angewandte Chemie - International Edition, 2017, 56, 8389-8392.	13.8	16
164	The effect of spin-orbit coupling on nonsymmorphic square-net compounds. Journal of Physics and Chemistry of Solids, 2019, 128, 296-300.	4.0	16
165	Interplay between Valence Band Tuning and Redox Stability in SnTiO ₃ : Implications for Directed Design of Photocatalysts. Chemistry of Materials, 2021, 33, 2824-2836.	6.7	16
166	Enhancing Hydrogen Evolution Activity of Au (111) in Alkaline Media through Molecular Engineering of a 2D Polymer. Angewandte Chemie - International Edition, 2020, 59, 8411-8415.	13.8	15
167	Olefin Metathesis in Confinement: Towards Covalent Organic Framework Scaffolds for Increased Macrocyclization Selectivity. Chemistry - A European Journal, 2022, 28, .	3.3	15
168	Surfactant-directed syntheses of mesostructured zinc imidazolates: formation mechanism and structural insights. CrystEngComm, 2015, 17, 463-470.	2.6	14
169	Threshold-voltage control and enhancement-mode characteristics in multilayer tin disulfide field-effect transistors by gate-oxide passivation with an alkylphosphonic acid self-assembled monolayer. Journal of Applied Physics, 2015, 117, 104509.	2.5	14
170	The First Quinary Rare Earth Thiophosphates: Cs5Ln3X3(P2S6)2(PS4) (Ln= La, Ce,X= Br, Cl) and the Quasi-Quaternary Cs10Y4Cl10(P2S6)3. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1818-1823.	1.2	14
171	Tracking Molecular Diffusion in Oneâ€Dimensional Photonic Crystals. Advanced Materials, 2018, 30, e1803730.	21.0	14
172	Inâ€Situ Generation of Electrolyte inside Pyridineâ€Based Covalent Triazine Frameworks for Direct Supercapacitor Integration. ChemSusChem, 2020, 13, 3192-3198.	6.8	14
173	Mechanistic Insights into the Role of Covalent Triazine Frameworks as Cathodes in Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2020, 3, 1069-1079.	4.7	14
174	1D photonic defect structures based on colloidal porous frameworks: Reverse pore engineering and vapor sorption. Microporous and Mesoporous Materials, 2015, 216, 216-224.	4.4	13
175	Directly photoexcited Dirac and Weyl fermions in ZrSiS and NbAs. Applied Physics Letters, 2018, 113, .	3.3	13
176	Impact of hydration on ion transport in Li ₂ Sn ₂ Scsub>5 $\hat{A}\cdot (i>xH2O. Journal of Materials Chemistry A, 2021, 9, 16532-16544.$	10.3	13
177	Unveiling the complex configurational landscape of the intralayer cavities in a crystalline carbon nitride. Chemical Science, 2022, 13, 3187-3193.	7.4	13
178	The Crystal Structures of Two No–Metal Tricyanomelaminates: Diammonium Tricyanomelaminate Dihydrate [NH 4] 2 [C 6 N 9 H] · 2 H 2 O and Dimelaminium Tricyanomelaminate Melamine Dihydrate [C 3 N 6 H 7] 2 [C 6 N 9 H] · C 3 N. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1435-1441.	1.2	12
179	Synthesis and Characterization of Copper Hexathiometadiphosphate Cu ₂ P ₂ S ₆ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 356-360.	1.2	12
180	Thermodynamics of the Segregation of a Kinetically Trapped Two-Dimensional Amorphous Metal–Organic Network. Journal of Physical Chemistry C, 2016, 120, 4403-4409.	3.1	12

#	Article	IF	CITATIONS
181	Instability of the Li ₇ SiPS ₈ Solid Electrolyte at the Lithium Metal Anode and Interphase Formation. Chemistry of Materials, 2022, 34, 3659-3669.	6.7	12
182	New Light on an Old Story: The Crystal Structure of Boron Tetrathiophosphate Revisited. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 267-271.	1.2	11
183	Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie - International Edition, 2021, 60, 25815-25824.	13.8	11
184	Photomemristive sensing <i>via</i> charge storage in 2D carbon nitrides. Materials Horizons, 2022, 9, 1866-1877.	12.2	11
185	Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride. Journal of Applied Physics, 2015, 117, 014301.	2.5	10
186	Synthesis and Structural Characterization of the Ammelinium Salts [C3H6N5O]Cl, [C3H6N5O]Br, and [C3H6N5O]NO3. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 1457-1464.	1.2	9
187	Reorientational Dynamics and Solid-Phase Transformation of Ammonium Dicyanamide into Dicyandiamide:Â A2H Solid-State NMR Study. Journal of Physical Chemistry B, 2007, 111, 11680-11691.	2.6	9
188	Electronically coupled hybrid structures by graphene oxide directed self-assembly of Cu _{2â°x} S nanocrystals. Nanoscale, 2015, 7, 6675-6682.	5.6	9
189	Synthesis of Triazineâ€Based Materials by Functionalization with Alkynes. Chemistry - A European Journal, 2015, 21, 7866-7873.	3.3	9
190	A New Fabrication Method for Singleâ€Layer Nanosheets by Silverâ€Assisted Exfoliation. ChemNanoMat, 2017, 3, 411-414.	2.8	9
191	Ultra-thin relative humidity sensors for hybrid system-in-foil applications. , 2017, , .		9
192	Vapor-Phase Amine Intercalation for the Rational Design of Photonic Nanosheet Sensors. Chemistry of Materials, 2018, 30, 2557-2565.	6.7	9
193	Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10]â^ Nanosheets during Heating and Their Photocatalytic Properties. Catalysts, 2020, 10, 13.	3.5	9
194	Lanthanide orthothiophosphates revisited: single-crystal X-ray, Raman, and DFT studies of TmPS ₄ and YbPS ₄ . Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 225-231.	0.7	9
195	Magneto-optical probe of the fully gapped Dirac band in ZrSiS. Physical Review Research, 2019, 1, .	3.6	9
196	Superionic Conduction in the Plastic Crystal Polymorph of Na _{P_{P_{S₆. ACS Energy Letters, 2022, 7, 1403-1411.}}}	17.4	9
197	Titanium Doping and Its Effect on the Morphology of Three-Dimensional Hierarchical Nb ₃ O ₇ (OH) Nanostructures for Enhanced Light-Induced Water Splitting. Chemistry of Materials, 2016, 28, 7666-7672.	6.7	8
198	Shortâ∈Range Structural Correlations in Amorphous 2D Polymers. ChemPhysChem, 2019, 20, 2340-2347.	2.1	8

#	Article	IF	Citations
199	Transfer of 1D Photonic Crystals via Spatially Resolved Hydrophobization. Small, 2021, 17, e2007864.	10.0	8
200	Stimuli-responsive Bragg stacks for chemo-optical sensing applications. , 2010, , .		7
201	Crystal Structure of Guanylurea Sulphate Hydrate [H2NC(=O)NHC(NH2)2]2SO4 · 2 H2O. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2967-2969.	1.2	6
202	Functional Engineering of Perovskite Nanosheets: Impact of Lead Substitution on Exfoliation in the Solid Solution RbCa _{2–<i>x</i>} Pb <i>_x</i> Nb ₃ O ₁₀ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1668-1680.	1.2	6
203	Phase formation through synthetic control: polymorphism in the sodium-ion solid electrolyte Na4P2S6. Journal of Materials Chemistry A, 2021, 9, 8692-8703.	10.3	6
204	Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Microporous and Mesoporous Materials, 2022, 336, 111796.	4.4	6
205	Tunable thermoresponsive TiO2/SiO2 Bragg stacks based on sol–gel fabrication methods. Journal of Intelligent Material Systems and Structures, 2013, 24, 2204-2214.	2.5	5
206	Photocatalytic Nanosheet Lithography: Photolithography based on Organically Modified Photoactive 2D Nanosheets. Angewandte Chemie, 2017, 129, 8509-8512.	2.0	5
207	Synthesis and Structure of the Sodium Phosphidosilicate Na ₂ SiP ₂ . European Journal of Inorganic Chemistry, 2020, 2020, 617-621.	2.0	5
208	Examination of possible high-pressure candidates of SnTiO3: The search for novel ferroelectric materials. APL Materials, 2021, 9, 021103.	5.1	5
209	Fast Water-Assisted Lithium Ion Conduction in Restacked Lithium Tin Sulfide Nanosheets. Chemistry of Materials, 2021, 33, 7337-7349.	6.7	5
210	Guest-responsive thermal expansion in the Zr–porphyrin metal–organic framework PCN-222. APL Materials, 2022, 10, .	5.1	5
211	Nanomorphology tuning of the thermal response of TiO ₂ /SiO ₂ Bragg stacks. Canadian Journal of Chemistry, 2012, 90, 1069-1077.	1.1	4
212	Humidity Sensing: Towards the Nanosheetâ€Based Photonic Nose: Vapor Recognition and Trace Water Sensing with Antimony Phosphate Thin Film Devices (Adv. Mater. 34/2016). Advanced Materials, 2016, 28, 7294-7294.	21.0	4
213	Copper Selenidophosphates Cu4P2Se6, Cu4P3Se4, Cu4P4Se3, and CuP2Se, Featuring Zero-, One-, and Two-Dimensional Anions. Inorganic Chemistry, 2016, 55, 8031-8040.	4.0	4
214	Customizing H ₃ Sb ₃ P ₂ O ₁₄ nanosheet sensors by reversible vapor-phase amine intercalation. Nanoscale Horizons, 2020, 5, 74-81.	8.0	4
215	Atomic Resolution Observation of the Oxidation of Niobium Oxide Nanowires: Implications for Renewable Energy Applications. ACS Applied Nano Materials, 2020, 3, 9285-9292.	5.0	4
216	Catalytic Formation and Crystal Structure of Cyanoguanylurea H ₂ NC(=O)NHC(NH ₂)NCN. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2005, 60, 377-382.	0.7	3

#	Article	IF	CITATIONS
217	Synthesis and Characterization of Three New Lithiumâ€Scandium Hexathiohypodiphosphates: Li _{4â€"3x} Sc _x P ₂ S ₆ (<i>x</i> = 0.358), <i>m</i> â€LiScP _{S₆. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1854-1862.}	1.2	3
218	Structural Investigation of a Layered Carbon Nitride Polymer by Electron Diffraction Combined with Powder X-ray Diffraction, NMR and Theoretical Calculations. Microscopy and Microanalysis, 2007, 13, 122-123.	0.4	2
219	Utilizing Chemical Intuition in the Search for New Quantum Materials. ACS Central Science, 2019, 5, 750-752.	11.3	2
220	Polymorphie und schnelle Kalium″onenleitung im Phosphidosilicat KSi 2 P 3 mit T5 Supertetraedern. Angewandte Chemie, 2021, 133, 13754-13759.	2.0	2
221	Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie, 2021, 133, 26019-26028.	2.0	2
222	Correlation between Structural Studies and the Cathodoluminescence of Individual Complex Niobate Particles. ACS Applied Electronic Materials, 2021, 3, 461-467.	4.3	2
223	Tin disulfide (SnS <inf>2</inf>) thin-film field-effect transistors. , 2014, , .		1
224	Humidity Sensors: Lithium Tin Sulfide-a High-Refractive-Index 2D Material for Humidity-Responsive Photonic Crystals (Adv. Funct. Mater. 14/2018). Advanced Functional Materials, 2018, 28, 1870094.	14.9	1
225	Holey Heterographenes Made to Order: "Green―Synthesis of Porous Graphitic Frameworks. CheM, 2020, 6, 812-814.	11.7	1
226	Enhancing Hydrogen Evolution Activity of Au (111) in Alkaline Media through Molecular Engineering of a 2D Polymer. Angewandte Chemie, 2020, 132, 8489-8493.	2.0	1
227	Beyond templating: Electronic structure impacts of aromatic cations in organic–inorganic antimony chlorides. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 857-866.	1.2	1
228	Poly(heptazinâ€imid) ―ein kovalentes 2Dâ€polymeres Kohlenstoffnitridâ€Netzwerk. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2014-2014.	1.2	0
229	Selectivity, cycling stability and temperature dependence of touchless finger motion tracking devices based on 1D photonic crystals. Proceedings of SPIE, 2016 , , .	0.8	0
230	Photocatalytic Hydrogen Evolution: Interfacial Engineering for Improved Photocatalysis in a Charge Storing 2D Carbon Nitride: Melamine Functionalized Poly(heptazine imide) (Adv. Energy Mater. 6/2021). Advanced Energy Materials, 2021, 11, 2170028.	19.5	0
231	Photonics: Transfer of 1D Photonic Crystals via Spatially Resolved Hydrophobization (Small 12/2021). Small, 2021, 17, 2170055.	10.0	0
232	Rýcktitelbild: Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage (Angew. Chem. 49/2021). Angewandte Chemie, 2021, 133, 26204-26204.	2.0	0